Deep Dual-Resolution Networks for Real-Time and Accurate Semantic Segmentation of Traffic Scenes

Using light-weight architectures or reasoning on low-resolution images, recent methods realize very fast scene parsing, even running at more than 100 FPS on a single GPU. However, there is still a significant gap in performance between these real-time methods and the models based on dilation backbon...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 24; no. 3; pp. 1 - 13
Main Authors Pan, Huihui, Hong, Yuanduo, Sun, Weichao, Jia, Yisong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2022.3228042

Cover

Abstract Using light-weight architectures or reasoning on low-resolution images, recent methods realize very fast scene parsing, even running at more than 100 FPS on a single GPU. However, there is still a significant gap in performance between these real-time methods and the models based on dilation backbones. To this end, we proposed a family of deep dual-resolution networks (DDRNets) for real-time and accurate semantic segmentation, which consist of deep dual-resolution backbones and enhanced low-resolution contextual information extractors. The two deep branches and multiple bilateral fusions of backbones generate higher quality details compared to existing two-pathway methods. The enhanced contextual information extractor named Deep Aggregation Pyramid Pooling Module (DAPPM) enlarges effective receptive fields and fuses multi-scale context based on low-resolution feature maps with little time cost. Our method achieves a new state-of-the-art trade-off between accuracy and speed on both Cityscapes and CamVid dataset. For the input of full resolution, on a single 2080Ti GPU without hardware acceleration, DDRNet-23-slim yields 77.4<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> mIoU at 102 FPS on Cityscapes test set and 74.7<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> mIoU at 230 FPS on CamVid test set. With widely used test augmentation, our method is superior to most state-of-the-art models and requires much less computation. Codes and trained models are available at https://github.com/ydhongHIT/DDRNet.
AbstractList Using light-weight architectures or reasoning on low-resolution images, recent methods realize very fast scene parsing, even running at more than 100 FPS on a single GPU. However, there is still a significant gap in performance between these real-time methods and the models based on dilation backbones. To this end, we proposed a family of deep dual-resolution networks (DDRNets) for real-time and accurate semantic segmentation, which consist of deep dual-resolution backbones and enhanced low-resolution contextual information extractors. The two deep branches and multiple bilateral fusions of backbones generate higher quality details compared to existing two-pathway methods. The enhanced contextual information extractor named Deep Aggregation Pyramid Pooling Module (DAPPM) enlarges effective receptive fields and fuses multi-scale context based on low-resolution feature maps with little time cost. Our method achieves a new state-of-the-art trade-off between accuracy and speed on both Cityscapes and CamVid dataset. For the input of full resolution, on a single 2080Ti GPU without hardware acceleration, DDRNet-23-slim yields 77.4% mIoU at 102 FPS on Cityscapes test set and 74.7% mIoU at 230 FPS on CamVid test set. With widely used test augmentation, our method is superior to most state-of-the-art models and requires much less computation. Codes and trained models are available at https://github.com/ydhongHIT/DDRNet .
Using light-weight architectures or reasoning on low-resolution images, recent methods realize very fast scene parsing, even running at more than 100 FPS on a single GPU. However, there is still a significant gap in performance between these real-time methods and the models based on dilation backbones. To this end, we proposed a family of deep dual-resolution networks (DDRNets) for real-time and accurate semantic segmentation, which consist of deep dual-resolution backbones and enhanced low-resolution contextual information extractors. The two deep branches and multiple bilateral fusions of backbones generate higher quality details compared to existing two-pathway methods. The enhanced contextual information extractor named Deep Aggregation Pyramid Pooling Module (DAPPM) enlarges effective receptive fields and fuses multi-scale context based on low-resolution feature maps with little time cost. Our method achieves a new state-of-the-art trade-off between accuracy and speed on both Cityscapes and CamVid dataset. For the input of full resolution, on a single 2080Ti GPU without hardware acceleration, DDRNet-23-slim yields 77.4<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> mIoU at 102 FPS on Cityscapes test set and 74.7<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> mIoU at 230 FPS on CamVid test set. With widely used test augmentation, our method is superior to most state-of-the-art models and requires much less computation. Codes and trained models are available at https://github.com/ydhongHIT/DDRNet.
Author Jia, Yisong
Pan, Huihui
Sun, Weichao
Hong, Yuanduo
Author_xml – sequence: 1
  givenname: Huihui
  orcidid: 0000-0002-8931-1774
  surname: Pan
  fullname: Pan, Huihui
  organization: Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Yuanduo
  orcidid: 0000-0002-8684-6765
  surname: Hong
  fullname: Hong, Yuanduo
  organization: Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Weichao
  orcidid: 0000-0001-6837-3821
  surname: Sun
  fullname: Sun, Weichao
  organization: Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Yisong
  surname: Jia
  fullname: Jia, Yisong
  organization: Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, China
BookMark eNp9kE9PwzAMxSMEEtvgAyAulTh3OGm7Jsdp48-kCaStnEuaOqijS0bSCvHtaenEgQMnW7Z_fnpvTE6NNUjIFYUppSBus1W2nTJgbBoxxiFmJ2REk4SHAHR22vcsDgUkcE7G3u-6aZxQOiKvS8RDsGxlHW7Q27ptKmuCJ2w-rXv3gbYu2GC3zKo9BtKUwVyp1skGgy3upWkq1TVvezSN_CGtDjInte7nCg36C3KmZe3x8lgn5OX-Lls8huvnh9Vivg4VE1ET8gR4IqI4lQUkJecslppDkTI9g4gVKi4LyhhIJbVEiESJkKYlsAIw0lqxaEJuhr8HZz9a9E2-s60znWTOUg6Cp53l7ooOV8pZ7x3q_OCqvXRfOYW8DzLvg8z7IPNjkB2T_mFUNbhtnKzqf8nrgawQ8VdJCDHrPEffziSCWw
CODEN ITISFG
CitedBy_id crossref_primary_10_3390_sym16111477
crossref_primary_10_1109_TGRS_2024_3376389
crossref_primary_10_1109_TIFS_2024_3403507
crossref_primary_10_1109_TIV_2024_3360418
crossref_primary_10_4218_etrij_2023_0017
crossref_primary_10_1016_j_engappai_2024_108269
crossref_primary_10_11648_j_ijdst_20241003_12
crossref_primary_10_1016_j_bspc_2024_106057
crossref_primary_10_1016_j_compag_2025_110124
crossref_primary_10_1016_j_engappai_2024_108309
crossref_primary_10_1016_j_engappai_2023_107736
crossref_primary_10_1109_JSEN_2024_3363690
crossref_primary_10_1016_j_compeleceng_2024_109996
crossref_primary_10_1016_j_engappai_2024_109881
crossref_primary_10_1109_TAI_2023_3299899
crossref_primary_10_1109_TGRS_2024_3503589
crossref_primary_10_1109_TVT_2023_3303630
crossref_primary_10_1049_ipr2_12846
crossref_primary_10_1109_JSEN_2024_3506831
crossref_primary_10_1109_TSMC_2024_3377280
crossref_primary_10_1016_j_eswa_2024_125465
crossref_primary_10_1016_j_jag_2024_104347
crossref_primary_10_1109_ACCESS_2024_3350432
crossref_primary_10_1016_j_inffus_2024_102401
crossref_primary_10_1109_TIP_2023_3318967
crossref_primary_10_1016_j_dsp_2025_105148
crossref_primary_10_1007_s00371_024_03287_5
crossref_primary_10_1016_j_aquaculture_2023_740144
crossref_primary_10_1117_1_JEI_33_3_033015
crossref_primary_10_1109_TITS_2024_3496538
crossref_primary_10_1016_j_media_2025_103470
crossref_primary_10_1109_TCSVT_2024_3456097
crossref_primary_10_1088_1402_4896_ad8b7d
crossref_primary_10_1016_j_jksuci_2024_102226
crossref_primary_10_1109_JIOT_2024_3403174
crossref_primary_10_11834_jig_230605
crossref_primary_10_1007_s11554_024_01453_5
crossref_primary_10_1088_1361_6501_ad9106
crossref_primary_10_1109_JSEN_2023_3346470
crossref_primary_10_1063_5_0230117
crossref_primary_10_1109_JSTARS_2024_3378695
crossref_primary_10_1109_TASE_2023_3310335
crossref_primary_10_3390_app14167291
crossref_primary_10_1109_TITS_2024_3397509
crossref_primary_10_1109_ACCESS_2024_3510746
crossref_primary_10_3390_s23136008
crossref_primary_10_3390_app14177706
crossref_primary_10_1002_int_22804
crossref_primary_10_1109_TGRS_2024_3368659
crossref_primary_10_1109_TITS_2024_3398037
crossref_primary_10_1186_s13677_024_00637_5
crossref_primary_10_1109_JSTARS_2024_3439267
crossref_primary_10_3390_s24165330
crossref_primary_10_1109_TCSVT_2023_3325360
crossref_primary_10_3390_su17062640
crossref_primary_10_1007_s11042_023_17664_0
crossref_primary_10_1007_s10489_025_06309_4
crossref_primary_10_1109_TIM_2024_3413168
crossref_primary_10_1007_s10845_023_02205_1
crossref_primary_10_1080_23248378_2024_2382117
crossref_primary_10_1109_TITS_2024_3510551
crossref_primary_10_1007_s10489_024_06146_x
crossref_primary_10_1016_j_engappai_2024_109016
crossref_primary_10_1016_j_neucom_2025_129442
crossref_primary_10_1109_TPAMI_2024_3386971
crossref_primary_10_1109_JSTARS_2025_3534285
crossref_primary_10_1109_TITS_2024_3431537
crossref_primary_10_1016_j_eswa_2024_124586
crossref_primary_10_1109_TITS_2023_3330498
crossref_primary_10_1109_TIM_2023_3334368
crossref_primary_10_3390_en17246404
crossref_primary_10_1109_TITS_2024_3383405
crossref_primary_10_1007_s00371_024_03416_0
crossref_primary_10_1016_j_cag_2023_12_015
crossref_primary_10_1016_j_engappai_2025_110386
crossref_primary_10_1109_JSEN_2024_3452114
crossref_primary_10_1016_j_neunet_2023_09_031
crossref_primary_10_3390_s24247933
crossref_primary_10_7717_peerj_cs_1751
crossref_primary_10_1109_TIV_2023_3273620
crossref_primary_10_3390_s23135977
crossref_primary_10_1016_j_knosys_2025_113293
crossref_primary_10_1109_ACCESS_2025_3534117
crossref_primary_10_1109_TITS_2024_3413675
crossref_primary_10_1109_TIM_2025_3542875
crossref_primary_10_3390_s23125386
crossref_primary_10_1007_s12559_025_10407_3
crossref_primary_10_3390_drones7090574
crossref_primary_10_1109_TITS_2023_3348631
crossref_primary_10_1109_TIV_2024_3363830
crossref_primary_10_3389_frai_2024_1452563
crossref_primary_10_3390_s23135982
crossref_primary_10_1109_TIM_2025_3533639
crossref_primary_10_1016_j_jag_2025_104361
crossref_primary_10_1016_j_compeleceng_2024_110045
crossref_primary_10_1007_s11554_024_01602_w
crossref_primary_10_1109_TIM_2024_3500045
crossref_primary_10_3390_s24061826
crossref_primary_10_1080_01431161_2023_2274820
crossref_primary_10_1109_TGRS_2025_3532960
crossref_primary_10_3390_electronics13173361
crossref_primary_10_3390_math12111673
crossref_primary_10_3390_app131810102
crossref_primary_10_1016_j_imavis_2025_105483
crossref_primary_10_1109_TGRS_2024_3417398
crossref_primary_10_1109_TITS_2024_3412432
crossref_primary_10_1016_j_eswa_2024_123156
crossref_primary_10_1109_TGRS_2024_3432397
crossref_primary_10_1109_JSEN_2024_3400817
crossref_primary_10_1016_j_measurement_2025_116700
crossref_primary_10_1109_TIM_2024_3415777
crossref_primary_10_1007_s00371_025_03853_5
crossref_primary_10_1016_j_jvcir_2024_104217
crossref_primary_10_1007_s12559_023_10206_8
crossref_primary_10_1109_JSEN_2024_3383233
crossref_primary_10_1109_TITS_2024_3454274
crossref_primary_10_1109_TIM_2023_3328708
crossref_primary_10_1109_TITS_2024_3404654
crossref_primary_10_1109_TIM_2024_3427806
crossref_primary_10_1016_j_neucom_2025_129655
crossref_primary_10_1109_TCE_2024_3377377
crossref_primary_10_1109_TIM_2024_3387500
crossref_primary_10_11834_jig_230659
crossref_primary_10_3390_sym16111449
crossref_primary_10_1007_s13177_024_00434_z
crossref_primary_10_1016_j_eswa_2023_122386
crossref_primary_10_1109_TIM_2025_3545502
crossref_primary_10_1109_TBDATA_2024_3423719
crossref_primary_10_3390_drones9010030
crossref_primary_10_1109_JSTARS_2024_3369660
crossref_primary_10_1109_TIM_2024_3522705
crossref_primary_10_1016_j_eswa_2024_125964
crossref_primary_10_1016_j_conengprac_2023_105620
crossref_primary_10_1109_ACCESS_2024_3359425
crossref_primary_10_1117_1_JEI_32_4_043031
crossref_primary_10_3390_electronics14061109
crossref_primary_10_1016_j_autcon_2023_105112
crossref_primary_10_1109_TII_2023_3233975
crossref_primary_10_1109_TIM_2025_3547130
crossref_primary_10_3390_app13148130
crossref_primary_10_1007_s10489_024_05743_0
crossref_primary_10_1016_j_neucom_2025_129489
crossref_primary_10_1007_s00371_025_03839_3
crossref_primary_10_1109_TGRS_2024_3373493
crossref_primary_10_1109_TITS_2025_3525772
crossref_primary_10_1007_s11760_025_03908_z
Cites_doi 10.1109/TITS.2017.2750080
10.1109/CVPR.2019.00975
10.1109/ICRA48506.2021.9560977
10.1109/TPAMI.2017.2737535
10.1109/LRA.2020.3039744
10.1109/CVPR.2019.00271
10.1109/ICCV48922.2021.00717
10.1109/TITS.2021.3139001
10.1109/CVPR.2018.00929
10.1109/CVPR46437.2021.00681
10.1109/TITS.2018.2801309
10.1007/978-3-030-01219-9_25
10.1109/TPAMI.2016.2644615
10.1109/TITS.2022.3161141
10.1109/ijcnn52387.2021.9533819
10.1109/CVPR.2019.01191
10.1109/CVPR46437.2021.00959
10.1109/CVPR42600.2020.00426
10.1109/TPAMI.2017.2699184
10.1109/CVPR.2019.00326
10.1109/tpami.2020.3007032
10.48550/arXiv.1909.11065
10.1007/s11263-021-01515-2
10.1109/TPAMI.2019.2938758
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2018.00388
10.1109/CVPR.2018.00716
10.1109/TITS.2019.2962094
10.1109/CVPR.2018.00199
10.1109/CVPR.2015.7298965
10.48550/arXiv.1802.02611
10.1109/CVPR.2019.01289
10.1109/TITS.2020.3044672
10.48550/ARXIV.1604.01685
10.48550/ARXIV.1412.7062
10.1109/ICCV.2019.00140
10.1007/s11263-015-0816-y
10.1016/j.patcog.2019.01.006
10.1007/978-3-030-58452-8_45
10.1007/978-3-030-01240-3_17
10.1109/CVPR46437.2021.00405
10.1109/TPAMI.2020.2983686
10.1109/CVPR.2018.00106
10.1109/CVPR.2010.5539957
10.1007/978-3-030-01249-6_34
10.1007/s11263-021-01465-9
10.1109/CVPR.2016.89
10.1109/CVPR52688.2022.01177
10.1109/TITS.2020.2980426
10.1109/CVPR.2017.660
10.1016/j.patrec.2008.04.005
10.1109/ICCV.2017.224
10.1109/CVPR.2018.00474
10.1609/aaai.v32i1.12301
10.1109/CVPR.2016.90
10.1109/CVPR.2017.195
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3228042
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 13
ExternalDocumentID 10_1109_TITS_2022_3228042
9996293
Genre orig-research
GrantInformation_xml – fundername: Post-Doctoral Science Foundation
  grantid: 2019T120270; LBH-TZ2111
– fundername: National Natural Science Foundation of China
  grantid: U1964201; 62173108; 62022031
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: Major Scientific and Technological Special Project of Heilongjiang Province
  grantid: 2021ZX05A01
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
ZY4
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-850859347ab05d8824af80b72f6032bc4db1220acafae039de077d02b0e3ffc23
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Sun Jun 29 16:35:51 EDT 2025
Wed Oct 01 05:03:16 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
Wed Aug 27 02:29:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-850859347ab05d8824af80b72f6032bc4db1220acafae039de077d02b0e3ffc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6837-3821
0000-0002-8684-6765
0000-0002-8931-1774
PQID 2780987014
PQPubID 75735
PageCount 13
ParticipantIDs ieee_primary_9996293
proquest_journals_2780987014
crossref_primary_10_1109_TITS_2022_3228042
crossref_citationtrail_10_1109_TITS_2022_3228042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref56
ref15
ref59
ref14
ref53
ref11
ref55
ref10
ref54
Liu (ref27) 2022
ref17
ref16
Howard (ref40) 2017
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Treml (ref52); 2
ref49
ref8
Xie (ref31); 34
ref7
ref4
ref3
ref6
ref5
Paszke (ref12) 2016
ref35
ref34
ref37
Sun (ref29) 2019
ref30
ref33
ref32
Chen (ref58)
Poudel (ref19)
ref2
ref1
ref39
ref38
Tan (ref61)
ref24
ref23
ref67
ref26
ref25
ref20
ref64
Si (ref36) 2019
ref63
ref22
ref66
ref21
ref65
ref28
ref60
Chen (ref9) 2017
ref62
References_xml – ident: ref5
  doi: 10.1109/TITS.2017.2750080
– ident: ref17
  doi: 10.1109/CVPR.2019.00975
– ident: ref38
  doi: 10.1109/ICRA48506.2021.9560977
– ident: ref1
  doi: 10.1109/TPAMI.2017.2737535
– ident: ref21
  doi: 10.1109/LRA.2020.3039744
– ident: ref25
  doi: 10.1109/CVPR.2019.00271
– ident: ref34
  doi: 10.1109/ICCV48922.2021.00717
– start-page: 6105
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref61
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– ident: ref26
  doi: 10.1109/TITS.2021.3139001
– ident: ref59
  doi: 10.1109/CVPR.2018.00929
– ident: ref33
  doi: 10.1109/CVPR46437.2021.00681
– volume-title: arXiv:1704.04861
  year: 2017
  ident: ref40
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
– volume: 34
  start-page: 12077
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref31
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
– ident: ref2
  doi: 10.1109/TITS.2018.2801309
– ident: ref13
  doi: 10.1007/978-3-030-01219-9_25
– ident: ref51
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref32
  doi: 10.1109/TITS.2022.3161141
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref58
  article-title: FasterSeg: Searching for faster real-time semantic segmentation
– ident: ref18
  doi: 10.1109/ijcnn52387.2021.9533819
– ident: ref53
  doi: 10.1109/CVPR.2019.01191
– ident: ref24
  doi: 10.1109/CVPR46437.2021.00959
– volume-title: arXiv:1911.07217
  year: 2019
  ident: ref36
  article-title: Real-time semantic segmentation via multiply spatial fusion network
– ident: ref54
  doi: 10.1109/CVPR42600.2020.00426
– ident: ref8
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref44
  doi: 10.1109/CVPR.2019.00326
– ident: ref46
  doi: 10.1109/tpami.2020.3007032
– ident: ref67
  doi: 10.48550/arXiv.1909.11065
– ident: ref23
  doi: 10.1007/s11263-021-01515-2
– volume: 2
  start-page: 1
  volume-title: Proc. 29th Conf. Neural Inf. Process. Syst.
  ident: ref52
  article-title: Speeding up semantic segmentation for autonomous driving
– ident: ref47
  doi: 10.1109/TPAMI.2019.2938758
– ident: ref60
  doi: 10.1007/978-3-319-24574-4_28
– volume-title: arXiv:1904.04514
  year: 2019
  ident: ref29
  article-title: High-resolution representations for labeling pixels and regions
– ident: ref11
  doi: 10.1109/CVPR.2018.00388
– ident: ref41
  doi: 10.1109/CVPR.2018.00716
– ident: ref16
  doi: 10.1109/TITS.2019.2962094
– ident: ref65
  doi: 10.1109/CVPR.2018.00199
– volume-title: arXiv:1606.02147
  year: 2016
  ident: ref12
  article-title: ENet: A deep neural network architecture for real-time semantic segmentation
– ident: ref6
  doi: 10.1109/CVPR.2015.7298965
– ident: ref28
  doi: 10.48550/arXiv.1802.02611
– start-page: 1
  volume-title: Proc. Brit. Mach. Vis. Conf.
  ident: ref19
  article-title: Fast-SCNN: Fast semantic segmentation network
– ident: ref20
  doi: 10.1109/CVPR.2019.01289
– ident: ref15
  doi: 10.1109/TITS.2020.3044672
– ident: ref48
  doi: 10.48550/ARXIV.1604.01685
– ident: ref7
  doi: 10.48550/ARXIV.1412.7062
– ident: ref39
  doi: 10.1109/ICCV.2019.00140
– ident: ref50
  doi: 10.1007/s11263-015-0816-y
– ident: ref64
  doi: 10.1016/j.patcog.2019.01.006
– ident: ref22
  doi: 10.1007/978-3-030-58452-8_45
– ident: ref66
  doi: 10.1007/978-3-030-01240-3_17
– ident: ref55
  doi: 10.1109/CVPR46437.2021.00405
– ident: ref56
  doi: 10.1109/TPAMI.2020.2983686
– ident: ref63
  doi: 10.1109/CVPR.2018.00106
– volume-title: arXiv:2202.13393
  year: 2022
  ident: ref27
  article-title: TransKD: Transformer knowledge distillation for efficient semantic segmentation
– ident: ref35
  doi: 10.1109/CVPR.2010.5539957
– volume-title: arXiv:1706.05587
  year: 2017
  ident: ref9
  article-title: Rethinking atrous convolution for semantic image segmentation
– ident: ref14
  doi: 10.1007/978-3-030-01249-6_34
– ident: ref45
  doi: 10.1007/s11263-021-01465-9
– ident: ref57
  doi: 10.1109/CVPR.2016.89
– ident: ref37
  doi: 10.1109/CVPR52688.2022.01177
– ident: ref3
  doi: 10.1109/TITS.2020.2980426
– ident: ref10
  doi: 10.1109/CVPR.2017.660
– ident: ref49
  doi: 10.1016/j.patrec.2008.04.005
– ident: ref62
  doi: 10.1109/ICCV.2017.224
– ident: ref43
  doi: 10.1109/CVPR.2018.00474
– ident: ref4
  doi: 10.1609/aaai.v32i1.12301
– ident: ref30
  doi: 10.1109/CVPR.2016.90
– ident: ref42
  doi: 10.1109/CVPR.2017.195
SSID ssj0014511
Score 2.7144682
Snippet Using light-weight architectures or reasoning on low-resolution images, recent methods realize very fast scene parsing, even running at more than 100 FPS on a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Acceleration
autonomous driving
Computer architecture
Data mining
deep convolutional neural networks
Feature extraction
Feature maps
Image resolution
Image segmentation
Real time
Real-time systems
Semantic segmentation
Semantics
Task analysis
Test sets
Weight reduction
Title Deep Dual-Resolution Networks for Real-Time and Accurate Semantic Segmentation of Traffic Scenes
URI https://ieeexplore.ieee.org/document/9996293
https://www.proquest.com/docview/2780987014
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB3BntpDKaVVl1LkQ08ILxPHiZPjCopoJTh0F4lb6o9JhQpZVDaX_vp6kuyKtghx88GWRnr2zLM98wbgk824W7RNJEf3eEFxJG2iSaLxtqAix9JxcfL5RX52qb9eZVcbcLiuhSGiLvmMJjzs_vLDwrf8VHbE5DyGp03YNEXe12qtfwxYZ6vTRlValpitfjATLI_mX-azeBNUapKy-ItWf8WgrqnKf564Cy-nW3C-MqzPKvk5aZdu4n__o9n4XMtfw6uBZ4ppvzG2YYOaN_DygfrgDnw_IboTJ629kfyI329BcdHnhd-LyGbFt0gjJVeJCNsEMfW-ZWUJMaPbCMi1j4Mft0PxUiMWtYiRjyUpxMyzC30Ll6ef58dncmi4IH00bimLrJM_08Y6zELk3trWBTqj6hxT5bwOLlEKrbe1JUzLQGhMQOWQ0rr2Kn0Ho2bR0HsQaVGr4A1RHkgbnzmKvKBGbX30AS7gGHAFQeUHNXJuinFTdbcSLCtGrWLUqgG1MRysl9z1UhxPTd5hFNYTBwDGsLfCuRoO632lTIFl9FuJ3n181Qd4wV3m-9SzPRgtf7X0MXKRpdvvNuEfmtHaoQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1Remg5QIFWLKWtD5wQXiaOs0mOCIqWwu6BXSRuqT8mVVXIorK59NfXk2RXlKKqNx9saaRnzzzbM28A9k3C3aJNJDm6hwuKJWkiTRJTZzLKBphbLk4ejQfDa_3lJrlZgcNlLQwRNcln1Odh85fvZ67mp7IjJuchPL2Al4nWOmmrtZZ_Bqy01aijKi1zTBZ_mBHmR9Pz6STcBZXqxyz_otUfUahpq_KXL24CzNkGjBamtXklP_r13Pbdryeqjf9r-xtY75imOG63xiasULUFa4_0B7fh6ynRvTitza3kZ_x2E4pxmxn-IAKfFVeBSEquExGm8uLYuZq1JcSE7gIk310YfLvrypcqMStFiH0sSiEmjp3oW7g--zw9Gcqu5YJ0wbi5zJJGAE2nxmLiA_vWpszQpqocYKys095GSqFxpjSEce4J09SjskhxWToVv4PValbRDog4K5V3KdHAk05dYikwgxK1ccELWI89wAUEhev0yLktxm3R3EswLxi1glErOtR6cLBcct-Kcfxr8jajsJzYAdCDvQXORXdcHwqVZpgHzxXp3edXfYJXw-nosrg8H1-8h9fcc75NRNuD1fnPmj4EZjK3H5sN-Rs15d3u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Dual-Resolution+Networks+for+Real-Time+and+Accurate+Semantic+Segmentation+of+Traffic+Scenes&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Pan%2C+Huihui&rft.au=Hong%2C+Yuanduo&rft.au=Sun%2C+Weichao&rft.au=Jia%2C+Yisong&rft.date=2023-03-01&rft.pub=IEEE&rft.issn=1524-9050&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTITS.2022.3228042&rft.externalDocID=9996293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon