Planar Near-Field Electric Field Sensor Array Applications Facilitated by Neural Networks

Electrical capacitance tomography is employed for various process tomography applications, typically with circular imaging regions (e.g., to estimate fluid levels in plastic pipes). Typical state-of-the-art implementations focus on circular or cylindrical sensor arrays. In contrast, this research ex...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 21; no. 18; pp. 21038 - 21049
Main Authors Drummond, Zachary D., Claytor, Kevin E., Adelman, Ross N., Allee, David R., Hull, David M.
Format Journal Article
LanguageEnglish
Published New York IEEE 15.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2021.3099984

Cover

Abstract Electrical capacitance tomography is employed for various process tomography applications, typically with circular imaging regions (e.g., to estimate fluid levels in plastic pipes). Typical state-of-the-art implementations focus on circular or cylindrical sensor arrays. In contrast, this research explores using a planar 2D array of electric-field sensors to image volumes composed of various dielectric materials. The array is designed to be used with very-low-frequency electric fields, which are desirable due to their ability to differentiate between various non-conducting objects. D-dot sensors (i.e., charge induction sensors) are used as the electric-field sensing element. In this research, imaging regions of interest are modeled as a composition of (25 cm) 3 voxels of dielectric material with randomized relative permittivities. Neural networks are utilized as the inversion algorithm to map measured E-field distortions to the voxels' relative permittivities. Three applications are explored in a simulated environment: 1) predicting relative permittivities of the entire (pseudo-3D) imaging region from one measurement of electric-field distortions (modeled in free space), 2) imaging regions arbitrarily large (in two dimensions) using the planar array as an imaging kernel, and 3) repeating application (1) in a model of a practical, real-world imaging scenario both with and without interfering material. Application (3) is performed with a real-world experimental setup using a room-sized "E-field Cage" meant to generate a uniform electric field. This work showcases a new electric-field imaging modality using a planar 2D D-dot sensor array paired with a DNN-based inversion algorithm.
AbstractList Electrical capacitance tomography is employed for various process tomography applications, typically with circular imaging regions (e.g., to estimate fluid levels in plastic pipes). Typical state-of-the-art implementations focus on circular or cylindrical sensor arrays. In contrast, this research explores using a planar 2D array of electric-field sensors to image volumes composed of various dielectric materials. The array is designed to be used with very-low-frequency electric fields, which are desirable due to their ability to differentiate between various non-conducting objects. D-dot sensors (i.e., charge induction sensors) are used as the electric-field sensing element. In this research, imaging regions of interest are modeled as a composition of (25 cm)3 voxels of dielectric material with randomized relative permittivities. Neural networks are utilized as the inversion algorithm to map measured E-field distortions to the voxels’ relative permittivities. Three applications are explored in a simulated environment: 1) predicting relative permittivities of the entire (pseudo-3D) imaging region from one measurement of electric-field distortions (modeled in free space), 2) imaging regions arbitrarily large (in two dimensions) using the planar array as an imaging kernel, and 3) repeating application (1) in a model of a practical, real-world imaging scenario both with and without interfering material. Application (3) is performed with a real-world experimental setup using a room-sized “E-field Cage” meant to generate a uniform electric field. This work showcases a new electric-field imaging modality using a planar 2D D-dot sensor array paired with a DNN-based inversion algorithm.
Author Allee, David R.
Hull, David M.
Drummond, Zachary D.
Adelman, Ross N.
Claytor, Kevin E.
Author_xml – sequence: 1
  givenname: Zachary D.
  orcidid: 0000-0002-2505-7690
  surname: Drummond
  fullname: Drummond, Zachary D.
  email: zdrummon@asu.edu
  organization: Electrical, Computer, and Energy Engineering Department, Arizona State University, Tempe, AZ, USA
– sequence: 2
  givenname: Kevin E.
  orcidid: 0000-0002-6072-5033
  surname: Claytor
  fullname: Claytor, Kevin E.
  email: kevin.claytor@jhuapl.edu
  organization: DEVCOM Army Research Laboratory, Adelphi, MD, USA
– sequence: 3
  givenname: Ross N.
  orcidid: 0000-0003-4958-2526
  surname: Adelman
  fullname: Adelman, Ross N.
  email: ross.n.adelman.civ@mail.mil
  organization: DEVCOM Army Research Laboratory, Adelphi, MD, USA
– sequence: 4
  givenname: David R.
  orcidid: 0000-0002-8464-0069
  surname: Allee
  fullname: Allee, David R.
  email: allee@asu.edu
  organization: Electrical, Computer, and Energy Engineering Department, Arizona State University, Tempe, AZ, USA
– sequence: 5
  givenname: David M.
  orcidid: 0000-0002-4200-7636
  surname: Hull
  fullname: Hull, David M.
  email: david.m.hull6.civ@mail.mil
  organization: DEVCOM Army Research Laboratory, Adelphi, MD, USA
BookMark eNp9kEtLAzEUhYNUsFZ_gLgZcD01j0kzWZbS-qBUoQq6Cpk8IDXOjMkU6b83wxQXLlzde-F-955zzsGobmoDwBWCU4Qgv33cLjdTDDGaEsg5L4sTMEaUljliRTnqewLzgrC3M3Ae4w5CxBllY_D-7GUtQ7YxMuQrZ7zOlt6oLjiVDePW1LEJ2TwEecjmbeudkp1r6pitpHLedbIzOqsO6cQ-SJ9K992Ej3gBTq300Vwe6wS8rpYvi_t8_XT3sJivc4U56fKySloqbG2hdGEsZhU10jIojWVSQ0U0YQXUFFmNDC9lqRWjJDmZVZXCkJMJuBnutqH52pvYiV2zD3V6KTBleDYrUQImAA1bKjQxBmNFG9ynDAeBoOgTFH2Cok9QHBNMDPvDqN5t8t4F6fy_5PVAOmPM7ydecJrEkB_dDoDp
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_elstat_2024_103938
Cites_doi 10.1007/978-3-030-01424-7_27
10.1109/JSEN.2017.2753248
10.1109/IST.2018.8577200
10.1109/JSEN.2020.2965731
10.1007/978-94-017-7144-3
10.1016/j.ces.2020.116236
10.1109/JSEN.2013.2294533
10.1007/s00365-006-0663-2
10.1155/2019/4208349
10.1109/TKDE.2009.191
10.1109/JSEN.2020.2964559
10.1109/TAES.1982.313318
10.1109/JSEN.2016.2530741
10.2307/2372313
10.1088/0957-0233/24/7/074001
10.1109/JSEN.2005.860316
10.1088/0957-0233/14/1/201
10.1109/CEFC-06.2006.1632881
10.1109/TIM.2018.2811228
10.1109/20.250786
10.1109/JSEN.2007.891952
10.1109/IAS.2019.8911919
10.1109/TMAG.2017.2725951
10.1109/JSEN.2018.2836337
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2021.3099984
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 21049
ExternalDocumentID 10_1109_JSEN_2021_3099984
9495817
Genre orig-research
GrantInformation_xml – fundername: DEVCOM Army Research Laboratory
  grantid: W911NF-15-2-0086
  funderid: 10.13039/100006754
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-8b001b2ff4cd4ef27b5eaf70aef7ad0c3d3740d51fd1e98a8dc7534376bbc2093
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:18:45 EDT 2025
Wed Oct 01 04:14:54 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Wed Aug 27 02:27:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-8b001b2ff4cd4ef27b5eaf70aef7ad0c3d3740d51fd1e98a8dc7534376bbc2093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6072-5033
0000-0002-2505-7690
0000-0002-8464-0069
0000-0002-4200-7636
0000-0003-4958-2526
PQID 2572668175
PQPubID 75733
PageCount 12
ParticipantIDs proquest_journals_2572668175
crossref_citationtrail_10_1109_JSEN_2021_3099984
crossref_primary_10_1109_JSEN_2021_3099984
ieee_primary_9495817
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
goodfellow (ref24) 2016
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref16
ref19
ref18
kingma (ref27) 2014
clevert (ref25) 2015
(ref17) 2021
ref23
ref20
ref22
ref21
ref28
ref8
ref7
ref9
ref4
ref3
ref6
ref5
srivastava (ref29) 2014; 15
nair (ref26) 2010
References_xml – year: 2015
  ident: ref25
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
  publication-title: arXiv 1511 07289
– ident: ref15
  doi: 10.1007/978-3-030-01424-7_27
– ident: ref22
  doi: 10.1109/JSEN.2017.2753248
– ident: ref1
  doi: 10.1109/IST.2018.8577200
– ident: ref11
  doi: 10.1109/JSEN.2020.2965731
– ident: ref18
  doi: 10.1007/978-94-017-7144-3
– ident: ref2
  doi: 10.1016/j.ces.2020.116236
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref29
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref6
  doi: 10.1109/JSEN.2013.2294533
– year: 2021
  ident: ref17
  publication-title: Radio Regulations
– ident: ref28
  doi: 10.1007/s00365-006-0663-2
– ident: ref4
  doi: 10.1155/2019/4208349
– year: 2014
  ident: ref27
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref16
  doi: 10.1109/TKDE.2009.191
– start-page: 8
  year: 2010
  ident: ref26
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc ICML
– ident: ref13
  doi: 10.1109/JSEN.2020.2964559
– ident: ref20
  doi: 10.1109/TAES.1982.313318
– ident: ref21
  doi: 10.1109/JSEN.2016.2530741
– ident: ref7
  doi: 10.2307/2372313
– year: 2016
  ident: ref24
  publication-title: Deep Learning
– ident: ref3
  doi: 10.1088/0957-0233/24/7/074001
– ident: ref10
  doi: 10.1109/JSEN.2005.860316
– ident: ref8
  doi: 10.1088/0957-0233/14/1/201
– ident: ref23
  doi: 10.1109/CEFC-06.2006.1632881
– ident: ref9
  doi: 10.1109/TIM.2018.2811228
– ident: ref14
  doi: 10.1109/20.250786
– ident: ref5
  doi: 10.1109/JSEN.2007.891952
– ident: ref30
  doi: 10.1109/IAS.2019.8911919
– ident: ref19
  doi: 10.1109/TMAG.2017.2725951
– ident: ref12
  doi: 10.1109/JSEN.2018.2836337
SSID ssj0019757
Score 2.3390725
Snippet Electrical capacitance tomography is employed for various process tomography applications, typically with circular imaging regions (e.g., to estimate fluid...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21038
SubjectTerms Algorithms
deep learning
Dielectrics
ECT
Electric fields
Electrical capacitance tomography
Image sensors
Imaging
inverse problem
Inverse problems
LF electric fields
neural network
Neural networks
Object recognition
Permittivity
Sensor arrays
Sensors
Tomography
Two dimensional models
Title Planar Near-Field Electric Field Sensor Array Applications Facilitated by Neural Networks
URI https://ieeexplore.ieee.org/document/9495817
https://www.proquest.com/docview/2572668175
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BCzDwRpSXPDAhUpzYqeOxQq0qJLoAUpkiPwUCtai0Q_n1-Jy04iXElii2Y-XO9ne5xwdwJlBtGKeJYgG-cWnSRHHuEmuCyaKVy2XMcr3pt3r3_HqQD5bgYpEL45yLwWeuiZfRl29HZoq_yi5lQPNFKpZhWRStKldr4TGQIlb1DAuYJpyJQe3BTKm8vL7t9IMlmKVNhnio4F_OoEiq8mMnjsdLdxNu5hOrokqem9OJbpr3bzUb_zvzLdiocSZpV4qxDUtuuAPrn6oP7sBqTYD-ONuFByQvUmPSD4qfdDGqjXQiQc6TIdXtbbB3R-Mw4FjNSPuT25t0lalKfTtL9IxguY_w5n4VX_62B_fdzt1VL6lZFxITjv5JUiCO0pn33FjufCZ07pQXVDkvlKWGWSY4tXnqbepkoQprgskTPnlLa5NRyfZhZTgaugMg3iojkDNQoXdTF5rl3jPpKaIKk2UNoHM5lKYuSY7MGC9lNE2oLFF0JYqurEXXgPNFl9eqHsdfjXdRFIuGtRQacDwXdlmv2LcybF0Bq4Sn-eHvvY5gDcfGWJE0P4aVyXjqTgIgmejTqIkfWavb3A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5RONAegEKrhlLwgRPqBu_axusjQonCI3sBpHBa-alWrZIqJIfw6_F4NxFtUdXbrtZeWztj-5udmW8AjiWqDeM00yzCN65snmnOfeZsNFmM9kKlLNdhdTa451cjMVqDr6tcGO99Cj7zXbxMvnw3sXP8VXaqIpovc_kGNgTnXDTZWiufgZKJ1zMuYZpxJketDzOn6vTqtldFW7DIuwwRUcl_O4VSWZW_9uJ0wPS3YbicWhNX8qM7n5muffqDtfF_574DWy3SJOeNaryHNT_ehXcv-Ad3YbMtgf5tsQcPWL5IT0kVVT_rY1wb6aUSOd8taW5vo8U7mcYXTvWCnL9wfJO-tg3Zt3fELAgSfsSRqybC_PED3Pd7dxeDrK27kNl4-M-yEpGUKULg1nEfCmmE10FS7YPUjlrmmOTUiTy43KtSl85Goyd-8jNjbEEV-wjr48nYfwISnLYSqwZq9G-a0jARAlOBIq6wRdEBupRDbVtScqyN8bNOxglVNYquRtHVreg6cLLq8qth5PhX4z0UxaphK4UOHCyFXbdr9rGOm1dEK_Gp2H-91xFsDu6GN_XNZXX9Gd7iOBg5kosDWJ9N5_5LhCczc5i08hkEYt8p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Planar+Near-Field+Electric+Field+Sensor+Array+Applications+Facilitated+by+Neural+Networks&rft.jtitle=IEEE+sensors+journal&rft.au=Drummond%2C+Zachary+D.&rft.au=Claytor%2C+Kevin+E.&rft.au=Adelman%2C+Ross+N.&rft.au=Allee%2C+David+R.&rft.date=2021-09-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=18&rft.spage=21038&rft.epage=21049&rft_id=info:doi/10.1109%2FJSEN.2021.3099984&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2021_3099984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon