Fractional Flow Reserve Computed from Noninvasive CT Angiography Data: Diagnostic Performance of an On-Site Clinician-operated Computational Fluid Dynamics Algorithm
To validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively measured FFR and to test its diagnostic performance as compared with that of coronary CT angiography. The institutional review board provided...
Saved in:
Published in | Radiology Vol. 274; no. 3; pp. 674 - 683 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0033-8419 1527-1315 1527-1315 |
DOI | 10.1148/radiol.14140992 |
Cover
Abstract | To validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively measured FFR and to test its diagnostic performance as compared with that of coronary CT angiography.
The institutional review board provided a waiver for this retrospective study. From coronary CT angiography data in 106 patients, FFR was computed at a local workstation by using a computational fluid dynamics algorithm. Invasive FFR measurement was performed in 189 vessels (80 of which had an FFR ≤ 0.80); these measurements were regarded as the reference standard. The diagnostic characteristics of coronary CT angiography-derived computational FFR, coronary CT angiography, and quantitative coronary angiography were evaluated against those of invasively measured FFR by using C statistics. Sensitivity and specificity were compared by using a two-sided McNemar test.
For computational FFR, sensitivity was 87.5% (95% confidence interval [CI]: 78.2%, 93.8%), specificity was 65.1% (95% CI: 55.4%, 74.0%), and accuracy was 74.6% (95% CI: 68.4%, 80.8%), as compared with the finding of lumen stenosis of 50% or greater at coronary CT angiography, for which sensitivity was 81.3% (95% CI: 71.0%, 89.1%), specificity was 37.6% (95% CI: 28.5%, 47.4%), and accuracy was 56.1% (95% CI: 49.0%, 63.2%). C statistics revealed a larger area under the receiver operating characteristic curve (AUC) for computational FFR (AUC, 0.83) than for coronary CT angiography (AUC, 0.64). For vessels with intermediate (25%-69%) stenosis, the sensitivity of computational FFR was 87.3% (95% CI: 76.5%, 94.3%) and the specificity was 59.3% (95% CI: 47.8%, 70.1%).
With use of a reduced-order algorithm, computation of the FFR from coronary CT angiography data can be performed locally, at a regular workstation. The diagnostic accuracy of coronary CT angiography-derived computational FFR for the detection of functionally important coronary artery disease (CAD) was good and was incremental to that of coronary CT angiography within a population with a high prevalence of CAD. |
---|---|
AbstractList | To validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively measured FFR and to test its diagnostic performance as compared with that of coronary CT angiography.PURPOSETo validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively measured FFR and to test its diagnostic performance as compared with that of coronary CT angiography.The institutional review board provided a waiver for this retrospective study. From coronary CT angiography data in 106 patients, FFR was computed at a local workstation by using a computational fluid dynamics algorithm. Invasive FFR measurement was performed in 189 vessels (80 of which had an FFR ≤ 0.80); these measurements were regarded as the reference standard. The diagnostic characteristics of coronary CT angiography-derived computational FFR, coronary CT angiography, and quantitative coronary angiography were evaluated against those of invasively measured FFR by using C statistics. Sensitivity and specificity were compared by using a two-sided McNemar test.MATERIALS AND METHODSThe institutional review board provided a waiver for this retrospective study. From coronary CT angiography data in 106 patients, FFR was computed at a local workstation by using a computational fluid dynamics algorithm. Invasive FFR measurement was performed in 189 vessels (80 of which had an FFR ≤ 0.80); these measurements were regarded as the reference standard. The diagnostic characteristics of coronary CT angiography-derived computational FFR, coronary CT angiography, and quantitative coronary angiography were evaluated against those of invasively measured FFR by using C statistics. Sensitivity and specificity were compared by using a two-sided McNemar test.For computational FFR, sensitivity was 87.5% (95% confidence interval [CI]: 78.2%, 93.8%), specificity was 65.1% (95% CI: 55.4%, 74.0%), and accuracy was 74.6% (95% CI: 68.4%, 80.8%), as compared with the finding of lumen stenosis of 50% or greater at coronary CT angiography, for which sensitivity was 81.3% (95% CI: 71.0%, 89.1%), specificity was 37.6% (95% CI: 28.5%, 47.4%), and accuracy was 56.1% (95% CI: 49.0%, 63.2%). C statistics revealed a larger area under the receiver operating characteristic curve (AUC) for computational FFR (AUC, 0.83) than for coronary CT angiography (AUC, 0.64). For vessels with intermediate (25%-69%) stenosis, the sensitivity of computational FFR was 87.3% (95% CI: 76.5%, 94.3%) and the specificity was 59.3% (95% CI: 47.8%, 70.1%).RESULTSFor computational FFR, sensitivity was 87.5% (95% confidence interval [CI]: 78.2%, 93.8%), specificity was 65.1% (95% CI: 55.4%, 74.0%), and accuracy was 74.6% (95% CI: 68.4%, 80.8%), as compared with the finding of lumen stenosis of 50% or greater at coronary CT angiography, for which sensitivity was 81.3% (95% CI: 71.0%, 89.1%), specificity was 37.6% (95% CI: 28.5%, 47.4%), and accuracy was 56.1% (95% CI: 49.0%, 63.2%). C statistics revealed a larger area under the receiver operating characteristic curve (AUC) for computational FFR (AUC, 0.83) than for coronary CT angiography (AUC, 0.64). For vessels with intermediate (25%-69%) stenosis, the sensitivity of computational FFR was 87.3% (95% CI: 76.5%, 94.3%) and the specificity was 59.3% (95% CI: 47.8%, 70.1%).With use of a reduced-order algorithm, computation of the FFR from coronary CT angiography data can be performed locally, at a regular workstation. The diagnostic accuracy of coronary CT angiography-derived computational FFR for the detection of functionally important coronary artery disease (CAD) was good and was incremental to that of coronary CT angiography within a population with a high prevalence of CAD.CONCLUSIONWith use of a reduced-order algorithm, computation of the FFR from coronary CT angiography data can be performed locally, at a regular workstation. The diagnostic accuracy of coronary CT angiography-derived computational FFR for the detection of functionally important coronary artery disease (CAD) was good and was incremental to that of coronary CT angiography within a population with a high prevalence of CAD. To validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively measured FFR and to test its diagnostic performance as compared with that of coronary CT angiography. The institutional review board provided a waiver for this retrospective study. From coronary CT angiography data in 106 patients, FFR was computed at a local workstation by using a computational fluid dynamics algorithm. Invasive FFR measurement was performed in 189 vessels (80 of which had an FFR ≤ 0.80); these measurements were regarded as the reference standard. The diagnostic characteristics of coronary CT angiography-derived computational FFR, coronary CT angiography, and quantitative coronary angiography were evaluated against those of invasively measured FFR by using C statistics. Sensitivity and specificity were compared by using a two-sided McNemar test. For computational FFR, sensitivity was 87.5% (95% confidence interval [CI]: 78.2%, 93.8%), specificity was 65.1% (95% CI: 55.4%, 74.0%), and accuracy was 74.6% (95% CI: 68.4%, 80.8%), as compared with the finding of lumen stenosis of 50% or greater at coronary CT angiography, for which sensitivity was 81.3% (95% CI: 71.0%, 89.1%), specificity was 37.6% (95% CI: 28.5%, 47.4%), and accuracy was 56.1% (95% CI: 49.0%, 63.2%). C statistics revealed a larger area under the receiver operating characteristic curve (AUC) for computational FFR (AUC, 0.83) than for coronary CT angiography (AUC, 0.64). For vessels with intermediate (25%-69%) stenosis, the sensitivity of computational FFR was 87.3% (95% CI: 76.5%, 94.3%) and the specificity was 59.3% (95% CI: 47.8%, 70.1%). With use of a reduced-order algorithm, computation of the FFR from coronary CT angiography data can be performed locally, at a regular workstation. The diagnostic accuracy of coronary CT angiography-derived computational FFR for the detection of functionally important coronary artery disease (CAD) was good and was incremental to that of coronary CT angiography within a population with a high prevalence of CAD. |
Author | Gijsen, Frank J. Lubbers, Marisa M. Kurata, Akira Dedic, Admir Coenen, Adriaan van Geuns, Robert-Jan M. Dijkshoorn, Marcel L. Nieman, Koen Ouhlous, Mohamed Kono, Atsushi Chelu, Raluca G. |
Author_xml | – sequence: 1 givenname: Adriaan surname: Coenen fullname: Coenen, Adriaan – sequence: 2 givenname: Marisa M. surname: Lubbers fullname: Lubbers, Marisa M. – sequence: 3 givenname: Akira surname: Kurata fullname: Kurata, Akira – sequence: 4 givenname: Atsushi surname: Kono fullname: Kono, Atsushi – sequence: 5 givenname: Admir surname: Dedic fullname: Dedic, Admir – sequence: 6 givenname: Raluca G. surname: Chelu fullname: Chelu, Raluca G. – sequence: 7 givenname: Marcel L. surname: Dijkshoorn fullname: Dijkshoorn, Marcel L. – sequence: 8 givenname: Frank J. surname: Gijsen fullname: Gijsen, Frank J. – sequence: 9 givenname: Mohamed surname: Ouhlous fullname: Ouhlous, Mohamed – sequence: 10 givenname: Robert-Jan M. surname: van Geuns fullname: van Geuns, Robert-Jan M. – sequence: 11 givenname: Koen surname: Nieman fullname: Nieman, Koen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25322342$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAUhS1URKeFNTvkJZu0_k_CbjTTAaSKIijr6I7HmV6U2MF2iuaBeE8ySttFpXpjS_7OuVfnnJETH7wj5D1nF5yr6jLCDkN3wRVXrK7FK7LgWpQFl1yfkAVjUhaV4vUpOUvpN2Nc6ap8Q06FlkJIJRbk3yaCzRg8dHTThb_0h0su3ju6Cv0wZrejbQw9_RY8-ntIePy5pUu_x7CPMNwd6BoyfKJrhL0PKaOl311sQ-zBW0dDS8HTG1_8xDwpO_RoEXwRBhfh6D6PgacNRtzR9cFDjzbRZbcPEfNd_5a8bqFL7t3DfU5-ba5uV1-K65vPX1fL68KKWuaisoJLy4SxVrmqAmO32tSlVNORzlipLbTM1Nootd1KMz2NNLXjogQujJLn5OPsO8TwZ3QpNz0m67oOvAtjariZ8mNlpeWEfnhAx23vds0QsYd4aB6jnYDLGbAxpBRd-4Rw1hzLa-bymsfyJoV-prA4R5MjYPei7j8RUqDZ |
CitedBy_id | crossref_primary_10_1016_j_jcct_2018_09_003 crossref_primary_10_1063_5_0181281 crossref_primary_10_1093_ehjci_jez160 crossref_primary_10_1016_j_crad_2019_08_007 crossref_primary_10_1038_srep29409 crossref_primary_10_1097_RTI_0000000000000385 crossref_primary_10_1186_s12938_017_0330_2 crossref_primary_10_1002_mp_15616 crossref_primary_10_3348_kjr_2020_1277 crossref_primary_10_1007_s00330_021_07726_y crossref_primary_10_1007_s40134_017_0234_8 crossref_primary_10_1016_j_amjcard_2015_10_008 crossref_primary_10_1148_radiol_2017162620 crossref_primary_10_1007_s00330_022_08758_8 crossref_primary_10_1016_j_cmpb_2024_108415 crossref_primary_10_15829_1560_4071_2019_3_60_68 crossref_primary_10_1016_j_jcct_2021_05_005 crossref_primary_10_1080_00325481_2024_2360888 crossref_primary_10_1177_0284185115622075 crossref_primary_10_1136_openhrt_2023_002328 crossref_primary_10_17802_2306_1278_2024_13_4S_12_20 crossref_primary_10_1097_RTI_0000000000000289 crossref_primary_10_18087_cardio_2021_7_n1540 crossref_primary_10_1148_ryct_2019190036 crossref_primary_10_1007_s00380_017_1081_5 crossref_primary_10_1016_j_jcct_2015_12_006 crossref_primary_10_1016_j_jcct_2023_10_011 crossref_primary_10_1007_s00330_016_4541_x crossref_primary_10_1016_j_jcct_2025_02_004 crossref_primary_10_1016_j_amjcard_2017_09_018 crossref_primary_10_3390_app12146964 crossref_primary_10_1016_j_jbiomech_2020_110076 crossref_primary_10_1016_j_jcct_2017_11_004 crossref_primary_10_1007_s11604_016_0589_4 crossref_primary_10_1159_000505317 crossref_primary_10_2217_fca_2020_0058 crossref_primary_10_1016_j_clinimag_2018_01_018 crossref_primary_10_1148_radiol_2017162641 crossref_primary_10_3389_fphys_2018_00742 crossref_primary_10_1093_eurjpc_zwab067 crossref_primary_10_1161_CIRCIMAGING_118_007943 crossref_primary_10_22468_cvia_2016_00094 crossref_primary_10_1002_mp_12121 crossref_primary_10_1007_s00330_019_06571_4 crossref_primary_10_1016_j_amjcard_2019_07_061 crossref_primary_10_1007_s00330_015_3619_1 crossref_primary_10_1007_s00330_018_5919_8 crossref_primary_10_1055_a_2142_1643 crossref_primary_10_2147_VHRM_S286916 crossref_primary_10_1148_rg_210097 crossref_primary_10_3389_fbioe_2023_1207300 crossref_primary_10_1080_17434440_2017_1338134 crossref_primary_10_1253_circj_CJ_19_0163 crossref_primary_10_1002_cnm_3255 crossref_primary_10_1007_s42058_020_00039_x crossref_primary_10_1253_circj_CJ_19_1131 crossref_primary_10_1016_j_cmpb_2023_107862 crossref_primary_10_1016_j_nicl_2023_103435 crossref_primary_10_1016_j_jcmg_2019_06_018 crossref_primary_10_1016_j_ejrad_2024_111797 crossref_primary_10_1007_s12471_021_01647_7 crossref_primary_10_1007_s10237_021_01529_2 crossref_primary_10_1093_ehjci_jew094 crossref_primary_10_1016_j_jcct_2018_01_012 crossref_primary_10_1038_s41598_021_93237_1 crossref_primary_10_1016_j_cjca_2016_01_023 crossref_primary_10_1007_s00059_016_4433_5 crossref_primary_10_1016_j_iccl_2022_09_009 crossref_primary_10_15212_CVIA_2016_0063 crossref_primary_10_1253_circj_CJ_18_0677 crossref_primary_10_1093_ehjci_jeab062 crossref_primary_10_1007_s40134_016_0170_z crossref_primary_10_1136_bmjopen_2020_037780 crossref_primary_10_1016_j_hlc_2020_05_099 crossref_primary_10_1007_s11886_017_0923_1 crossref_primary_10_1016_j_jcmg_2015_11_025 crossref_primary_10_1007_s12265_023_10361_1 crossref_primary_10_1016_j_jcmg_2017_10_027 crossref_primary_10_1148_ryct_2020190137 crossref_primary_10_1016_j_ejrad_2023_111133 crossref_primary_10_5334_gh_837 crossref_primary_10_1007_s11547_020_01277_w crossref_primary_10_1586_14779072_2015_1039991 crossref_primary_10_1016_j_media_2017_11_008 crossref_primary_10_4070_kcj_2023_0288 crossref_primary_10_1016_j_jcmg_2015_11_018 crossref_primary_10_1093_ehjci_jeab292 crossref_primary_10_1016_j_jcmg_2015_09_003 crossref_primary_10_3390_jcm9123925 crossref_primary_10_1016_j_ejrad_2021_109712 crossref_primary_10_2459_JCM_0000000000000415 crossref_primary_10_1063_5_0040315 crossref_primary_10_1111_echo_70098 crossref_primary_10_2214_AJR_18_20774 crossref_primary_10_1016_j_jjcc_2022_02_019 crossref_primary_10_1016_j_ejrad_2024_111688 crossref_primary_10_1016_j_jjcc_2024_05_009 crossref_primary_10_3389_fcvm_2021_739633 crossref_primary_10_3389_fcvm_2021_711401 crossref_primary_10_1007_s10554_015_0797_5 crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_106009 crossref_primary_10_1080_14017431_2024_2373082 crossref_primary_10_3389_fcvm_2023_1236405 crossref_primary_10_3390_jcm10194398 crossref_primary_10_1038_s41598_018_35344_0 crossref_primary_10_36660_abc_20190329 crossref_primary_10_1002_mp_12753 crossref_primary_10_1016_j_ejrad_2019_04_011 crossref_primary_10_1007_s12410_016_9396_7 crossref_primary_10_1093_ehjci_jey114 crossref_primary_10_1136_heartjnl_2016_311029 crossref_primary_10_1007_s10237_019_01182_w crossref_primary_10_1186_s12938_021_00914_3 crossref_primary_10_1016_j_cma_2024_117338 crossref_primary_10_1067_j_cpradiol_2020_09_006 crossref_primary_10_1016_j_amjcard_2017_07_008 crossref_primary_10_1007_s10554_018_1419_9 crossref_primary_10_1016_j_jcct_2018_04_010 crossref_primary_10_1038_s41598_024_65626_9 crossref_primary_10_1109_TMI_2019_2953054 crossref_primary_10_1016_j_amjcard_2017_08_034 crossref_primary_10_1016_j_jcct_2019_02_005 crossref_primary_10_2214_AJR_20_23332 crossref_primary_10_3390_app12094281 crossref_primary_10_1007_s00059_020_04944_w crossref_primary_10_1007_s13239_024_00731_4 crossref_primary_10_36660_abc_20210245 crossref_primary_10_1016_j_ccl_2023_07_004 crossref_primary_10_1002_cnm_3235 crossref_primary_10_1556_1647_2020_00011 crossref_primary_10_1007_s11886_018_1017_4 crossref_primary_10_12677_ACM_2023_13112551 crossref_primary_10_3390_jcm11051331 crossref_primary_10_2214_AJR_23_29156 crossref_primary_10_1007_s10554_024_03069_z crossref_primary_10_1115_1_4044095 crossref_primary_10_1093_ehjci_jex240 crossref_primary_10_1016_j_jcmg_2018_11_037 crossref_primary_10_1115_1_4038751 crossref_primary_10_1148_radiol_2018171291 crossref_primary_10_1007_s00424_017_1961_7 crossref_primary_10_1097_RTI_0000000000000679 crossref_primary_10_1155_2020_5954617 crossref_primary_10_1038_s41598_018_29910_9 crossref_primary_10_4244_EIJV11SVA11 crossref_primary_10_15212_CVIA_2016_0048 crossref_primary_10_31083_j_rcm2502049 crossref_primary_10_1007_s12410_015_9366_5 crossref_primary_10_1039_C9RA08999C crossref_primary_10_1093_ehjci_jey104 crossref_primary_10_1016_j_jcmg_2019_06_027 crossref_primary_10_1080_14779072_2017_1379899 crossref_primary_10_1016_j_jcmg_2016_07_005 crossref_primary_10_1007_s12410_018_9459_z crossref_primary_10_1161_CIRCULATIONAHA_123_063996 crossref_primary_10_1259_bjr_20200349 crossref_primary_10_1007_s11886_016_0714_0 crossref_primary_10_1007_s10554_020_01807_7 crossref_primary_10_1371_journal_pone_0153070 crossref_primary_10_1007_s00330_017_5223_z crossref_primary_10_1177_0846537119893752 crossref_primary_10_1371_journal_pone_0181824 crossref_primary_10_1148_ryct_2019190050 crossref_primary_10_1016_j_engappai_2025_110309 crossref_primary_10_1177_09544119211016912 crossref_primary_10_1148_ryct_2019180012 crossref_primary_10_1016_j_amjcard_2015_11_019 crossref_primary_10_1161_CIRCRESAHA_116_309680 crossref_primary_10_1016_j_amjcard_2017_04_057 crossref_primary_10_1007_s10554_015_0825_5 crossref_primary_10_3389_fbioe_2021_739667 crossref_primary_10_1088_2057_1976_2_6_065011 crossref_primary_10_3390_diagnostics14161738 crossref_primary_10_1016_j_ejrad_2019_108657 crossref_primary_10_1016_j_jcct_2019_11_014 crossref_primary_10_1253_circj_CJ_17_0702 crossref_primary_10_3348_kjr_2016_17_3_307 crossref_primary_10_1016_j_ejmp_2023_102555 crossref_primary_10_1016_j_jcin_2024_06_027 crossref_primary_10_4244_EIJ_D_17_00019 crossref_primary_10_1007_s00330_018_5834_z crossref_primary_10_1007_s00330_019_06470_8 crossref_primary_10_1097_RTI_0000000000000483 crossref_primary_10_1155_2018_2680430 crossref_primary_10_4070_kcj_2019_0315 crossref_primary_10_1002_cnm_2908 crossref_primary_10_1186_s12938_023_01121_y crossref_primary_10_1080_14779072_2018_1538786 crossref_primary_10_1016_j_crad_2022_02_021 crossref_primary_10_1016_j_ijcha_2021_100815 crossref_primary_10_1093_eurheartj_suw014 crossref_primary_10_1016_j_crad_2016_01_022 crossref_primary_10_1007_s10554_015_0741_8 crossref_primary_10_1016_j_jcct_2018_10_026 crossref_primary_10_26442_00403660_2023_04_202169 crossref_primary_10_3390_jcdd10090384 crossref_primary_10_1007_s00059_016_4451_3 crossref_primary_10_1161_CIRCIMAGING_117_007217 crossref_primary_10_3233_THC_220435 crossref_primary_10_1016_j_jcct_2017_06_002 crossref_primary_10_1161_JAHA_117_005587 crossref_primary_10_1007_s00330_015_4134_0 |
Cites_doi | 10.1016/j.jacc.2009.08.087 10.1016/j.jacc.2013.11.043 10.1161/CIRCULATIONAHA.109.915009 10.1152/japplphysiol.01261.2007 10.1001/2012.jama.11274 10.1016/j.jacc.2008.07.031 10.1016/j.jacc.2011.06.066 10.1093/ehjci/jes303 10.1016/0141-5425(92)90015-D 10.1093/eurheartj/ehm150 10.1073/pnas.12.3.207 10.1161/01.CIR.82.5.1595 10.1016/j.jacc.2008.05.024 10.1007/s00330-013-3059-8 10.1056/NEJM199606273342604 10.1148/radiol.09091014 10.2307/2531595 10.1148/radiol.10100161 10.1148/radiol.2261021292 10.1146/annurev-fluid-122109-160730 10.1016/j.jacc.2008.08.058 10.1093/eurheartj/eht296 10.1016/j.jcct.2009.01.001 10.1056/NEJMoa1205361 10.1093/eurheartj/eht077 10.1007/s10439-010-0083-6 10.1056/NEJMoa0806576 10.1253/circj.CJ-10-1154 10.1001/jama.293.20.2471 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1148/radiol.14140992 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-1315 |
EndPage | 683 |
ExternalDocumentID | 25322342 10_1148_radiol_14140992 |
Genre | Validation Studies Evaluation Studies Journal Article |
GroupedDBID | --- .55 .GJ 123 18M 1CY 1KJ 29P 2WC 34G 39C 4.4 53G 5RE 6NX 6PF 7FM AAEJM AAQQT AAWTL AAYXX ABDPE ABHFT ABOCM ACFQH ACGFO ACJAN ADBBV AENEX AENYM AFFNX AFOSN AJJEV AJWWR ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 J5H KO8 L7B LMP LSO MJL MV1 N4W OK1 P2P R.V RKKAF RXW SJN TAE TR2 TRS TWZ W8F WH7 WOQ X7M YQI YQJ ZGI ZVN ZXP CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c293t-8c213c026cc4e88a6cb5697344443e6c35caf0695644bb360696369e127a12643 |
ISSN | 0033-8419 1527-1315 |
IngestDate | Thu Sep 04 23:33:56 EDT 2025 Mon Jul 21 06:06:50 EDT 2025 Tue Jul 01 03:21:39 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c293t-8c213c026cc4e88a6cb5697344443e6c35caf0695644bb360696369e127a12643 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
PMID | 25322342 |
PQID | 1658707853 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1658707853 pubmed_primary_25322342 crossref_primary_10_1148_radiol_14140992 crossref_citationtrail_10_1148_radiol_14140992 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-00 2015-Mar 20150301 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Radiology |
PublicationTitleAlternate | Radiology |
PublicationYear | 2015 |
References | r2 r3 r4 r5 r6 r7 r8 r9 r30 r10 r31 r12 r11 r14 r13 r16 r15 r18 r17 r19 r21 r22 r25 r24 r27 r26 r29 r28 r1 Sharma P (r20) 2012; 2012 |
References_xml | – ident: r1 doi: 10.1016/j.jacc.2009.08.087 – ident: r15 doi: 10.1016/j.jacc.2013.11.043 – ident: r31 doi: 10.1161/CIRCULATIONAHA.109.915009 – ident: r18 doi: 10.1152/japplphysiol.01261.2007 – ident: r14 doi: 10.1001/2012.jama.11274 – ident: r5 doi: 10.1016/j.jacc.2008.07.031 – ident: r13 doi: 10.1016/j.jacc.2011.06.066 – ident: r27 doi: 10.1093/ehjci/jes303 – ident: r21 doi: 10.1016/0141-5425(92)90015-D – ident: r4 doi: 10.1093/eurheartj/ehm150 – ident: r19 doi: 10.1073/pnas.12.3.207 – ident: r24 doi: 10.1161/01.CIR.82.5.1595 – ident: r10 doi: 10.1016/j.jacc.2008.05.024 – ident: r11 doi: 10.1007/s00330-013-3059-8 – volume: 2012 start-page: 6665 year: 2012 ident: r20 publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: r8 doi: 10.1056/NEJM199606273342604 – ident: r28 doi: 10.1148/radiol.09091014 – ident: r25 doi: 10.2307/2531595 – ident: r7 doi: 10.1148/radiol.10100161 – ident: r26 doi: 10.1148/radiol.2261021292 – ident: r22 doi: 10.1146/annurev-fluid-122109-160730 – ident: r3 doi: 10.1016/j.jacc.2008.08.058 – ident: r16 doi: 10.1093/eurheartj/eht296 – ident: r17 doi: 10.1016/j.jcct.2009.01.001 – ident: r9 doi: 10.1056/NEJMoa1205361 – ident: r29 doi: 10.1093/eurheartj/eht077 – ident: r12 doi: 10.1007/s10439-010-0083-6 – ident: r6 doi: 10.1056/NEJMoa0806576 – ident: r30 doi: 10.1253/circj.CJ-10-1154 – ident: r2 doi: 10.1001/jama.293.20.2471 |
SSID | ssj0014587 |
Score | 2.5706484 |
Snippet | To validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 674 |
SubjectTerms | Algorithms Coronary Angiography - methods Coronary Artery Disease - diagnostic imaging Female Fractional Flow Reserve, Myocardial Humans Male Middle Aged Retrospective Studies Tomography, X-Ray Computed |
Title | Fractional Flow Reserve Computed from Noninvasive CT Angiography Data: Diagnostic Performance of an On-Site Clinician-operated Computational Fluid Dynamics Algorithm |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25322342 https://www.proquest.com/docview/1658707853 |
Volume | 274 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1527-1315 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0014587 issn: 0033-8419 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviPvKTUbiASlKSWLHSXmLWqrB1IGgk_YWOY6zRYxkSpMh8X_4NfwpjmMnTXeRBn2IqrR1LufrOcfOd86H0BvFHCQQ5-wgS4mtCIw2d6SqRnMoyXwno5rle8D2DumnI_9oNPozYC01dTIRv66sK_kfq8I-sKuqkv0Hy_aDwg54D_aFLVgYtjey8aLSZQlwmxen5c-WRledS8tINaS6eORArbie85anPltZUXGcmz7VYPO61eaZa8Kdat76ZVBJoDgChfW5sL9BYmrpFqIAJ7s8U62Y1dpweyDen0OTp9Zca9yvrej0uKzy-uTHMAH-ytN8ayV_VoK31X0MUrhlA4pQkyRGwG2plBK5tZwMHjxxnfZG3_Oqjyz7Wkjciup1sz7Jhysarr-hdHVemhA7pMaVSuOYvcB2iS797Dy3pwV-DETJwA8z84kO6Uxr5VyOFlRVQFTthUPIUL2_tDDfdl_uC_GyZzHqmu4w1gPE3QC30G0vYEzJacw_7vePtKgf6gau5uJMnykY4N2FM9hOka6Z97T5z-o-umcmLjjSKHyARrJ4iO4sDTXjEfq9ASNWYMQGjLgDI1ZgxAMw4tkKD8CIFRjf4w0U8QCKuMwwL7CBIr4MRbwFRdxCEXdQxD0UH6PDxYfVbM82GiC2gES0tkPhuUQ4HhOCyjDkTCQ-mwaEwotIJogveOYwmOVTmiQEpuMQUdhUul7AXUj2yRO0U5SF3EXYESSjErxPCr_lPAm9FMA3Fb4g0k8zMUaT7rbHwjTIVzotYNmrDT1Gb_sfnOneMNd_9XVnxxj8t3ooxwtZNuvYhSmA6rjlkzF6qg3cD-b5EG4J9Z7d_EDP0d3NX-oF2qmrRr6EtLlOXrVw_Asty8bl |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+Flow+Reserve+Computed+from+Noninvasive+CT+Angiography+Data%3A+Diagnostic+Performance+of+an+On-Site+Clinician-operated+Computational+Fluid+Dynamics+Algorithm&rft.jtitle=Radiology&rft.au=Coenen%2C+Adriaan&rft.au=Lubbers%2C+Marisa+M.&rft.au=Kurata%2C+Akira&rft.au=Kono%2C+Atsushi&rft.date=2015-03-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=274&rft.issue=3&rft.spage=674&rft.epage=683&rft_id=info:doi/10.1148%2Fradiol.14140992&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_14140992 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon |