Unmanned Aerial Vehicle Base Station (UAV-BS) Deployment With Millimeter-Wave Beamforming
Unmanned aerial vehicle (UAV) with flexible mobility and low cost has been a promising technology for wireless communication. Thus, it can be used for wireless data collection in Internet of Things (IoT). In this article, we consider millimeter-wave (mmWave) communication on a UAV platform, where th...
Saved in:
Published in | IEEE internet of things journal Vol. 7; no. 2; pp. 1336 - 1349 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2327-4662 2327-4662 |
DOI | 10.1109/JIOT.2019.2954620 |
Cover
Summary: | Unmanned aerial vehicle (UAV) with flexible mobility and low cost has been a promising technology for wireless communication. Thus, it can be used for wireless data collection in Internet of Things (IoT). In this article, we consider millimeter-wave (mmWave) communication on a UAV platform, where the UAV base station (UAV-BS) serves multiple ground users, which generate big sensor data. Both the deployment of the UAV-BS and the beamforming design have essential impact on the throughput of the system. Thus, we formulate a problem to maximize the achievable sum rate of all the users, subject to a minimum rate constraint for each user, a position constraint of the UAV-BS, and a constant-modulus (CM) constraint for the beamforming vector. We solve the nonconvex problem with two steps. First, by introducing the approximate beam pattern, we solve the deployment and beam gain allocation subproblem. Then, we utilize the artificial bee colony (ABC) algorithm to solve the beamforming subproblem. For the global optimization problem, we find the near-optimal position of the UAV-BS and the beamforming vector to steer toward each user, subject to an analog beamforming structure. The simulation results demonstrate that the proposed solution can achieve a more superior performance than the present random steering beamforming strategy in terms of achievable sum rate. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2327-4662 2327-4662 |
DOI: | 10.1109/JIOT.2019.2954620 |