Fractional Flow Reserve Computed from Noninvasive CT Angiography Data: Diagnostic Performance of an On-Site Clinician-operated Computational Fluid Dynamics Algorithm

To validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively measured FFR and to test its diagnostic performance as compared with that of coronary CT angiography. The institutional review board provided...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 274; no. 3; pp. 674 - 683
Main Authors Coenen, Adriaan, Lubbers, Marisa M., Kurata, Akira, Kono, Atsushi, Dedic, Admir, Chelu, Raluca G., Dijkshoorn, Marcel L., Gijsen, Frank J., Ouhlous, Mohamed, van Geuns, Robert-Jan M., Nieman, Koen
Format Journal Article
LanguageEnglish
Published United States 01.03.2015
Subjects
Online AccessGet full text
ISSN0033-8419
1527-1315
1527-1315
DOI10.1148/radiol.14140992

Cover

Abstract To validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively measured FFR and to test its diagnostic performance as compared with that of coronary CT angiography. The institutional review board provided a waiver for this retrospective study. From coronary CT angiography data in 106 patients, FFR was computed at a local workstation by using a computational fluid dynamics algorithm. Invasive FFR measurement was performed in 189 vessels (80 of which had an FFR ≤ 0.80); these measurements were regarded as the reference standard. The diagnostic characteristics of coronary CT angiography-derived computational FFR, coronary CT angiography, and quantitative coronary angiography were evaluated against those of invasively measured FFR by using C statistics. Sensitivity and specificity were compared by using a two-sided McNemar test. For computational FFR, sensitivity was 87.5% (95% confidence interval [CI]: 78.2%, 93.8%), specificity was 65.1% (95% CI: 55.4%, 74.0%), and accuracy was 74.6% (95% CI: 68.4%, 80.8%), as compared with the finding of lumen stenosis of 50% or greater at coronary CT angiography, for which sensitivity was 81.3% (95% CI: 71.0%, 89.1%), specificity was 37.6% (95% CI: 28.5%, 47.4%), and accuracy was 56.1% (95% CI: 49.0%, 63.2%). C statistics revealed a larger area under the receiver operating characteristic curve (AUC) for computational FFR (AUC, 0.83) than for coronary CT angiography (AUC, 0.64). For vessels with intermediate (25%-69%) stenosis, the sensitivity of computational FFR was 87.3% (95% CI: 76.5%, 94.3%) and the specificity was 59.3% (95% CI: 47.8%, 70.1%). With use of a reduced-order algorithm, computation of the FFR from coronary CT angiography data can be performed locally, at a regular workstation. The diagnostic accuracy of coronary CT angiography-derived computational FFR for the detection of functionally important coronary artery disease (CAD) was good and was incremental to that of coronary CT angiography within a population with a high prevalence of CAD.
AbstractList To validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively measured FFR and to test its diagnostic performance as compared with that of coronary CT angiography.PURPOSETo validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively measured FFR and to test its diagnostic performance as compared with that of coronary CT angiography.The institutional review board provided a waiver for this retrospective study. From coronary CT angiography data in 106 patients, FFR was computed at a local workstation by using a computational fluid dynamics algorithm. Invasive FFR measurement was performed in 189 vessels (80 of which had an FFR ≤ 0.80); these measurements were regarded as the reference standard. The diagnostic characteristics of coronary CT angiography-derived computational FFR, coronary CT angiography, and quantitative coronary angiography were evaluated against those of invasively measured FFR by using C statistics. Sensitivity and specificity were compared by using a two-sided McNemar test.MATERIALS AND METHODSThe institutional review board provided a waiver for this retrospective study. From coronary CT angiography data in 106 patients, FFR was computed at a local workstation by using a computational fluid dynamics algorithm. Invasive FFR measurement was performed in 189 vessels (80 of which had an FFR ≤ 0.80); these measurements were regarded as the reference standard. The diagnostic characteristics of coronary CT angiography-derived computational FFR, coronary CT angiography, and quantitative coronary angiography were evaluated against those of invasively measured FFR by using C statistics. Sensitivity and specificity were compared by using a two-sided McNemar test.For computational FFR, sensitivity was 87.5% (95% confidence interval [CI]: 78.2%, 93.8%), specificity was 65.1% (95% CI: 55.4%, 74.0%), and accuracy was 74.6% (95% CI: 68.4%, 80.8%), as compared with the finding of lumen stenosis of 50% or greater at coronary CT angiography, for which sensitivity was 81.3% (95% CI: 71.0%, 89.1%), specificity was 37.6% (95% CI: 28.5%, 47.4%), and accuracy was 56.1% (95% CI: 49.0%, 63.2%). C statistics revealed a larger area under the receiver operating characteristic curve (AUC) for computational FFR (AUC, 0.83) than for coronary CT angiography (AUC, 0.64). For vessels with intermediate (25%-69%) stenosis, the sensitivity of computational FFR was 87.3% (95% CI: 76.5%, 94.3%) and the specificity was 59.3% (95% CI: 47.8%, 70.1%).RESULTSFor computational FFR, sensitivity was 87.5% (95% confidence interval [CI]: 78.2%, 93.8%), specificity was 65.1% (95% CI: 55.4%, 74.0%), and accuracy was 74.6% (95% CI: 68.4%, 80.8%), as compared with the finding of lumen stenosis of 50% or greater at coronary CT angiography, for which sensitivity was 81.3% (95% CI: 71.0%, 89.1%), specificity was 37.6% (95% CI: 28.5%, 47.4%), and accuracy was 56.1% (95% CI: 49.0%, 63.2%). C statistics revealed a larger area under the receiver operating characteristic curve (AUC) for computational FFR (AUC, 0.83) than for coronary CT angiography (AUC, 0.64). For vessels with intermediate (25%-69%) stenosis, the sensitivity of computational FFR was 87.3% (95% CI: 76.5%, 94.3%) and the specificity was 59.3% (95% CI: 47.8%, 70.1%).With use of a reduced-order algorithm, computation of the FFR from coronary CT angiography data can be performed locally, at a regular workstation. The diagnostic accuracy of coronary CT angiography-derived computational FFR for the detection of functionally important coronary artery disease (CAD) was good and was incremental to that of coronary CT angiography within a population with a high prevalence of CAD.CONCLUSIONWith use of a reduced-order algorithm, computation of the FFR from coronary CT angiography data can be performed locally, at a regular workstation. The diagnostic accuracy of coronary CT angiography-derived computational FFR for the detection of functionally important coronary artery disease (CAD) was good and was incremental to that of coronary CT angiography within a population with a high prevalence of CAD.
To validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively measured FFR and to test its diagnostic performance as compared with that of coronary CT angiography. The institutional review board provided a waiver for this retrospective study. From coronary CT angiography data in 106 patients, FFR was computed at a local workstation by using a computational fluid dynamics algorithm. Invasive FFR measurement was performed in 189 vessels (80 of which had an FFR ≤ 0.80); these measurements were regarded as the reference standard. The diagnostic characteristics of coronary CT angiography-derived computational FFR, coronary CT angiography, and quantitative coronary angiography were evaluated against those of invasively measured FFR by using C statistics. Sensitivity and specificity were compared by using a two-sided McNemar test. For computational FFR, sensitivity was 87.5% (95% confidence interval [CI]: 78.2%, 93.8%), specificity was 65.1% (95% CI: 55.4%, 74.0%), and accuracy was 74.6% (95% CI: 68.4%, 80.8%), as compared with the finding of lumen stenosis of 50% or greater at coronary CT angiography, for which sensitivity was 81.3% (95% CI: 71.0%, 89.1%), specificity was 37.6% (95% CI: 28.5%, 47.4%), and accuracy was 56.1% (95% CI: 49.0%, 63.2%). C statistics revealed a larger area under the receiver operating characteristic curve (AUC) for computational FFR (AUC, 0.83) than for coronary CT angiography (AUC, 0.64). For vessels with intermediate (25%-69%) stenosis, the sensitivity of computational FFR was 87.3% (95% CI: 76.5%, 94.3%) and the specificity was 59.3% (95% CI: 47.8%, 70.1%). With use of a reduced-order algorithm, computation of the FFR from coronary CT angiography data can be performed locally, at a regular workstation. The diagnostic accuracy of coronary CT angiography-derived computational FFR for the detection of functionally important coronary artery disease (CAD) was good and was incremental to that of coronary CT angiography within a population with a high prevalence of CAD.
Author Gijsen, Frank J.
Lubbers, Marisa M.
Kurata, Akira
Dedic, Admir
Coenen, Adriaan
van Geuns, Robert-Jan M.
Dijkshoorn, Marcel L.
Nieman, Koen
Ouhlous, Mohamed
Kono, Atsushi
Chelu, Raluca G.
Author_xml – sequence: 1
  givenname: Adriaan
  surname: Coenen
  fullname: Coenen, Adriaan
– sequence: 2
  givenname: Marisa M.
  surname: Lubbers
  fullname: Lubbers, Marisa M.
– sequence: 3
  givenname: Akira
  surname: Kurata
  fullname: Kurata, Akira
– sequence: 4
  givenname: Atsushi
  surname: Kono
  fullname: Kono, Atsushi
– sequence: 5
  givenname: Admir
  surname: Dedic
  fullname: Dedic, Admir
– sequence: 6
  givenname: Raluca G.
  surname: Chelu
  fullname: Chelu, Raluca G.
– sequence: 7
  givenname: Marcel L.
  surname: Dijkshoorn
  fullname: Dijkshoorn, Marcel L.
– sequence: 8
  givenname: Frank J.
  surname: Gijsen
  fullname: Gijsen, Frank J.
– sequence: 9
  givenname: Mohamed
  surname: Ouhlous
  fullname: Ouhlous, Mohamed
– sequence: 10
  givenname: Robert-Jan M.
  surname: van Geuns
  fullname: van Geuns, Robert-Jan M.
– sequence: 11
  givenname: Koen
  surname: Nieman
  fullname: Nieman, Koen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25322342$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS1URKeFNTvkJZu0_k_CbjTTAaSKIijr6I7HmV6U2MF2iuaBeE8ySttFpXpjS_7OuVfnnJETH7wj5D1nF5yr6jLCDkN3wRVXrK7FK7LgWpQFl1yfkAVjUhaV4vUpOUvpN2Nc6ap8Q06FlkJIJRbk3yaCzRg8dHTThb_0h0su3ju6Cv0wZrejbQw9_RY8-ntIePy5pUu_x7CPMNwd6BoyfKJrhL0PKaOl311sQ-zBW0dDS8HTG1_8xDwpO_RoEXwRBhfh6D6PgacNRtzR9cFDjzbRZbcPEfNd_5a8bqFL7t3DfU5-ba5uV1-K65vPX1fL68KKWuaisoJLy4SxVrmqAmO32tSlVNORzlipLbTM1Nootd1KMz2NNLXjogQujJLn5OPsO8TwZ3QpNz0m67oOvAtjariZ8mNlpeWEfnhAx23vds0QsYd4aB6jnYDLGbAxpBRd-4Rw1hzLa-bymsfyJoV-prA4R5MjYPei7j8RUqDZ
CitedBy_id crossref_primary_10_1016_j_jcct_2018_09_003
crossref_primary_10_1063_5_0181281
crossref_primary_10_1093_ehjci_jez160
crossref_primary_10_1016_j_crad_2019_08_007
crossref_primary_10_1038_srep29409
crossref_primary_10_1097_RTI_0000000000000385
crossref_primary_10_1186_s12938_017_0330_2
crossref_primary_10_1002_mp_15616
crossref_primary_10_3348_kjr_2020_1277
crossref_primary_10_1007_s00330_021_07726_y
crossref_primary_10_1007_s40134_017_0234_8
crossref_primary_10_1016_j_amjcard_2015_10_008
crossref_primary_10_1148_radiol_2017162620
crossref_primary_10_1007_s00330_022_08758_8
crossref_primary_10_1016_j_cmpb_2024_108415
crossref_primary_10_15829_1560_4071_2019_3_60_68
crossref_primary_10_1016_j_jcct_2021_05_005
crossref_primary_10_1080_00325481_2024_2360888
crossref_primary_10_1177_0284185115622075
crossref_primary_10_1136_openhrt_2023_002328
crossref_primary_10_17802_2306_1278_2024_13_4S_12_20
crossref_primary_10_1097_RTI_0000000000000289
crossref_primary_10_18087_cardio_2021_7_n1540
crossref_primary_10_1148_ryct_2019190036
crossref_primary_10_1007_s00380_017_1081_5
crossref_primary_10_1016_j_jcct_2015_12_006
crossref_primary_10_1016_j_jcct_2023_10_011
crossref_primary_10_1007_s00330_016_4541_x
crossref_primary_10_1016_j_jcct_2025_02_004
crossref_primary_10_1016_j_amjcard_2017_09_018
crossref_primary_10_3390_app12146964
crossref_primary_10_1016_j_jbiomech_2020_110076
crossref_primary_10_1016_j_jcct_2017_11_004
crossref_primary_10_1007_s11604_016_0589_4
crossref_primary_10_1159_000505317
crossref_primary_10_2217_fca_2020_0058
crossref_primary_10_1016_j_clinimag_2018_01_018
crossref_primary_10_1148_radiol_2017162641
crossref_primary_10_3389_fphys_2018_00742
crossref_primary_10_1093_eurjpc_zwab067
crossref_primary_10_1161_CIRCIMAGING_118_007943
crossref_primary_10_22468_cvia_2016_00094
crossref_primary_10_1002_mp_12121
crossref_primary_10_1007_s00330_019_06571_4
crossref_primary_10_1016_j_amjcard_2019_07_061
crossref_primary_10_1007_s00330_015_3619_1
crossref_primary_10_1007_s00330_018_5919_8
crossref_primary_10_1055_a_2142_1643
crossref_primary_10_2147_VHRM_S286916
crossref_primary_10_1148_rg_210097
crossref_primary_10_3389_fbioe_2023_1207300
crossref_primary_10_1080_17434440_2017_1338134
crossref_primary_10_1253_circj_CJ_19_0163
crossref_primary_10_1002_cnm_3255
crossref_primary_10_1007_s42058_020_00039_x
crossref_primary_10_1253_circj_CJ_19_1131
crossref_primary_10_1016_j_cmpb_2023_107862
crossref_primary_10_1016_j_nicl_2023_103435
crossref_primary_10_1016_j_jcmg_2019_06_018
crossref_primary_10_1016_j_ejrad_2024_111797
crossref_primary_10_1007_s12471_021_01647_7
crossref_primary_10_1007_s10237_021_01529_2
crossref_primary_10_1093_ehjci_jew094
crossref_primary_10_1016_j_jcct_2018_01_012
crossref_primary_10_1038_s41598_021_93237_1
crossref_primary_10_1016_j_cjca_2016_01_023
crossref_primary_10_1007_s00059_016_4433_5
crossref_primary_10_1016_j_iccl_2022_09_009
crossref_primary_10_15212_CVIA_2016_0063
crossref_primary_10_1253_circj_CJ_18_0677
crossref_primary_10_1093_ehjci_jeab062
crossref_primary_10_1007_s40134_016_0170_z
crossref_primary_10_1136_bmjopen_2020_037780
crossref_primary_10_1016_j_hlc_2020_05_099
crossref_primary_10_1007_s11886_017_0923_1
crossref_primary_10_1016_j_jcmg_2015_11_025
crossref_primary_10_1007_s12265_023_10361_1
crossref_primary_10_1016_j_jcmg_2017_10_027
crossref_primary_10_1148_ryct_2020190137
crossref_primary_10_1016_j_ejrad_2023_111133
crossref_primary_10_5334_gh_837
crossref_primary_10_1007_s11547_020_01277_w
crossref_primary_10_1586_14779072_2015_1039991
crossref_primary_10_1016_j_media_2017_11_008
crossref_primary_10_4070_kcj_2023_0288
crossref_primary_10_1016_j_jcmg_2015_11_018
crossref_primary_10_1093_ehjci_jeab292
crossref_primary_10_1016_j_jcmg_2015_09_003
crossref_primary_10_3390_jcm9123925
crossref_primary_10_1016_j_ejrad_2021_109712
crossref_primary_10_2459_JCM_0000000000000415
crossref_primary_10_1063_5_0040315
crossref_primary_10_1111_echo_70098
crossref_primary_10_2214_AJR_18_20774
crossref_primary_10_1016_j_jjcc_2022_02_019
crossref_primary_10_1016_j_ejrad_2024_111688
crossref_primary_10_1016_j_jjcc_2024_05_009
crossref_primary_10_3389_fcvm_2021_739633
crossref_primary_10_3389_fcvm_2021_711401
crossref_primary_10_1007_s10554_015_0797_5
crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_106009
crossref_primary_10_1080_14017431_2024_2373082
crossref_primary_10_3389_fcvm_2023_1236405
crossref_primary_10_3390_jcm10194398
crossref_primary_10_1038_s41598_018_35344_0
crossref_primary_10_36660_abc_20190329
crossref_primary_10_1002_mp_12753
crossref_primary_10_1016_j_ejrad_2019_04_011
crossref_primary_10_1007_s12410_016_9396_7
crossref_primary_10_1093_ehjci_jey114
crossref_primary_10_1136_heartjnl_2016_311029
crossref_primary_10_1007_s10237_019_01182_w
crossref_primary_10_1186_s12938_021_00914_3
crossref_primary_10_1016_j_cma_2024_117338
crossref_primary_10_1067_j_cpradiol_2020_09_006
crossref_primary_10_1016_j_amjcard_2017_07_008
crossref_primary_10_1007_s10554_018_1419_9
crossref_primary_10_1016_j_jcct_2018_04_010
crossref_primary_10_1038_s41598_024_65626_9
crossref_primary_10_1109_TMI_2019_2953054
crossref_primary_10_1016_j_amjcard_2017_08_034
crossref_primary_10_1016_j_jcct_2019_02_005
crossref_primary_10_2214_AJR_20_23332
crossref_primary_10_3390_app12094281
crossref_primary_10_1007_s00059_020_04944_w
crossref_primary_10_1007_s13239_024_00731_4
crossref_primary_10_36660_abc_20210245
crossref_primary_10_1016_j_ccl_2023_07_004
crossref_primary_10_1002_cnm_3235
crossref_primary_10_1556_1647_2020_00011
crossref_primary_10_1007_s11886_018_1017_4
crossref_primary_10_12677_ACM_2023_13112551
crossref_primary_10_3390_jcm11051331
crossref_primary_10_2214_AJR_23_29156
crossref_primary_10_1007_s10554_024_03069_z
crossref_primary_10_1115_1_4044095
crossref_primary_10_1093_ehjci_jex240
crossref_primary_10_1016_j_jcmg_2018_11_037
crossref_primary_10_1115_1_4038751
crossref_primary_10_1148_radiol_2018171291
crossref_primary_10_1007_s00424_017_1961_7
crossref_primary_10_1097_RTI_0000000000000679
crossref_primary_10_1155_2020_5954617
crossref_primary_10_1038_s41598_018_29910_9
crossref_primary_10_4244_EIJV11SVA11
crossref_primary_10_15212_CVIA_2016_0048
crossref_primary_10_31083_j_rcm2502049
crossref_primary_10_1007_s12410_015_9366_5
crossref_primary_10_1039_C9RA08999C
crossref_primary_10_1093_ehjci_jey104
crossref_primary_10_1016_j_jcmg_2019_06_027
crossref_primary_10_1080_14779072_2017_1379899
crossref_primary_10_1016_j_jcmg_2016_07_005
crossref_primary_10_1007_s12410_018_9459_z
crossref_primary_10_1161_CIRCULATIONAHA_123_063996
crossref_primary_10_1259_bjr_20200349
crossref_primary_10_1007_s11886_016_0714_0
crossref_primary_10_1007_s10554_020_01807_7
crossref_primary_10_1371_journal_pone_0153070
crossref_primary_10_1007_s00330_017_5223_z
crossref_primary_10_1177_0846537119893752
crossref_primary_10_1371_journal_pone_0181824
crossref_primary_10_1148_ryct_2019190050
crossref_primary_10_1016_j_engappai_2025_110309
crossref_primary_10_1177_09544119211016912
crossref_primary_10_1148_ryct_2019180012
crossref_primary_10_1016_j_amjcard_2015_11_019
crossref_primary_10_1161_CIRCRESAHA_116_309680
crossref_primary_10_1016_j_amjcard_2017_04_057
crossref_primary_10_1007_s10554_015_0825_5
crossref_primary_10_3389_fbioe_2021_739667
crossref_primary_10_1088_2057_1976_2_6_065011
crossref_primary_10_3390_diagnostics14161738
crossref_primary_10_1016_j_ejrad_2019_108657
crossref_primary_10_1016_j_jcct_2019_11_014
crossref_primary_10_1253_circj_CJ_17_0702
crossref_primary_10_3348_kjr_2016_17_3_307
crossref_primary_10_1016_j_ejmp_2023_102555
crossref_primary_10_1016_j_jcin_2024_06_027
crossref_primary_10_4244_EIJ_D_17_00019
crossref_primary_10_1007_s00330_018_5834_z
crossref_primary_10_1007_s00330_019_06470_8
crossref_primary_10_1097_RTI_0000000000000483
crossref_primary_10_1155_2018_2680430
crossref_primary_10_4070_kcj_2019_0315
crossref_primary_10_1002_cnm_2908
crossref_primary_10_1186_s12938_023_01121_y
crossref_primary_10_1080_14779072_2018_1538786
crossref_primary_10_1016_j_crad_2022_02_021
crossref_primary_10_1016_j_ijcha_2021_100815
crossref_primary_10_1093_eurheartj_suw014
crossref_primary_10_1016_j_crad_2016_01_022
crossref_primary_10_1007_s10554_015_0741_8
crossref_primary_10_1016_j_jcct_2018_10_026
crossref_primary_10_26442_00403660_2023_04_202169
crossref_primary_10_3390_jcdd10090384
crossref_primary_10_1007_s00059_016_4451_3
crossref_primary_10_1161_CIRCIMAGING_117_007217
crossref_primary_10_3233_THC_220435
crossref_primary_10_1016_j_jcct_2017_06_002
crossref_primary_10_1161_JAHA_117_005587
crossref_primary_10_1007_s00330_015_4134_0
Cites_doi 10.1016/j.jacc.2009.08.087
10.1016/j.jacc.2013.11.043
10.1161/CIRCULATIONAHA.109.915009
10.1152/japplphysiol.01261.2007
10.1001/2012.jama.11274
10.1016/j.jacc.2008.07.031
10.1016/j.jacc.2011.06.066
10.1093/ehjci/jes303
10.1016/0141-5425(92)90015-D
10.1093/eurheartj/ehm150
10.1073/pnas.12.3.207
10.1161/01.CIR.82.5.1595
10.1016/j.jacc.2008.05.024
10.1007/s00330-013-3059-8
10.1056/NEJM199606273342604
10.1148/radiol.09091014
10.2307/2531595
10.1148/radiol.10100161
10.1148/radiol.2261021292
10.1146/annurev-fluid-122109-160730
10.1016/j.jacc.2008.08.058
10.1093/eurheartj/eht296
10.1016/j.jcct.2009.01.001
10.1056/NEJMoa1205361
10.1093/eurheartj/eht077
10.1007/s10439-010-0083-6
10.1056/NEJMoa0806576
10.1253/circj.CJ-10-1154
10.1001/jama.293.20.2471
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1148/radiol.14140992
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
EndPage 683
ExternalDocumentID 25322342
10_1148_radiol_14140992
Genre Validation Studies
Evaluation Studies
Journal Article
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
AAYXX
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ADBBV
AENEX
AENYM
AFFNX
AFOSN
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZVN
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c293t-8c213c026cc4e88a6cb5697344443e6c35caf0695644bb360696369e127a12643
ISSN 0033-8419
1527-1315
IngestDate Thu Sep 04 23:33:56 EDT 2025
Mon Jul 21 06:06:50 EDT 2025
Tue Jul 01 03:21:39 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c293t-8c213c026cc4e88a6cb5697344443e6c35caf0695644bb360696369e127a12643
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 25322342
PQID 1658707853
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1658707853
pubmed_primary_25322342
crossref_primary_10_1148_radiol_14140992
crossref_citationtrail_10_1148_radiol_14140992
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-00
2015-Mar
20150301
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2015
References r2
r3
r4
r5
r6
r7
r8
r9
r30
r10
r31
r12
r11
r14
r13
r16
r15
r18
r17
r19
r21
r22
r25
r24
r27
r26
r29
r28
r1
Sharma P (r20) 2012; 2012
References_xml – ident: r1
  doi: 10.1016/j.jacc.2009.08.087
– ident: r15
  doi: 10.1016/j.jacc.2013.11.043
– ident: r31
  doi: 10.1161/CIRCULATIONAHA.109.915009
– ident: r18
  doi: 10.1152/japplphysiol.01261.2007
– ident: r14
  doi: 10.1001/2012.jama.11274
– ident: r5
  doi: 10.1016/j.jacc.2008.07.031
– ident: r13
  doi: 10.1016/j.jacc.2011.06.066
– ident: r27
  doi: 10.1093/ehjci/jes303
– ident: r21
  doi: 10.1016/0141-5425(92)90015-D
– ident: r4
  doi: 10.1093/eurheartj/ehm150
– ident: r19
  doi: 10.1073/pnas.12.3.207
– ident: r24
  doi: 10.1161/01.CIR.82.5.1595
– ident: r10
  doi: 10.1016/j.jacc.2008.05.024
– ident: r11
  doi: 10.1007/s00330-013-3059-8
– volume: 2012
  start-page: 6665
  year: 2012
  ident: r20
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: r8
  doi: 10.1056/NEJM199606273342604
– ident: r28
  doi: 10.1148/radiol.09091014
– ident: r25
  doi: 10.2307/2531595
– ident: r7
  doi: 10.1148/radiol.10100161
– ident: r26
  doi: 10.1148/radiol.2261021292
– ident: r22
  doi: 10.1146/annurev-fluid-122109-160730
– ident: r3
  doi: 10.1016/j.jacc.2008.08.058
– ident: r16
  doi: 10.1093/eurheartj/eht296
– ident: r17
  doi: 10.1016/j.jcct.2009.01.001
– ident: r9
  doi: 10.1056/NEJMoa1205361
– ident: r29
  doi: 10.1093/eurheartj/eht077
– ident: r12
  doi: 10.1007/s10439-010-0083-6
– ident: r6
  doi: 10.1056/NEJMoa0806576
– ident: r30
  doi: 10.1253/circj.CJ-10-1154
– ident: r2
  doi: 10.1001/jama.293.20.2471
SSID ssj0014587
Score 2.5706484
Snippet To validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 674
SubjectTerms Algorithms
Coronary Angiography - methods
Coronary Artery Disease - diagnostic imaging
Female
Fractional Flow Reserve, Myocardial
Humans
Male
Middle Aged
Retrospective Studies
Tomography, X-Ray Computed
Title Fractional Flow Reserve Computed from Noninvasive CT Angiography Data: Diagnostic Performance of an On-Site Clinician-operated Computational Fluid Dynamics Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/25322342
https://www.proquest.com/docview/1658707853
Volume 274
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1527-1315
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0014587
  issn: 0033-8419
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviPvKTUbiASlKSWLHSXmLWqrB1IGgk_YWOY6zRYxkSpMh8X_4NfwpjmMnTXeRBn2IqrR1LufrOcfOd86H0BvFHCQQ5-wgS4mtCIw2d6SqRnMoyXwno5rle8D2DumnI_9oNPozYC01dTIRv66sK_kfq8I-sKuqkv0Hy_aDwg54D_aFLVgYtjey8aLSZQlwmxen5c-WRledS8tINaS6eORArbie85anPltZUXGcmz7VYPO61eaZa8Kdat76ZVBJoDgChfW5sL9BYmrpFqIAJ7s8U62Y1dpweyDen0OTp9Zca9yvrej0uKzy-uTHMAH-ytN8ayV_VoK31X0MUrhlA4pQkyRGwG2plBK5tZwMHjxxnfZG3_Oqjyz7Wkjciup1sz7Jhysarr-hdHVemhA7pMaVSuOYvcB2iS797Dy3pwV-DETJwA8z84kO6Uxr5VyOFlRVQFTthUPIUL2_tDDfdl_uC_GyZzHqmu4w1gPE3QC30G0vYEzJacw_7vePtKgf6gau5uJMnykY4N2FM9hOka6Z97T5z-o-umcmLjjSKHyARrJ4iO4sDTXjEfq9ASNWYMQGjLgDI1ZgxAMw4tkKD8CIFRjf4w0U8QCKuMwwL7CBIr4MRbwFRdxCEXdQxD0UH6PDxYfVbM82GiC2gES0tkPhuUQ4HhOCyjDkTCQ-mwaEwotIJogveOYwmOVTmiQEpuMQUdhUul7AXUj2yRO0U5SF3EXYESSjErxPCr_lPAm9FMA3Fb4g0k8zMUaT7rbHwjTIVzotYNmrDT1Gb_sfnOneMNd_9XVnxxj8t3ooxwtZNuvYhSmA6rjlkzF6qg3cD-b5EG4J9Z7d_EDP0d3NX-oF2qmrRr6EtLlOXrVw_Asty8bl
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+Flow+Reserve+Computed+from+Noninvasive+CT+Angiography+Data%3A+Diagnostic+Performance+of+an+On-Site+Clinician-operated+Computational+Fluid+Dynamics+Algorithm&rft.jtitle=Radiology&rft.au=Coenen%2C+Adriaan&rft.au=Lubbers%2C+Marisa+M.&rft.au=Kurata%2C+Akira&rft.au=Kono%2C+Atsushi&rft.date=2015-03-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=274&rft.issue=3&rft.spage=674&rft.epage=683&rft_id=info:doi/10.1148%2Fradiol.14140992&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_14140992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon