Uncertain Graph Sparsification

Uncertain graphs are prevalent in several applications including communications systems, biological databases, and social networks. The ever increasing size of the underlying data renders both graph storage and query processing extremely expensive. Sparsification has often been used to reduce the si...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 30; no. 12; pp. 2435 - 2449
Main Authors Parchas, Panos, Papailiou, Nikolaos, Papadias, Dimitris, Bonchi, Francesco
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2018.2819651

Cover

Abstract Uncertain graphs are prevalent in several applications including communications systems, biological databases, and social networks. The ever increasing size of the underlying data renders both graph storage and query processing extremely expensive. Sparsification has often been used to reduce the size of deterministic graphs by maintaining only the important edges. However, adaptation of deterministic sparsification methods fails in the uncertain setting. To overcome this problem, we introduce the first sparsification techniques aimed explicitly at uncertain graphs. The proposed methods reduce the number of edges and redistribute their probabilities in order to decrease the graph size, while preserving its underlying structure. The resulting graph can be used to efficiently and accurately approximate any query and mining tasks on the original graph. An extensive experimental evaluation with real and synthetic datasets illustrates the effectiveness of our techniques on several common graph tasks, including clustering coefficient, page rank, reliability, and shortest path distance.
AbstractList Uncertain graphs are prevalent in several applications including communications systems, biological databases, and social networks. The ever increasing size of the underlying data renders both graph storage and query processing extremely expensive. Sparsification has often been used to reduce the size of deterministic graphs by maintaining only the important edges. However, adaptation of deterministic sparsification methods fails in the uncertain setting. To overcome this problem, we introduce the first sparsification techniques aimed explicitly at uncertain graphs. The proposed methods reduce the number of edges and redistribute their probabilities in order to decrease the graph size, while preserving its underlying structure. The resulting graph can be used to efficiently and accurately approximate any query and mining tasks on the original graph. An extensive experimental evaluation with real and synthetic datasets illustrates the effectiveness of our techniques on several common graph tasks, including clustering coefficient, page rank, reliability, and shortest path distance.
Author Papadias, Dimitris
Parchas, Panos
Bonchi, Francesco
Papailiou, Nikolaos
Author_xml – sequence: 1
  givenname: Panos
  surname: Parchas
  fullname: Parchas, Panos
  email: pparchas@cse.ust.hk
  organization: Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong
– sequence: 2
  givenname: Nikolaos
  orcidid: 0000-0001-6030-2762
  surname: Papailiou
  fullname: Papailiou, Nikolaos
  email: npapa@cslab.ece.ntua.gr
  organization: National Technical University of Athens, Zografou, Greece
– sequence: 3
  givenname: Dimitris
  orcidid: 0000-0001-5588-1026
  surname: Papadias
  fullname: Papadias, Dimitris
  email: dimitris@cse.ust.hk
  organization: Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong
– sequence: 4
  givenname: Francesco
  orcidid: 0000-0001-9464-8315
  surname: Bonchi
  fullname: Bonchi, Francesco
  email: francesco.bonchi@isi.it
  organization: ISI Foundation, Torino, Italy
BookMark eNp9kMFKAzEQhoNUsK0-gAhS8Lw1k9nsJkeptYoFD7bnkKYJptTdNUkPvn133eLBg6cZmP-bGb4RGVR1ZQm5BjoFoPJ-9fo4nzIKYsoEyILDGRkC5yJjIGHQ9jSHLMe8vCCjGHeUUlEKGJLbdWVsSNpXk0XQzcfkvdEheueNTr6uLsm50_tor051TNZP89XsOVu-LV5mD8vMMIkpa3fleiusFAXNsSg3W4Bcb1A4zpDzQjhm0LECdYkFNxQdl1Jb5iSipVLgmNz1e5tQfx1sTGpXH0LVnlQMkFEOUEKbKvuUCXWMwTplfPr5MwXt9wqo6mSoTobqZKiTjJaEP2QT_KcO3_8yNz3jrbW_eYGMt0M8AlXhaUc
CODEN ITKEEH
CitedBy_id crossref_primary_10_1080_19361610_2020_1751558
crossref_primary_10_1093_comnet_cnz003
crossref_primary_10_1007_s10619_022_07415_9
crossref_primary_10_1109_TCE_2024_3411551
crossref_primary_10_1007_s13278_020_00708_w
crossref_primary_10_1007_s41109_021_00401_7
crossref_primary_10_1016_j_fss_2021_07_017
crossref_primary_10_1109_TSP_2020_2976583
crossref_primary_10_1007_s10115_022_01681_w
crossref_primary_10_1016_j_ins_2024_120631
Cites_doi 10.1007/BF01758778
10.14778/1920841.1920967
10.1145/2623330.2623655
10.1137/070705970
10.1002/jgt.3190130114
10.1109/ICDM.2008.124
10.1145/1993636.1993647
10.1145/2808797.2809313
10.1007/978-3-540-30140-0_52
10.1080/10556788.2015.1130129
10.1109/ICDE.2015.7113288
10.1145/2090236.2090267
10.1137/080734029
10.1002/rsa.20130
10.1080/1350486X.2015.1110492
10.1109/ICDM.2011.57
10.1137/141002281
10.1109/ICDE.2014.6816709
10.1109/FOCS.2016.44
10.1145/2213556.2213560
10.1145/1150402.1150479
10.1287/opre.1.5.263
10.1007/s10618-013-0328-8
10.1145/2612669.2612676
10.1145/1989323.1989399
10.1111/j.2517-6161.1977.tb01600.x
10.1145/2755573.2755574
10.1023/A:1026543900054
10.2140/pjm.1955.5.33
10.1145/2020408.2020492
10.1007/s10618-008-0106-1
10.1126/science.1116869
10.1007/978-3-642-40328-6_1
10.1145/2818182
10.1017/CBO9780511804441
10.1007/BF02189308
10.1145/2492007.2492029
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2018.2819651
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 2449
ExternalDocumentID 10_1109_TKDE_2018_2819651
8325513
Genre orig-research
GrantInformation_xml – fundername: Hong Kong RGC
  grantid: 16201615; 16205117
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c293t-8784ad8e98604367bd114ab38f5235568f2c3f263a7365c03f599ae2f933e0983
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 03:17:52 EDT 2025
Wed Oct 01 03:49:52 EDT 2025
Thu Apr 24 23:13:00 EDT 2025
Wed Aug 27 02:49:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-8784ad8e98604367bd114ab38f5235568f2c3f263a7365c03f599ae2f933e0983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5588-1026
0000-0001-6030-2762
0000-0001-9464-8315
PQID 2132051171
PQPubID 85438
PageCount 15
ParticipantIDs crossref_primary_10_1109_TKDE_2018_2819651
ieee_primary_8325513
crossref_citationtrail_10_1109_TKDE_2018_2819651
proquest_journals_2132051171
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
parchas (ref32) 2014
ref37
ref15
ref36
ref30
ref33
ref11
ref10
ref2
ref1
ref39
ref17
ref38
page (ref31) 1999
ref16
ref19
ref18
dempster (ref14) 1977; 39
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
benczúr (ref7) 1996
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref30
  doi: 10.1007/BF01758778
– year: 1999
  ident: ref31
  article-title: The pagerank citation ranking: Bringing order to the web
– ident: ref35
  doi: 10.14778/1920841.1920967
– ident: ref9
  doi: 10.1145/2623330.2623655
– ident: ref8
  doi: 10.1137/070705970
– ident: ref34
  doi: 10.1002/jgt.3190130114
– ident: ref17
  doi: 10.1109/ICDM.2008.124
– ident: ref15
  doi: 10.1145/1993636.1993647
– ident: ref26
  doi: 10.1145/2808797.2809313
– ident: ref36
  doi: 10.1007/978-3-540-30140-0_52
– ident: ref16
  doi: 10.1080/10556788.2015.1130129
– ident: ref29
  doi: 10.1109/ICDE.2015.7113288
– ident: ref20
  doi: 10.1145/2090236.2090267
– ident: ref40
  doi: 10.1137/080734029
– ident: ref5
  doi: 10.1002/rsa.20130
– ident: ref13
  doi: 10.1080/1350486X.2015.1110492
– ident: ref37
  doi: 10.1109/ICDM.2011.57
– ident: ref21
  doi: 10.1137/141002281
– ident: ref25
  doi: 10.1109/ICDE.2014.6816709
– ident: ref1
  doi: 10.1109/FOCS.2016.44
– ident: ref2
  doi: 10.1145/2213556.2213560
– ident: ref24
  doi: 10.1145/1150402.1150479
– ident: ref18
  doi: 10.1287/opre.1.5.263
– start-page: 47
  year: 1996
  ident: ref7
  article-title: Approximating st minimum cuts in õ ($n^2$ ) time
  publication-title: Proc 28th Annu ACM Symp Theory Comput
– start-page: 967
  year: 2014
  ident: ref32
  article-title: The pursuit of a good possible world: Extracting representative instances of uncertain graphs
  publication-title: Proc ACM SIGMOD Int Conf Manage Data
– ident: ref10
  doi: 10.1007/s10618-013-0328-8
– ident: ref23
  doi: 10.1145/2612669.2612676
– ident: ref39
  doi: 10.1145/1989323.1989399
– volume: 39
  start-page: 1
  year: 1977
  ident: ref14
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Roy Statist Soc
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref28
  doi: 10.1145/2755573.2755574
– ident: ref38
  doi: 10.1023/A:1026543900054
– ident: ref12
  doi: 10.2140/pjm.1955.5.33
– ident: ref27
  doi: 10.1145/2020408.2020492
– ident: ref19
  doi: 10.1007/s10618-008-0106-1
– ident: ref22
  doi: 10.1126/science.1116869
– ident: ref3
  doi: 10.1007/978-3-642-40328-6_1
– ident: ref33
  doi: 10.1145/2818182
– ident: ref11
  doi: 10.1017/CBO9780511804441
– ident: ref4
  doi: 10.1007/BF02189308
– ident: ref6
  doi: 10.1145/2492007.2492029
SSID ssj0008781
Score 2.3785095
Snippet Uncertain graphs are prevalent in several applications including communications systems, biological databases, and social networks. The ever increasing size of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2435
SubjectTerms Clustering
data graph algorithms
data structures
database management
discrete mathematics
Electronic mail
Entropy
fuzzy and probabilistic reasoning
Graph theory
Graphs
graphs and networks
information interfaces and representation (HCI)
information technology and systems
mathematics of computing
Nickel
Query processing
Reliability
Shortest-path problems
Social network services
Task analysis
Uncertainty
user Interfaces
Title Uncertain Graph Sparsification
URI https://ieeexplore.ieee.org/document/8325513
https://www.proquest.com/docview/2132051171
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTnoQBY0omh08GQfbuq3t0ShINHgREm5L27UXDRCFi3-9r10h_orxtizt1rzX9r2vfe97ABe0lCXRUoQmYwhQ0OSHIldJaIgR6B9ILqXNdx4_5qNpej_LZjW42ubCaK1d8Jnu2Ud3l18u1NoelfVx9tl6JHWoU5ZXuVrbXZdRV5AU0QX-kqTU32DGEe9PHm4HNoiL9eytUZ7FX2yQK6ryYyd25mXYhPFmYFVUyXNvvZI99f6Ns_G_I9-HPe9nBtfVxDiAmp63oLmp4RD4Jd2C3U-EhG04n-JLFyMQ3Fkm6-BpicDXRhM5BR7CdDiY3IxCX0EhVGjGV7jVsVSUTHOWW6p5KkuEP0ISZhB_Wu4xkyhikpwISvJMRcRknAudGE6IjjgjR9CYL-b6GAKNji26XiqiVCFkMUJwotNYKARs1DDSgWgj00J5enFb5eKlcDAj4oVVQ2HVUHg1dOBy22VZcWv81bhtxbpt6CXage5GcYVffW9FYvPC0ZOk8cnvvU5hx367CkvpQmP1utZn6Fys5LmbVR_5Ocfo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADhRZEoZQMTIiUNE5ie0RAKfSx0ErdItuxF1BbQbvw6zk7acVLiC2ybNny2b77cnffAZzTTGZES-GbmCFAQZXvi0SFviFGoH0guZQ233kwTLrj6HEST0pwuc6F0Vq74DPdsp_Ol5_N1NL-KrvC02frkWzAZhxFUZxna63fXUZdSVLEFzgpiWjhw2wH_GrUu72zYVysZf1GSdz-ooVcWZUfb7FTMJ0KDFZLy-NKnlvLhWyp92-sjf9d-x7sFpamd50fjX0o6WkVKqsqDl5xqauw84mSsAbNMTa6KAHv3nJZe09zhL42nsiJ8ADGnbvRTdcvaij4ChX5Ah87FomMac4SSzZPZYYASEjCDCJQyz5mQkVMmBBBSRKrgJiYc6FDwwnRAWfkEMrT2VQfgafRtEXjSwWUKgQtRghOdNQWCiEbNYzUIVjtaaoKgnFb5-IldUAj4KkVQ2rFkBZiqMPFesg8Z9f4q3PNbuu6Y7GjdWisBJcW9-8tDW1mONqStH38-6gz2OqOBv20_zDsncC2nScPUmlAefG61Kdoaixk052wD6L5yzU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertain+Graph+Sparsification&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Parchas%2C+Panos&rft.au=Papailiou%2C+Nikolaos&rft.au=Papadias%2C+Dimitris&rft.au=Bonchi%2C+Francesco&rft.date=2018-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=30&rft.issue=12&rft.spage=2435&rft_id=info:doi/10.1109%2FTKDE.2018.2819651&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon