Uncertain Graph Sparsification
Uncertain graphs are prevalent in several applications including communications systems, biological databases, and social networks. The ever increasing size of the underlying data renders both graph storage and query processing extremely expensive. Sparsification has often been used to reduce the si...
Saved in:
| Published in | IEEE transactions on knowledge and data engineering Vol. 30; no. 12; pp. 2435 - 2449 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1041-4347 1558-2191 |
| DOI | 10.1109/TKDE.2018.2819651 |
Cover
| Abstract | Uncertain graphs are prevalent in several applications including communications systems, biological databases, and social networks. The ever increasing size of the underlying data renders both graph storage and query processing extremely expensive. Sparsification has often been used to reduce the size of deterministic graphs by maintaining only the important edges. However, adaptation of deterministic sparsification methods fails in the uncertain setting. To overcome this problem, we introduce the first sparsification techniques aimed explicitly at uncertain graphs. The proposed methods reduce the number of edges and redistribute their probabilities in order to decrease the graph size, while preserving its underlying structure. The resulting graph can be used to efficiently and accurately approximate any query and mining tasks on the original graph. An extensive experimental evaluation with real and synthetic datasets illustrates the effectiveness of our techniques on several common graph tasks, including clustering coefficient, page rank, reliability, and shortest path distance. |
|---|---|
| AbstractList | Uncertain graphs are prevalent in several applications including communications systems, biological databases, and social networks. The ever increasing size of the underlying data renders both graph storage and query processing extremely expensive. Sparsification has often been used to reduce the size of deterministic graphs by maintaining only the important edges. However, adaptation of deterministic sparsification methods fails in the uncertain setting. To overcome this problem, we introduce the first sparsification techniques aimed explicitly at uncertain graphs. The proposed methods reduce the number of edges and redistribute their probabilities in order to decrease the graph size, while preserving its underlying structure. The resulting graph can be used to efficiently and accurately approximate any query and mining tasks on the original graph. An extensive experimental evaluation with real and synthetic datasets illustrates the effectiveness of our techniques on several common graph tasks, including clustering coefficient, page rank, reliability, and shortest path distance. |
| Author | Papadias, Dimitris Parchas, Panos Bonchi, Francesco Papailiou, Nikolaos |
| Author_xml | – sequence: 1 givenname: Panos surname: Parchas fullname: Parchas, Panos email: pparchas@cse.ust.hk organization: Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong – sequence: 2 givenname: Nikolaos orcidid: 0000-0001-6030-2762 surname: Papailiou fullname: Papailiou, Nikolaos email: npapa@cslab.ece.ntua.gr organization: National Technical University of Athens, Zografou, Greece – sequence: 3 givenname: Dimitris orcidid: 0000-0001-5588-1026 surname: Papadias fullname: Papadias, Dimitris email: dimitris@cse.ust.hk organization: Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong – sequence: 4 givenname: Francesco orcidid: 0000-0001-9464-8315 surname: Bonchi fullname: Bonchi, Francesco email: francesco.bonchi@isi.it organization: ISI Foundation, Torino, Italy |
| BookMark | eNp9kMFKAzEQhoNUsK0-gAhS8Lw1k9nsJkeptYoFD7bnkKYJptTdNUkPvn133eLBg6cZmP-bGb4RGVR1ZQm5BjoFoPJ-9fo4nzIKYsoEyILDGRkC5yJjIGHQ9jSHLMe8vCCjGHeUUlEKGJLbdWVsSNpXk0XQzcfkvdEheueNTr6uLsm50_tor051TNZP89XsOVu-LV5mD8vMMIkpa3fleiusFAXNsSg3W4Bcb1A4zpDzQjhm0LECdYkFNxQdl1Jb5iSipVLgmNz1e5tQfx1sTGpXH0LVnlQMkFEOUEKbKvuUCXWMwTplfPr5MwXt9wqo6mSoTobqZKiTjJaEP2QT_KcO3_8yNz3jrbW_eYGMt0M8AlXhaUc |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1080_19361610_2020_1751558 crossref_primary_10_1093_comnet_cnz003 crossref_primary_10_1007_s10619_022_07415_9 crossref_primary_10_1109_TCE_2024_3411551 crossref_primary_10_1007_s13278_020_00708_w crossref_primary_10_1007_s41109_021_00401_7 crossref_primary_10_1016_j_fss_2021_07_017 crossref_primary_10_1109_TSP_2020_2976583 crossref_primary_10_1007_s10115_022_01681_w crossref_primary_10_1016_j_ins_2024_120631 |
| Cites_doi | 10.1007/BF01758778 10.14778/1920841.1920967 10.1145/2623330.2623655 10.1137/070705970 10.1002/jgt.3190130114 10.1109/ICDM.2008.124 10.1145/1993636.1993647 10.1145/2808797.2809313 10.1007/978-3-540-30140-0_52 10.1080/10556788.2015.1130129 10.1109/ICDE.2015.7113288 10.1145/2090236.2090267 10.1137/080734029 10.1002/rsa.20130 10.1080/1350486X.2015.1110492 10.1109/ICDM.2011.57 10.1137/141002281 10.1109/ICDE.2014.6816709 10.1109/FOCS.2016.44 10.1145/2213556.2213560 10.1145/1150402.1150479 10.1287/opre.1.5.263 10.1007/s10618-013-0328-8 10.1145/2612669.2612676 10.1145/1989323.1989399 10.1111/j.2517-6161.1977.tb01600.x 10.1145/2755573.2755574 10.1023/A:1026543900054 10.2140/pjm.1955.5.33 10.1145/2020408.2020492 10.1007/s10618-008-0106-1 10.1126/science.1116869 10.1007/978-3-642-40328-6_1 10.1145/2818182 10.1017/CBO9780511804441 10.1007/BF02189308 10.1145/2492007.2492029 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2018.2819651 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 2449 |
| ExternalDocumentID | 10_1109_TKDE_2018_2819651 8325513 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Hong Kong RGC grantid: 16201615; 16205117 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c293t-8784ad8e98604367bd114ab38f5235568f2c3f263a7365c03f599ae2f933e0983 |
| IEDL.DBID | RIE |
| ISSN | 1041-4347 |
| IngestDate | Mon Jun 30 03:17:52 EDT 2025 Wed Oct 01 03:49:52 EDT 2025 Thu Apr 24 23:13:00 EDT 2025 Wed Aug 27 02:49:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-8784ad8e98604367bd114ab38f5235568f2c3f263a7365c03f599ae2f933e0983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5588-1026 0000-0001-6030-2762 0000-0001-9464-8315 |
| PQID | 2132051171 |
| PQPubID | 85438 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TKDE_2018_2819651 ieee_primary_8325513 crossref_citationtrail_10_1109_TKDE_2018_2819651 proquest_journals_2132051171 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-01 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 parchas (ref32) 2014 ref37 ref15 ref36 ref30 ref33 ref11 ref10 ref2 ref1 ref39 ref17 ref38 page (ref31) 1999 ref16 ref19 ref18 dempster (ref14) 1977; 39 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 benczúr (ref7) 1996 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref30 doi: 10.1007/BF01758778 – year: 1999 ident: ref31 article-title: The pagerank citation ranking: Bringing order to the web – ident: ref35 doi: 10.14778/1920841.1920967 – ident: ref9 doi: 10.1145/2623330.2623655 – ident: ref8 doi: 10.1137/070705970 – ident: ref34 doi: 10.1002/jgt.3190130114 – ident: ref17 doi: 10.1109/ICDM.2008.124 – ident: ref15 doi: 10.1145/1993636.1993647 – ident: ref26 doi: 10.1145/2808797.2809313 – ident: ref36 doi: 10.1007/978-3-540-30140-0_52 – ident: ref16 doi: 10.1080/10556788.2015.1130129 – ident: ref29 doi: 10.1109/ICDE.2015.7113288 – ident: ref20 doi: 10.1145/2090236.2090267 – ident: ref40 doi: 10.1137/080734029 – ident: ref5 doi: 10.1002/rsa.20130 – ident: ref13 doi: 10.1080/1350486X.2015.1110492 – ident: ref37 doi: 10.1109/ICDM.2011.57 – ident: ref21 doi: 10.1137/141002281 – ident: ref25 doi: 10.1109/ICDE.2014.6816709 – ident: ref1 doi: 10.1109/FOCS.2016.44 – ident: ref2 doi: 10.1145/2213556.2213560 – ident: ref24 doi: 10.1145/1150402.1150479 – ident: ref18 doi: 10.1287/opre.1.5.263 – start-page: 47 year: 1996 ident: ref7 article-title: Approximating st minimum cuts in õ ($n^2$ ) time publication-title: Proc 28th Annu ACM Symp Theory Comput – start-page: 967 year: 2014 ident: ref32 article-title: The pursuit of a good possible world: Extracting representative instances of uncertain graphs publication-title: Proc ACM SIGMOD Int Conf Manage Data – ident: ref10 doi: 10.1007/s10618-013-0328-8 – ident: ref23 doi: 10.1145/2612669.2612676 – ident: ref39 doi: 10.1145/1989323.1989399 – volume: 39 start-page: 1 year: 1977 ident: ref14 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Roy Statist Soc doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref28 doi: 10.1145/2755573.2755574 – ident: ref38 doi: 10.1023/A:1026543900054 – ident: ref12 doi: 10.2140/pjm.1955.5.33 – ident: ref27 doi: 10.1145/2020408.2020492 – ident: ref19 doi: 10.1007/s10618-008-0106-1 – ident: ref22 doi: 10.1126/science.1116869 – ident: ref3 doi: 10.1007/978-3-642-40328-6_1 – ident: ref33 doi: 10.1145/2818182 – ident: ref11 doi: 10.1017/CBO9780511804441 – ident: ref4 doi: 10.1007/BF02189308 – ident: ref6 doi: 10.1145/2492007.2492029 |
| SSID | ssj0008781 |
| Score | 2.3785095 |
| Snippet | Uncertain graphs are prevalent in several applications including communications systems, biological databases, and social networks. The ever increasing size of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2435 |
| SubjectTerms | Clustering data graph algorithms data structures database management discrete mathematics Electronic mail Entropy fuzzy and probabilistic reasoning Graph theory Graphs graphs and networks information interfaces and representation (HCI) information technology and systems mathematics of computing Nickel Query processing Reliability Shortest-path problems Social network services Task analysis Uncertainty user Interfaces |
| Title | Uncertain Graph Sparsification |
| URI | https://ieeexplore.ieee.org/document/8325513 https://www.proquest.com/docview/2132051171 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTnoQBY0omh08GQfbuq3t0ShINHgREm5L27UXDRCFi3-9r10h_orxtizt1rzX9r2vfe97ABe0lCXRUoQmYwhQ0OSHIldJaIgR6B9ILqXNdx4_5qNpej_LZjW42ubCaK1d8Jnu2Ud3l18u1NoelfVx9tl6JHWoU5ZXuVrbXZdRV5AU0QX-kqTU32DGEe9PHm4HNoiL9eytUZ7FX2yQK6ryYyd25mXYhPFmYFVUyXNvvZI99f6Ns_G_I9-HPe9nBtfVxDiAmp63oLmp4RD4Jd2C3U-EhG04n-JLFyMQ3Fkm6-BpicDXRhM5BR7CdDiY3IxCX0EhVGjGV7jVsVSUTHOWW6p5KkuEP0ISZhB_Wu4xkyhikpwISvJMRcRknAudGE6IjjgjR9CYL-b6GAKNji26XiqiVCFkMUJwotNYKARs1DDSgWgj00J5enFb5eKlcDAj4oVVQ2HVUHg1dOBy22VZcWv81bhtxbpt6CXage5GcYVffW9FYvPC0ZOk8cnvvU5hx367CkvpQmP1utZn6Fys5LmbVR_5Ocfo |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADhRZEoZQMTIiUNE5ie0RAKfSx0ErdItuxF1BbQbvw6zk7acVLiC2ybNny2b77cnffAZzTTGZES-GbmCFAQZXvi0SFviFGoH0guZQ233kwTLrj6HEST0pwuc6F0Vq74DPdsp_Ol5_N1NL-KrvC02frkWzAZhxFUZxna63fXUZdSVLEFzgpiWjhw2wH_GrUu72zYVysZf1GSdz-ooVcWZUfb7FTMJ0KDFZLy-NKnlvLhWyp92-sjf9d-x7sFpamd50fjX0o6WkVKqsqDl5xqauw84mSsAbNMTa6KAHv3nJZe09zhL42nsiJ8ADGnbvRTdcvaij4ChX5Ah87FomMac4SSzZPZYYASEjCDCJQyz5mQkVMmBBBSRKrgJiYc6FDwwnRAWfkEMrT2VQfgafRtEXjSwWUKgQtRghOdNQWCiEbNYzUIVjtaaoKgnFb5-IldUAj4KkVQ2rFkBZiqMPFesg8Z9f4q3PNbuu6Y7GjdWisBJcW9-8tDW1mONqStH38-6gz2OqOBv20_zDsncC2nScPUmlAefG61Kdoaixk052wD6L5yzU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertain+Graph+Sparsification&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Parchas%2C+Panos&rft.au=Papailiou%2C+Nikolaos&rft.au=Papadias%2C+Dimitris&rft.au=Bonchi%2C+Francesco&rft.date=2018-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=30&rft.issue=12&rft.spage=2435&rft_id=info:doi/10.1109%2FTKDE.2018.2819651&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |