Planar Near-Field Electric Field Sensor Array Applications Facilitated by Neural Networks
Electrical capacitance tomography is employed for various process tomography applications, typically with circular imaging regions (e.g., to estimate fluid levels in plastic pipes). Typical state-of-the-art implementations focus on circular or cylindrical sensor arrays. In contrast, this research ex...
        Saved in:
      
    
          | Published in | IEEE sensors journal Vol. 21; no. 18; pp. 21038 - 21049 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        15.09.2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1530-437X 1558-1748  | 
| DOI | 10.1109/JSEN.2021.3099984 | 
Cover
| Abstract | Electrical capacitance tomography is employed for various process tomography applications, typically with circular imaging regions (e.g., to estimate fluid levels in plastic pipes). Typical state-of-the-art implementations focus on circular or cylindrical sensor arrays. In contrast, this research explores using a planar 2D array of electric-field sensors to image volumes composed of various dielectric materials. The array is designed to be used with very-low-frequency electric fields, which are desirable due to their ability to differentiate between various non-conducting objects. D-dot sensors (i.e., charge induction sensors) are used as the electric-field sensing element. In this research, imaging regions of interest are modeled as a composition of (25 cm) 3 voxels of dielectric material with randomized relative permittivities. Neural networks are utilized as the inversion algorithm to map measured E-field distortions to the voxels' relative permittivities. Three applications are explored in a simulated environment: 1) predicting relative permittivities of the entire (pseudo-3D) imaging region from one measurement of electric-field distortions (modeled in free space), 2) imaging regions arbitrarily large (in two dimensions) using the planar array as an imaging kernel, and 3) repeating application (1) in a model of a practical, real-world imaging scenario both with and without interfering material. Application (3) is performed with a real-world experimental setup using a room-sized "E-field Cage" meant to generate a uniform electric field. This work showcases a new electric-field imaging modality using a planar 2D D-dot sensor array paired with a DNN-based inversion algorithm. | 
    
|---|---|
| AbstractList | Electrical capacitance tomography is employed for various process tomography applications, typically with circular imaging regions (e.g., to estimate fluid levels in plastic pipes). Typical state-of-the-art implementations focus on circular or cylindrical sensor arrays. In contrast, this research explores using a planar 2D array of electric-field sensors to image volumes composed of various dielectric materials. The array is designed to be used with very-low-frequency electric fields, which are desirable due to their ability to differentiate between various non-conducting objects. D-dot sensors (i.e., charge induction sensors) are used as the electric-field sensing element. In this research, imaging regions of interest are modeled as a composition of (25 cm)3 voxels of dielectric material with randomized relative permittivities. Neural networks are utilized as the inversion algorithm to map measured E-field distortions to the voxels’ relative permittivities. Three applications are explored in a simulated environment: 1) predicting relative permittivities of the entire (pseudo-3D) imaging region from one measurement of electric-field distortions (modeled in free space), 2) imaging regions arbitrarily large (in two dimensions) using the planar array as an imaging kernel, and 3) repeating application (1) in a model of a practical, real-world imaging scenario both with and without interfering material. Application (3) is performed with a real-world experimental setup using a room-sized “E-field Cage” meant to generate a uniform electric field. This work showcases a new electric-field imaging modality using a planar 2D D-dot sensor array paired with a DNN-based inversion algorithm. | 
    
| Author | Allee, David R. Hull, David M. Drummond, Zachary D. Adelman, Ross N. Claytor, Kevin E.  | 
    
| Author_xml | – sequence: 1 givenname: Zachary D. orcidid: 0000-0002-2505-7690 surname: Drummond fullname: Drummond, Zachary D. email: zdrummon@asu.edu organization: Electrical, Computer, and Energy Engineering Department, Arizona State University, Tempe, AZ, USA – sequence: 2 givenname: Kevin E. orcidid: 0000-0002-6072-5033 surname: Claytor fullname: Claytor, Kevin E. email: kevin.claytor@jhuapl.edu organization: DEVCOM Army Research Laboratory, Adelphi, MD, USA – sequence: 3 givenname: Ross N. orcidid: 0000-0003-4958-2526 surname: Adelman fullname: Adelman, Ross N. email: ross.n.adelman.civ@mail.mil organization: DEVCOM Army Research Laboratory, Adelphi, MD, USA – sequence: 4 givenname: David R. orcidid: 0000-0002-8464-0069 surname: Allee fullname: Allee, David R. email: allee@asu.edu organization: Electrical, Computer, and Energy Engineering Department, Arizona State University, Tempe, AZ, USA – sequence: 5 givenname: David M. orcidid: 0000-0002-4200-7636 surname: Hull fullname: Hull, David M. email: david.m.hull6.civ@mail.mil organization: DEVCOM Army Research Laboratory, Adelphi, MD, USA  | 
    
| BookMark | eNp9kEtLAzEUhYNUsFZ_gLgZcD01j0kzWZbS-qBUoQq6Cpk8IDXOjMkU6b83wxQXLlzde-F-955zzsGobmoDwBWCU4Qgv33cLjdTDDGaEsg5L4sTMEaUljliRTnqewLzgrC3M3Ae4w5CxBllY_D-7GUtQ7YxMuQrZ7zOlt6oLjiVDePW1LEJ2TwEecjmbeudkp1r6pitpHLedbIzOqsO6cQ-SJ9K992Ej3gBTq300Vwe6wS8rpYvi_t8_XT3sJivc4U56fKySloqbG2hdGEsZhU10jIojWVSQ0U0YQXUFFmNDC9lqRWjJDmZVZXCkJMJuBnutqH52pvYiV2zD3V6KTBleDYrUQImAA1bKjQxBmNFG9ynDAeBoOgTFH2Cok9QHBNMDPvDqN5t8t4F6fy_5PVAOmPM7ydecJrEkB_dDoDp | 
    
| CODEN | ISJEAZ | 
    
| CitedBy_id | crossref_primary_10_1016_j_elstat_2024_103938 | 
    
| Cites_doi | 10.1007/978-3-030-01424-7_27 10.1109/JSEN.2017.2753248 10.1109/IST.2018.8577200 10.1109/JSEN.2020.2965731 10.1007/978-94-017-7144-3 10.1016/j.ces.2020.116236 10.1109/JSEN.2013.2294533 10.1007/s00365-006-0663-2 10.1155/2019/4208349 10.1109/TKDE.2009.191 10.1109/JSEN.2020.2964559 10.1109/TAES.1982.313318 10.1109/JSEN.2016.2530741 10.2307/2372313 10.1088/0957-0233/24/7/074001 10.1109/JSEN.2005.860316 10.1088/0957-0233/14/1/201 10.1109/CEFC-06.2006.1632881 10.1109/TIM.2018.2811228 10.1109/20.250786 10.1109/JSEN.2007.891952 10.1109/IAS.2019.8911919 10.1109/TMAG.2017.2725951 10.1109/JSEN.2018.2836337  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| DOI | 10.1109/JSEN.2021.3099984 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Engineering  | 
    
| EISSN | 1558-1748 | 
    
| EndPage | 21049 | 
    
| ExternalDocumentID | 10_1109_JSEN_2021_3099984 9495817  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: DEVCOM Army Research Laboratory grantid: W911NF-15-2-0086 funderid: 10.13039/100006754  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c293t-8b001b2ff4cd4ef27b5eaf70aef7ad0c3d3740d51fd1e98a8dc7534376bbc2093 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1530-437X | 
    
| IngestDate | Mon Jun 30 10:18:45 EDT 2025 Wed Oct 01 04:14:54 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Wed Aug 27 02:27:18 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 18 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c293t-8b001b2ff4cd4ef27b5eaf70aef7ad0c3d3740d51fd1e98a8dc7534376bbc2093 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-6072-5033 0000-0002-2505-7690 0000-0002-8464-0069 0000-0002-4200-7636 0000-0003-4958-2526  | 
    
| PQID | 2572668175 | 
    
| PQPubID | 75733 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_journals_2572668175 crossref_citationtrail_10_1109_JSEN_2021_3099984 crossref_primary_10_1109_JSEN_2021_3099984 ieee_primary_9495817  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-09-15 | 
    
| PublicationDateYYYYMMDD | 2021-09-15 | 
    
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE sensors journal | 
    
| PublicationTitleAbbrev | JSEN | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 goodfellow (ref24) 2016 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref16 ref19 ref18 kingma (ref27) 2014 clevert (ref25) 2015 (ref17) 2021 ref23 ref20 ref22 ref21 ref28 ref8 ref7 ref9 ref4 ref3 ref6 ref5 srivastava (ref29) 2014; 15 nair (ref26) 2010  | 
    
| References_xml | – year: 2015 ident: ref25 article-title: Fast and accurate deep network learning by exponential linear units (ELUs) publication-title: arXiv 1511 07289 – ident: ref15 doi: 10.1007/978-3-030-01424-7_27 – ident: ref22 doi: 10.1109/JSEN.2017.2753248 – ident: ref1 doi: 10.1109/IST.2018.8577200 – ident: ref11 doi: 10.1109/JSEN.2020.2965731 – ident: ref18 doi: 10.1007/978-94-017-7144-3 – ident: ref2 doi: 10.1016/j.ces.2020.116236 – volume: 15 start-page: 1929 year: 2014 ident: ref29 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref6 doi: 10.1109/JSEN.2013.2294533 – year: 2021 ident: ref17 publication-title: Radio Regulations – ident: ref28 doi: 10.1007/s00365-006-0663-2 – ident: ref4 doi: 10.1155/2019/4208349 – year: 2014 ident: ref27 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref16 doi: 10.1109/TKDE.2009.191 – start-page: 8 year: 2010 ident: ref26 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc ICML – ident: ref13 doi: 10.1109/JSEN.2020.2964559 – ident: ref20 doi: 10.1109/TAES.1982.313318 – ident: ref21 doi: 10.1109/JSEN.2016.2530741 – ident: ref7 doi: 10.2307/2372313 – year: 2016 ident: ref24 publication-title: Deep Learning – ident: ref3 doi: 10.1088/0957-0233/24/7/074001 – ident: ref10 doi: 10.1109/JSEN.2005.860316 – ident: ref8 doi: 10.1088/0957-0233/14/1/201 – ident: ref23 doi: 10.1109/CEFC-06.2006.1632881 – ident: ref9 doi: 10.1109/TIM.2018.2811228 – ident: ref14 doi: 10.1109/20.250786 – ident: ref5 doi: 10.1109/JSEN.2007.891952 – ident: ref30 doi: 10.1109/IAS.2019.8911919 – ident: ref19 doi: 10.1109/TMAG.2017.2725951 – ident: ref12 doi: 10.1109/JSEN.2018.2836337  | 
    
| SSID | ssj0019757 | 
    
| Score | 2.3390725 | 
    
| Snippet | Electrical capacitance tomography is employed for various process tomography applications, typically with circular imaging regions (e.g., to estimate fluid... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 21038 | 
    
| SubjectTerms | Algorithms deep learning Dielectrics ECT Electric fields Electrical capacitance tomography Image sensors Imaging inverse problem Inverse problems LF electric fields neural network Neural networks Object recognition Permittivity Sensor arrays Sensors Tomography Two dimensional models  | 
    
| Title | Planar Near-Field Electric Field Sensor Array Applications Facilitated by Neural Networks | 
    
| URI | https://ieeexplore.ieee.org/document/9495817 https://www.proquest.com/docview/2572668175  | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BCzDwRpSXPDAhUpzYqeOxQq0qJLoAUpkiPwUCtai0Q_n1-Jy04iXElii2Y-XO9ne5xwdwJlBtGKeJYgG-cWnSRHHuEmuCyaKVy2XMcr3pt3r3_HqQD5bgYpEL45yLwWeuiZfRl29HZoq_yi5lQPNFKpZhWRStKldr4TGQIlb1DAuYJpyJQe3BTKm8vL7t9IMlmKVNhnio4F_OoEiq8mMnjsdLdxNu5hOrokqem9OJbpr3bzUb_zvzLdiocSZpV4qxDUtuuAPrn6oP7sBqTYD-ONuFByQvUmPSD4qfdDGqjXQiQc6TIdXtbbB3R-Mw4FjNSPuT25t0lalKfTtL9IxguY_w5n4VX_62B_fdzt1VL6lZFxITjv5JUiCO0pn33FjufCZ07pQXVDkvlKWGWSY4tXnqbepkoQprgskTPnlLa5NRyfZhZTgaugMg3iojkDNQoXdTF5rl3jPpKaIKk2UNoHM5lKYuSY7MGC9lNE2oLFF0JYqurEXXgPNFl9eqHsdfjXdRFIuGtRQacDwXdlmv2LcybF0Bq4Sn-eHvvY5gDcfGWJE0P4aVyXjqTgIgmejTqIkfWavb3A | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5RONAegEKrhlLwgRPqBu_axusjQonCI3sBpHBa-alWrZIqJIfw6_F4NxFtUdXbrtZeWztj-5udmW8AjiWqDeM00yzCN65snmnOfeZsNFmM9kKlLNdhdTa451cjMVqDr6tcGO99Cj7zXbxMvnw3sXP8VXaqIpovc_kGNgTnXDTZWiufgZKJ1zMuYZpxJketDzOn6vTqtldFW7DIuwwRUcl_O4VSWZW_9uJ0wPS3YbicWhNX8qM7n5muffqDtfF_574DWy3SJOeNaryHNT_ehXcv-Ad3YbMtgf5tsQcPWL5IT0kVVT_rY1wb6aUSOd8taW5vo8U7mcYXTvWCnL9wfJO-tg3Zt3fELAgSfsSRqybC_PED3Pd7dxeDrK27kNl4-M-yEpGUKULg1nEfCmmE10FS7YPUjlrmmOTUiTy43KtSl85Goyd-8jNjbEEV-wjr48nYfwISnLYSqwZq9G-a0jARAlOBIq6wRdEBupRDbVtScqyN8bNOxglVNYquRtHVreg6cLLq8qth5PhX4z0UxaphK4UOHCyFXbdr9rGOm1dEK_Gp2H-91xFsDu6GN_XNZXX9Gd7iOBg5kosDWJ9N5_5LhCczc5i08hkEYt8p | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Planar+Near-Field+Electric+Field+Sensor+Array+Applications+Facilitated+by+Neural+Networks&rft.jtitle=IEEE+sensors+journal&rft.au=Drummond%2C+Zachary+D.&rft.au=Claytor%2C+Kevin+E.&rft.au=Adelman%2C+Ross+N.&rft.au=Allee%2C+David+R.&rft.date=2021-09-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=18&rft.spage=21038&rft.epage=21049&rft_id=info:doi/10.1109%2FJSEN.2021.3099984&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2021_3099984 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |