IoT-Based Android Malware Detection Using Graph Neural Network With Adversarial Defense

Since the Internet of Things (IoT) is widely adopted using Android applications, detecting malicious Android apps is essential. In recent years, Android graph-based deep learning research has proposed many approaches to extract relationships from the application as a graph to generate graph embeddin...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 10; no. 10; pp. 8432 - 8444
Main Authors Yumlembam, Rahul, Issac, Biju, Jacob, Seibu Mary, Yang, Longzhi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2022.3188583

Cover

Abstract Since the Internet of Things (IoT) is widely adopted using Android applications, detecting malicious Android apps is essential. In recent years, Android graph-based deep learning research has proposed many approaches to extract relationships from the application as a graph to generate graph embeddings. First, we demonstrate the effectiveness of graph-based classification using graph neural networks (GNNs)-based classifier to generate API graph embedding. The graph embedding is used with "Permission" and "Intent" to train multiple machine learning and deep learning algorithms to detect Android malware. The classification achieved an accuracy of 98.33% in CICMaldroid and 98.68% in the Drebin data set. However, the graph-based deep learning is vulnerable as an attacker can add fake relationships to avoid detection by the classifier. Second, we propose a generative adversarial network (GAN)-based algorithm named VGAE-MalGAN to attack the graph-based GNN Android malware classifier. The VGAE-MalGAN generator generates adversarial malware API graphs, and the VGAE-MalGAN substitute detector (SD) tries to fit the detector. Experimental analysis shows that VGAE-MalGAN can effectively reduce the detection rate of GNN malware classifiers. Although the model fails to detect adversarial malware, experimental analysis shows that retraining the model with generated adversarial samples helps to combat adversarial attacks.
AbstractList Since the Internet of Things (IoT) is widely adopted using Android applications, detecting malicious Android apps is essential. In recent years, Android graph-based deep learning research has proposed many approaches to extract relationships from the application as a graph to generate graph embeddings. First, we demonstrate the effectiveness of graph-based classification using graph neural networks (GNNs)-based classifier to generate API graph embedding. The graph embedding is used with “Permission” and “Intent” to train multiple machine learning and deep learning algorithms to detect Android malware. The classification achieved an accuracy of 98.33% in CICMaldroid and 98.68% in the Drebin data set. However, the graph-based deep learning is vulnerable as an attacker can add fake relationships to avoid detection by the classifier. Second, we propose a generative adversarial network (GAN)-based algorithm named VGAE-MalGAN to attack the graph-based GNN Android malware classifier. The VGAE-MalGAN generator generates adversarial malware API graphs, and the VGAE-MalGAN substitute detector (SD) tries to fit the detector. Experimental analysis shows that VGAE-MalGAN can effectively reduce the detection rate of GNN malware classifiers. Although the model fails to detect adversarial malware, experimental analysis shows that retraining the model with generated adversarial samples helps to combat adversarial attacks.
Author Yumlembam, Rahul
Jacob, Seibu Mary
Yang, Longzhi
Issac, Biju
Author_xml – sequence: 1
  givenname: Rahul
  orcidid: 0000-0002-0313-5731
  surname: Yumlembam
  fullname: Yumlembam, Rahul
  email: rahul.yumlembam@northumbria.ac.uk
  organization: Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, U.K
– sequence: 2
  givenname: Biju
  orcidid: 0000-0002-1109-8715
  surname: Issac
  fullname: Issac, Biju
  email: bissac@ieee.org
  organization: Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, U.K
– sequence: 3
  givenname: Seibu Mary
  surname: Jacob
  fullname: Jacob, Seibu Mary
  email: s.jacob@tees.ac.uk
  organization: School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, U.K
– sequence: 4
  givenname: Longzhi
  orcidid: 0000-0003-2115-4909
  surname: Yang
  fullname: Yang, Longzhi
  email: longzhi.yang@northumbria.ac.uk
  organization: Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, U.K
BookMark eNp9kE9LAzEQxYMoWGs_gHhZ8Lx1kuyf5FhbrZVqLy09Ltlk1qbW3ZpsLX57d2kR8SAMvIF5vxnmXZDTsiqRkCsKfUpB3j5NZvM-A8b6nAoRC35COoyzNIyShJ3-6s9Jz_s1ADRYTGXSIctJNQ_vlEcTDErjKmuCZ7XZK4fBCGvUta3KYOFt-RqMndqughfcObVppN5X7i1Y2noVDMwnOq-cbQYjLLD0eEnOCrXx2Dtqlywe7ufDx3A6G0-Gg2momeR1KHLDqIYIUppAwosiFwZZrjU0BZFSqYRccGFSGhvFIdcsbaap4ZGOTYG8S24Oe7eu-tihr7N1tXNlczJjAqSQEiBtXOnBpV3lvcMi07ZW7W-1U3aTUcjaILM2yKwNMjsG2ZD0D7l19l25r3-Z6wNjEfHHLwWNpIz5N_uQgDA
CODEN IITJAU
CitedBy_id crossref_primary_10_3390_fi16010032
crossref_primary_10_1007_s11227_025_07055_7
crossref_primary_10_1109_JIOT_2022_3229005
crossref_primary_10_1016_j_jisa_2022_103341
crossref_primary_10_1007_s11277_024_11128_w
crossref_primary_10_3390_info14010002
crossref_primary_10_1111_exsy_13693
crossref_primary_10_1007_s11416_025_00546_4
crossref_primary_10_1016_j_cose_2023_103323
crossref_primary_10_1142_S2196888824500039
crossref_primary_10_1007_s11042_022_14236_6
crossref_primary_10_32604_csse_2024_052875
crossref_primary_10_1109_TIFS_2024_3350379
crossref_primary_10_1109_JIOT_2024_3394555
crossref_primary_10_1145_3605775
crossref_primary_10_1109_JPROC_2024_3369017
crossref_primary_10_1109_ACCESS_2023_3296789
crossref_primary_10_1109_ACCESS_2022_3219047
crossref_primary_10_17671_gazibtd_1553548
crossref_primary_10_1109_JIOT_2023_3293860
crossref_primary_10_1109_TDSC_2024_3409410
crossref_primary_10_1016_j_neucom_2023_126327
crossref_primary_10_1109_ACCESS_2024_3485706
crossref_primary_10_1109_TIFS_2024_3468891
crossref_primary_10_3390_app13106001
crossref_primary_10_1109_ACCESS_2023_3331739
crossref_primary_10_1016_j_compeleceng_2024_109544
crossref_primary_10_1109_JIOT_2024_3381281
crossref_primary_10_1016_j_iot_2024_101410
crossref_primary_10_1038_s41598_024_60982_y
crossref_primary_10_3390_electronics13244965
crossref_primary_10_1186_s13635_025_00197_4
crossref_primary_10_3233_JCS_230041
crossref_primary_10_2174_0126662558279673240515054741
crossref_primary_10_1016_j_asoc_2024_111838
crossref_primary_10_1007_s44443_025_00024_3
crossref_primary_10_1109_ACCESS_2024_3415355
Cites_doi 10.1109/JSYST.2019.2906120
10.1145/3219819.3220078
10.1109/ACCESS.2020.3033026
10.1145/2619239.2631434
10.1007/978-3-319-11203-9_10
10.1007/s00500-019-04589-w
10.1109/ACCESS.2019.2919796
10.3390/sym13061081
10.3390/sym13071107
10.1145/3427228.3427245
10.1145/3319535.3354206
10.1016/j.neucom.2020.10.054
10.1109/ISEA-ISAP49340.2020.235015
10.1109/ASE.2019.00023
10.1109/NaNA51271.2020.00069
10.1145/3097983.3098026
10.1007/978-3-319-47121-1_5
10.1109/DSC49826.2021.9346277
10.14722/ndss.2014.23247
10.1109/TST.2016.7399288
10.1109/SSCI50451.2021.9659888
10.1109/TNN.2008.2005605
10.1109/TrustCom.2016.0070
10.3390/s22020513
10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2022.3188583
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 8444
ExternalDocumentID 10_1109_JIOT_2022_3188583
9814995
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-8bd21c040716063ffb8de2bcc0cc004aa790b838d715da30bc27bcc7d34c5dfe3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Sun Jun 29 16:42:21 EDT 2025
Wed Oct 01 04:45:46 EDT 2025
Thu Apr 24 23:03:31 EDT 2025
Wed Aug 27 02:18:10 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-8bd21c040716063ffb8de2bcc0cc004aa790b838d715da30bc27bcc7d34c5dfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0313-5731
0000-0003-2115-4909
0000-0002-1109-8715
PQID 2809899007
PQPubID 2040421
PageCount 13
ParticipantIDs ieee_primary_9814995
crossref_primary_10_1109_JIOT_2022_3188583
proquest_journals_2809899007
crossref_citationtrail_10_1109_JIOT_2022_3188583
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
kipf (ref14) 2016
ref36
(ref4) 2022
ref30
ref33
ref10
ref32
hamilton (ref12) 2017
goodfellow (ref15) 2014; 27
(ref2) 2022
ref17
ref16
ref19
wan (ref35) 2021
wisniewski (ref13) 2021
ref24
hu (ref37) 2017
shishkova (ref31) 2022
ref23
ref26
ref25
ref20
ref22
ref21
(ref3) 2022
scarselli (ref11) 2009; 20
ref28
ref27
ref29
ref8
(ref1) 2022
ref7
allix (ref18) 2016
ref9
ref6
ref5
shishkova (ref38) 2022
References_xml – ident: ref28
  doi: 10.1109/JSYST.2019.2906120
– ident: ref34
  doi: 10.1145/3219819.3220078
– ident: ref21
  doi: 10.1109/ACCESS.2020.3033026
– ident: ref27
  doi: 10.1145/2619239.2631434
– ident: ref8
  doi: 10.1007/978-3-319-11203-9_10
– year: 2022
  ident: ref31
  publication-title: Mobile malware evolution 2021
– year: 2022
  ident: ref1
  publication-title: Nokia
– ident: ref25
  doi: 10.1007/s00500-019-04589-w
– year: 2021
  ident: ref35
  article-title: Adversarial attacks on graph classification via Bayesian optimisation
  publication-title: arxiv 2111 02842
– year: 2022
  ident: ref4
  publication-title: The independent IT security institute A Malware statistics trends report
– year: 2022
  ident: ref38
  article-title: Securelist-Report
– ident: ref20
  doi: 10.1109/ACCESS.2019.2919796
– ident: ref29
  doi: 10.3390/sym13061081
– start-page: 468
  year: 2016
  ident: ref18
  article-title: AndroZoo: Collecting Millions of Android Apps for the Research Community
  publication-title: 2016 IEEE/ACM 13th Conference on Mining Software Repositories (MSR)
– ident: ref23
  doi: 10.3390/sym13071107
– ident: ref32
  doi: 10.1145/3427228.3427245
– year: 2022
  ident: ref3
  publication-title: Norton
– year: 2021
  ident: ref13
  publication-title: A Tool for Reverse Engineering Android Apk Files
– ident: ref33
  doi: 10.1145/3319535.3354206
– ident: ref10
  doi: 10.1016/j.neucom.2020.10.054
– year: 2016
  ident: ref14
  article-title: Variational graph auto-encoders
  publication-title: arXiv 1611 07308
– ident: ref19
  doi: 10.1109/ISEA-ISAP49340.2020.235015
– volume: 27
  start-page: 1
  year: 2014
  ident: ref15
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref7
  doi: 10.1109/ASE.2019.00023
– year: 2022
  ident: ref2
  publication-title: SOFTPEDIA
– year: 2017
  ident: ref12
  article-title: Inductive representation learning on large graphs
  publication-title: arXiv 1706 02216
– ident: ref9
  doi: 10.1109/NaNA51271.2020.00069
– year: 2017
  ident: ref37
  article-title: Generating adversarial malware examples for black-box attacks based on GAN
  publication-title: arXiv 1702 05983
– ident: ref6
  doi: 10.1145/3097983.3098026
– ident: ref5
  doi: 10.1007/978-3-319-47121-1_5
– ident: ref30
  doi: 10.1109/DSC49826.2021.9346277
– ident: ref17
  doi: 10.14722/ndss.2014.23247
– ident: ref26
  doi: 10.1109/TST.2016.7399288
– ident: ref22
  doi: 10.1109/SSCI50451.2021.9659888
– volume: 20
  start-page: 61
  year: 2009
  ident: ref11
  article-title: The graph neural network model
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2005605
– ident: ref24
  doi: 10.1109/TrustCom.2016.0070
– ident: ref36
  doi: 10.3390/s22020513
– ident: ref16
  doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094
SSID ssj0001105196
Score 2.5170815
Snippet Since the Internet of Things (IoT) is widely adopted using Android applications, detecting malicious Android apps is essential. In recent years, Android...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8432
SubjectTerms Algorithms
Android
Classification
Classification algorithms
Classifiers
Codes
Cybersecurity
Deep learning
Detectors
Embedding
Feature extraction
generative adversarial network (GAN)
Generative adversarial networks
graph neural network (GNN)
Graph neural networks
Internet of Things
Internet of Things (IoT)
Machine learning
Malware
Neural networks
Title IoT-Based Android Malware Detection Using Graph Neural Network With Adversarial Defense
URI https://ieeexplore.ieee.org/document/9814995
https://www.proquest.com/docview/2809899007
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60Jy--qlhf5OBJ3Jrd7HaTo-8qtF4qelvyRLG0UrcI_noz2W3FByLsIbDJEjLJznzJl28ADoR1VjrtIsG5iVJBWSSUX49SKmeYRg01PNHt9Tvdu_TmIXtYgKP5XRhrbSCf2TYWw1m-GespbpUdC-7jeZEtwmLOO9Vdrc_9lBiDkU59cBlTcXxzfTvwADBJPC7lPOPsi-sJuVR-_ICDV7lcgd6sPxWZ5Lk9LVVbv3-Tavxvh1dhuQ4vyUk1H9ZgwY7WYWWWuoHUK7kJ99fjQXTqPZghSGkcPxnSk8M3ObHk3JaBnjUigU5ArlDSmqCIh_9wv2KNk_un8pGEZM6vEqewb-U8ILYbcHd5MTjrRnWOhUh7R19GXJkk1hRhnYcyzDnFjU2U1tQ_NJUyF1Rxxk0eZ0YyqnSS-7e5YanOjLNsExqj8chuAekYlPsyHv8kLtU8k0bmiUwFc9TZOJMtoLPhL3QtQI55MIZFACJUFGixAi1W1BZrweG8yUulvvFX5SZaYF6xHvwW7M5sXNTr87VIOBUeafoAafv3VjuwhInlkScQZ7vQKCdTu-fDj1Lth3n3ARlK2MU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RcGgvBEqrhkLrA6eqG7xrO2sfeZQmQNJLENxWfqoIlCDYCIlfX493k6oPVZX2YGntleWxd-azP38DsK988DrYkCkpXcYVZZkycT1qbYJjFjXU8ER3PBkML_nZtbheg8-ruzDe-0Q-830sprN8N7cL3Co7UDLG80q8gHXBORfNba2fOyo5hiOD9ugyp-rgbPRtGiFgUURkKqWQ7Bfnk7Kp_PELTn7ltAvjZY8aOsltf1Gbvn3-Tazxf7u8CRttgEkOmxmxBWt-9hq6y-QNpF3L23A1mk-zo-jDHEFS4_zGkbG-e9IPnpz4OhG0ZiQRCshXFLUmKOMRPzxpeOPk6qb-TlI650eNkzi2ChES-zdwefplejzM2iwLmY2uvs6kcUVuKQK7CGZYCEY6XxhraXwo17pU1EgmXZkLpxk1tijj29IxboULnr2Fzmw-8--ADBwKfrmIgIrArRTa6bLQXLFAg8-F7gFdDn9lWwlyzIRxVyUoQlWFFqvQYlVrsR58WjW5b_Q3_lV5Gy2wqtgOfg92lzau2hX6WBWSqog1Y4i08_dWH-HlcDq-qC5Gk_P38ArTzCNrIBe70KkfFn4vBiO1-ZDm4A-agNwS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IoT-Based+Android+Malware+Detection+Using+Graph+Neural+Network+With+Adversarial+Defense&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Yumlembam%2C+Rahul&rft.au=Issac%2C+Biju&rft.au=Jacob%2C+Seibu+Mary&rft.au=Yang%2C+Longzhi&rft.date=2023-05-15&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=10&rft.issue=10&rft.spage=8432&rft.epage=8444&rft_id=info:doi/10.1109%2FJIOT.2022.3188583&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2022_3188583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon