Functional Link Neural Network Learning for Response Prediction of Tall Shear Buildings With Respect to Earthquake Data
This paper proposes the application of functional link neural networks (FLNNs) for structural response prediction of tall buildings due to seismic loads. The ground acceleration data are taken as input, and structural responses of different floors of multistorey shear buildings are considered as out...
Saved in:
| Published in | IEEE transactions on systems, man, and cybernetics. Systems Vol. 48; no. 1; pp. 1 - 10 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2216 2168-2232 |
| DOI | 10.1109/TSMC.2017.2700334 |
Cover
| Abstract | This paper proposes the application of functional link neural networks (FLNNs) for structural response prediction of tall buildings due to seismic loads. The ground acceleration data are taken as input, and structural responses of different floors of multistorey shear buildings are considered as output. It is worth mentioning that handling of large earthquake data has become a great challenge in the design of tall structures viz., that of shear buildings. As such, here, a functional expansion block in FLNN has been used along with efficient Chebyshev and Legendre polynomials. Training is done with one earthquake data set, and testing is done with different intensities of other earthquake data sets; and it is seen that FLNN can very well predict the structural response of different floors of multistorey shear buildings subject to earthquake data. Results of the FLNN are compared with a multilayer neural network (MNN), and it is found that the FLNN gives better accuracy and takes less computation time compared to MNN, which shows the computational efficiency of FLNN over MNN. Numerical examples of two-, five-, and ten-storey buildings are considered, and corresponding results are presented in the form of tables and plots. |
|---|---|
| AbstractList | This paper proposes the application of functional link neural networks (FLNNs) for structural response prediction of tall buildings due to seismic loads. The ground acceleration data are taken as input, and structural responses of different floors of multistorey shear buildings are considered as output. It is worth mentioning that handling of large earthquake data has become a great challenge in the design of tall structures viz., that of shear buildings. As such, here, a functional expansion block in FLNN has been used along with efficient Chebyshev and Legendre polynomials. Training is done with one earthquake data set, and testing is done with different intensities of other earthquake data sets; and it is seen that FLNN can very well predict the structural response of different floors of multistorey shear buildings subject to earthquake data. Results of the FLNN are compared with a multilayer neural network (MNN), and it is found that the FLNN gives better accuracy and takes less computation time compared to MNN, which shows the computational efficiency of FLNN over MNN. Numerical examples of two-, five-, and ten-storey buildings are considered, and corresponding results are presented in the form of tables and plots. |
| Author | Sahoo, Deepti Moyi Chakraverty, Snehashish |
| Author_xml | – sequence: 1 givenname: Deepti Moyi surname: Sahoo fullname: Sahoo, Deepti Moyi email: deeptisahoo.sahoo046@gmail.com organization: Dept. of Math., Nat. Inst. of Technol. Rourkela, Rourkela, India – sequence: 2 givenname: Snehashish surname: Chakraverty fullname: Chakraverty, Snehashish email: sne_chak@yahoo.com organization: Dept. of Math., Nat. Inst. of Technol. Rourkela, Rourkela, India |
| BookMark | eNp9kE1PwkAQhjcGExH5AcbLJp6L-9GvPSqCmlQ0gvHYbNupLNQu7G5D_Pe2YDh48DRvJs8zybznqFfrGhC6pGREKRE3i_nzeMQIjUYsIoRz_wT1GQ1jjzHOesdMwzM0tHZFCKEsDjkJ-2g3bercKV3LCieqXuMZNKbNM3A7bdY4AWlqVX_iUhv8Bnajawv41UCh9hrWJV7IqsLzZUviu0ZVRYtb_KHcci9A7rDTeCKNW24buQZ8L528QKelrCwMf-cAvU8ni_Gjl7w8PI1vEy9ngjsvkgEvCij9LAtDIrgI_DyOKAsIRAICzjiEWQw-o5KXtF1BIf1SCMYySopC8AG6PtzdGL1twLp0pRvTfmtTRiM_CLgveEtFByo32loDZZorJ7v_nJGqSilJu6LTrui0Kzr9Lbo16R9zY9SXNN__OlcHRwHAkY-ECEgc8B9ZHos5 |
| CODEN | ITSMFE |
| CitedBy_id | crossref_primary_10_1002_eqe_3899 crossref_primary_10_1007_s00500_023_09207_4 crossref_primary_10_1109_JIOT_2020_2989761 crossref_primary_10_1016_j_engstruct_2025_119913 crossref_primary_10_1109_TNNLS_2023_3321434 crossref_primary_10_1016_j_engstruct_2024_118702 crossref_primary_10_1109_JIOT_2023_3272535 crossref_primary_10_1016_j_compstruc_2023_106991 crossref_primary_10_1109_ACCESS_2023_3279275 crossref_primary_10_1177_8755293020919419 crossref_primary_10_1109_TII_2022_3162855 crossref_primary_10_1007_s40815_021_01075_0 crossref_primary_10_1177_14759217231160271 crossref_primary_10_1109_TSMC_2020_3048696 crossref_primary_10_1177_15589250211037978 crossref_primary_10_1007_s11042_020_09972_6 crossref_primary_10_1016_j_compbiomed_2019_103348 crossref_primary_10_1016_j_autcon_2022_104225 crossref_primary_10_3390_app13052956 crossref_primary_10_1002_widm_1461 crossref_primary_10_1002_eng2_13025 crossref_primary_10_1016_j_compstruc_2025_107719 crossref_primary_10_1016_j_measurement_2021_109313 crossref_primary_10_1109_TPEL_2020_3016709 crossref_primary_10_1016_j_ins_2021_04_057 crossref_primary_10_1109_TPEL_2019_2906664 crossref_primary_10_1016_j_jsv_2019_115109 crossref_primary_10_1109_JIOT_2024_3394263 |
| Cites_doi | 10.1109/TSMC.2015.2478885 10.1016/0045-7949(94)00377-F 10.1007/s00521-009-0288-5 10.1109/ICCES.2012.6408490 10.1007/s00521-009-0279-6 10.1109/IJCNN.2010.5596904 10.1061/(ASCE)1076-0342(1998)4:3(93) 10.1109/CCCM.2009.5267944 10.1002/eqe.219 10.1109/ICICES.2013.6508166 10.1007/s00521-015-2101-y 10.1109/TNN.2005.851786 10.1016/j.sigpro.2009.05.004 10.1080/15325008.2014.1003157 10.20965/jaciii.2014.p0701 10.1109/TSMC.2015.2470635 10.1061/(ASCE)0733-9399(2000)126:7(666) 10.1109/TSMC.2016.2557218 10.1016/j.asoc.2012.10.014 10.1109/SPIN.2015.7095331 10.3844/jcssp.2007.948.955 10.1155/2011/831261 10.1109/21.299703 10.1109/TSMCB.2002.1018769 10.1080/18756891.2015.1099910 10.4304/jcp.7.5.1163-1168 10.1016/j.neucom.2014.07.036 10.1155/2016/6304915 10.1109/3477.752797 10.1109/21.278989 10.1007/978-3-319-33747-0_21 10.1109/TSP.2003.819005 10.1109/ICSMC.2008.4811554 10.1016/j.knosys.2013.06.011 10.1080/00038628.2013.841091 10.1109/21.199461 10.1016/j.asoc.2005.08.001 10.4028/www.scientific.net/AMM.263-266.2102 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1109/TSMC.2017.2700334 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-2232 |
| EndPage | 10 |
| ExternalDocumentID | 10_1109_TSMC_2017_2700334 7995085 |
| Genre | orig-research |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c293t-7a53ddef4bb66093954c871250e79e5323e6b8e421a3f179eeda4f9922b10dd93 |
| IEDL.DBID | RIE |
| ISSN | 2168-2216 |
| IngestDate | Mon Jun 30 05:44:53 EDT 2025 Wed Oct 01 03:10:13 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Tue Aug 26 17:01:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-7a53ddef4bb66093954c871250e79e5323e6b8e421a3f179eeda4f9922b10dd93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4857-644X |
| PQID | 2174553493 |
| PQPubID | 75739 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_7995085 proquest_journals_2174553493 crossref_citationtrail_10_1109_TSMC_2017_2700334 crossref_primary_10_1109_TSMC_2017_2700334 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jan. 2018-1-00 20180101 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
| PublicationTitleAbbrev | TSMC |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 chakraverty (ref46) 2009 ref17 nanda (ref35) 2011 ref16 ref19 ref18 ref45 bhat (ref48) 2011 ref42 ref44 ref43 ref8 niksarlioglu (ref14) 2013; 7 ref7 ref9 ref4 ref3 ref6 ref5 ref40 mathur (ref10) 2004; 11 ref34 ref37 ref36 ref31 ref30 ref33 ref32 mall (ref41) 2015; 247 ref2 ref1 ref39 yuan (ref38) 2013 ref24 ref23 ref26 ref25 pao (ref20) 1989 ref22 ref21 ref28 ref27 ref29 chakraverty (ref11) 2006; 7 zurada (ref49) 1994 gerald (ref47) 2004 |
| References_xml | – ident: ref5 doi: 10.1109/TSMC.2015.2478885 – ident: ref6 doi: 10.1016/0045-7949(94)00377-F – start-page: 1 year: 2011 ident: ref48 publication-title: Numerical Analysis in Engineering – ident: ref24 doi: 10.1007/s00521-009-0288-5 – ident: ref30 doi: 10.1109/ICCES.2012.6408490 – ident: ref12 doi: 10.1007/s00521-009-0279-6 – ident: ref27 doi: 10.1109/IJCNN.2010.5596904 – year: 1989 ident: ref20 publication-title: Adaptive Pattern Recognition and Neural Networks – ident: ref7 doi: 10.1061/(ASCE)1076-0342(1998)4:3(93) – ident: ref25 doi: 10.1109/CCCM.2009.5267944 – ident: ref9 doi: 10.1002/eqe.219 – ident: ref37 doi: 10.1109/ICICES.2013.6508166 – start-page: 1 year: 2011 ident: ref35 article-title: Application of Legendre neural network for air quality prediction publication-title: Proc 5th PSU-UNS Int Conf Eng Technol (ICET) – ident: ref19 doi: 10.1007/s00521-015-2101-y – start-page: 1 year: 2004 ident: ref47 publication-title: Applied Numerical Analysis – ident: ref33 doi: 10.1109/TNN.2005.851786 – ident: ref26 doi: 10.1016/j.sigpro.2009.05.004 – ident: ref39 doi: 10.1080/15325008.2014.1003157 – ident: ref16 doi: 10.20965/jaciii.2014.p0701 – ident: ref4 doi: 10.1109/TSMC.2015.2470635 – ident: ref8 doi: 10.1061/(ASCE)0733-9399(2000)126:7(666) – start-page: 1130 year: 2013 ident: ref38 article-title: Digital predistortion for RF power amplifiers based on enhanced orthonormal Hermite polynomial basis neural network publication-title: Proc Progr Electromagn Res Symp (PIERS) – ident: ref3 doi: 10.1109/TSMC.2016.2557218 – ident: ref13 doi: 10.1016/j.asoc.2012.10.014 – ident: ref42 doi: 10.1109/SPIN.2015.7095331 – volume: 7 start-page: 65 year: 2013 ident: ref14 article-title: An artificial neural network model for earthquake prediction and relations between environmental parameters and earthquakes publication-title: Environment International Journal – volume: 11 start-page: 99 year: 2004 ident: ref10 article-title: Response prediction of typical rural house subject to earthquake motions using artificial neural network publication-title: J Indian Build Congr – ident: ref34 doi: 10.3844/jcssp.2007.948.955 – ident: ref28 doi: 10.1155/2011/831261 – volume: 247 start-page: 100 year: 2015 ident: ref41 article-title: Chebyshev neural network based model for solving Lane-Emden type equations publication-title: Appl Math Comput – volume: 7 start-page: 301 year: 2006 ident: ref11 article-title: Response prediction of structural system subject to earthquake motions using artificial neural network publication-title: Asian J Civil Eng – ident: ref2 doi: 10.1109/21.299703 – ident: ref22 doi: 10.1109/TSMCB.2002.1018769 – ident: ref43 doi: 10.1080/18756891.2015.1099910 – ident: ref36 doi: 10.4304/jcp.7.5.1163-1168 – ident: ref40 doi: 10.1016/j.neucom.2014.07.036 – ident: ref45 doi: 10.1155/2016/6304915 – ident: ref31 doi: 10.1109/3477.752797 – ident: ref17 doi: 10.1109/21.278989 – ident: ref44 doi: 10.1007/978-3-319-33747-0_21 – ident: ref32 doi: 10.1109/TSP.2003.819005 – ident: ref21 doi: 10.1109/ICSMC.2008.4811554 – ident: ref15 doi: 10.1016/j.knosys.2013.06.011 – ident: ref18 doi: 10.1080/00038628.2013.841091 – ident: ref1 doi: 10.1109/21.199461 – ident: ref23 doi: 10.1016/j.asoc.2005.08.001 – ident: ref29 doi: 10.4028/www.scientific.net/AMM.263-266.2102 – start-page: 1 year: 1994 ident: ref49 publication-title: Introduction to Artificial Neural Systems – start-page: 1 year: 2009 ident: ref46 publication-title: Vibration of plates |
| SSID | ssj0001286306 |
| Score | 2.247106 |
| Snippet | This paper proposes the application of functional link neural networks (FLNNs) for structural response prediction of tall buildings due to seismic loads. The... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Acceleration Aseismic buildings Buildings Chebyshev approximation Computing time Earthquake Earthquake prediction Earthquakes Floors functional link neural network (FLNN) Multi-layer neural network multilayer neural network (MNN) Multilayers multistorey shear buildings Multistory buildings Neural networks Polynomials response Seismic engineering Shear structure Tall buildings Training |
| Title | Functional Link Neural Network Learning for Response Prediction of Tall Shear Buildings With Respect to Earthquake Data |
| URI | https://ieeexplore.ieee.org/document/7995085 https://www.proquest.com/docview/2174553493 |
| Volume | 48 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2232 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286306 issn: 2168-2216 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx58i9UqOXgSt2Y3-8rRVxGhIlrR25LszlqxtGq3CP56J9m0-EK8LDlklsCXzCuTbwD2NBqifCm9nEvukYXgnioD5RU8jwsUpdT2hVznMj6_DS_uo_sZOJi-hUFEW3yGLTO0d_nFMB-bVNmhIS8jF2EWZpM0rt9qfcqnpLGwrTQDPybw6esuMX0uD7s3nRNTx5W0zEWrEOEXM2T7qvxQxtbCtJegM1lbXVjy1BpXupW_f6Nt_O_il2HRuZrsqN4bKzCDg1VY-ERAuAZvbTJrdTaQmaiUGa4OGl_WxeHMsa8-MHJt2XVdTovs6tXc7hgxNixZV_X7zDbGZseux_aI3T1WPStA-pRVQ3ZGO7T3MlZPyE5Vpdbhtn3WPTn3XCsGLyd_oPISFQlShGWodRxzKWQU5hRqkf-EicRIBAJjnWIY-EqUdMbJ8qqwNJy32udFIcUGzA2GA9wEhqQjVSrJEdRBqDSFVJFKFKZ-nooySJIG8AkyWe54yk27jH5m4xUuMwNmZsDMHJgN2J-KPNckHX9NXjPgTCc6XBrQnMCfuWM8yky8FkUilGLrd6ltmKd_p3VOpglz1esYd8hLqfSu3Z4fOj_i2g |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH7axgF22ICBKBvgAydEOie2k_jIxqoCa4Wg03aL7OSFolXtaFNN2l_Ps-NWAya0S-SDn2Lps98vP38P4K1FR5SvdVRyzSOyEDwydWKiipdphaLW1r-QGwzT_pn8fKEuNuD9-i0MIvriM-y6ob_Lr2bl0qXKDh15GbkIm_BASSlV-1rrVkYlT4VvppnEKcFP33CNGXN9OPo-OHaVXFnXXbUKIf8wRL6zyj_q2NuY3i4MVqtrS0suu8vGdsubv4gb77v8x7ATnE32od0dT2ADp09h-xYF4R5c98iwtflA5uJS5tg6aDxsy8NZ4F_9wci5Zd_aglpkX-fufseJsVnNRmYyYb41NjsKXbYX7PxnM_YCpFFZM2MntEfHv5bmEtlH05hncNY7GR33o9CMISrJI2iizChBqrCW1qYp10IrWVKwRR4UZhqVSASmNkeZxEbUdMrJ9hpZO9ZbG_Oq0uI5bE1nU3wBDElLmlyTK2gTaSwFVcpkBvO4zEWdZFkH-AqZogxM5a5hxqTwEQvXhQOzcGAWAcwOvFuLXLU0Hf-bvOfAWU8MuHTgYAV_EQ7yonARm1JCavHybqk38LA_GpwWp5-GX_bhEf0nbzM0B7DVzJf4inyWxr72W_U3Qn3mJw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Link+Neural+Network+Learning+for+Response+Prediction+of+Tall+Shear+Buildings+With+Respect+to+Earthquake+Data&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Deepti+Moyi+Sahoo&rft.au=Chakraverty%2C+Snehashish&rft.date=2018-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=48&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1109%2FTSMC.2017.2700334&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |