A CIE Color Purity Algorithm to Detect Black and Odorous Water in Urban Rivers Using High-Resolution Multispectral Remote Sensing Images

Urban black and odorous water (BOW) is a serious global environmental problem. Since these waters are often narrow rivers or small ponds, the detection of BOW waters using traditional satellite data and algorithms is limited both by a lack of spatial resolution and by imperfect retrieval algorithms....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 57; no. 9; pp. 6577 - 6590
Main Authors Shen, Qian, Yao, Yue, Li, Junsheng, Zhang, Fangfang, Wang, Shenglei, Wu, Yanhong, Ye, Huping, Zhang, Bing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2019.2907283

Cover

Abstract Urban black and odorous water (BOW) is a serious global environmental problem. Since these waters are often narrow rivers or small ponds, the detection of BOW waters using traditional satellite data and algorithms is limited both by a lack of spatial resolution and by imperfect retrieval algorithms. In this paper, we used the Chinese high-resolution remote sensing satellite Gaofen-2 (GF-2, 0.8 m). The atmospheric correction showed that the mean absolute percentage error of the derived remote sensing reflectance (<inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula>) in visible bands is 25.19%. We first measured <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> spectra of two classes of BOW [BOW with high concentrations of iron (II) sulfide, i.e., BOW1 and BOW with high concentrations of total suspended matter, i.e., BOW2] and ordinary water in Shenyang. Then, in situ <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> data were converted into <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> corresponding to the wide GF-2 bands using the spectral response functions. We used the converted <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> data to calculate several band combinations, including the baseline height, [<inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula>(green) <inline-formula> <tex-math notation="LaTeX">- R_{\mathrm {rs}} </tex-math></inline-formula>(red))/(<inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula>(green) <inline-formula> <tex-math notation="LaTeX">+ R_{\mathrm {rs}} </tex-math></inline-formula>(red)], and the color purity on a Commission Internationale de L'Eclairage (CIE) chromaticity diagram. The color purity was found to be the best index to extract BOW from ordinary water. Then, <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> (645) was applied to categorize BOW into BOW1 and BOW2. We applied the algorithm to two synchronous GF-2 images. The recognition accuracy of BOW2 and ordinary water are both 100%. The extracted river water type near Weishanhu Road was BOW1, which agreed well with ground truth. The algorithm was further applied to other GF-2 data for Shenyang and Beijing.
AbstractList Urban black and odorous water (BOW) is a serious global environmental problem. Since these waters are often narrow rivers or small ponds, the detection of BOW waters using traditional satellite data and algorithms is limited both by a lack of spatial resolution and by imperfect retrieval algorithms. In this paper, we used the Chinese high-resolution remote sensing satellite Gaofen-2 (GF-2, 0.8 m). The atmospheric correction showed that the mean absolute percentage error of the derived remote sensing reflectance (<inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula>) in visible bands is 25.19%. We first measured <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> spectra of two classes of BOW [BOW with high concentrations of iron (II) sulfide, i.e., BOW1 and BOW with high concentrations of total suspended matter, i.e., BOW2] and ordinary water in Shenyang. Then, in situ <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> data were converted into <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> corresponding to the wide GF-2 bands using the spectral response functions. We used the converted <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> data to calculate several band combinations, including the baseline height, [<inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula>(green) <inline-formula> <tex-math notation="LaTeX">- R_{\mathrm {rs}} </tex-math></inline-formula>(red))/(<inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula>(green) <inline-formula> <tex-math notation="LaTeX">+ R_{\mathrm {rs}} </tex-math></inline-formula>(red)], and the color purity on a Commission Internationale de L'Eclairage (CIE) chromaticity diagram. The color purity was found to be the best index to extract BOW from ordinary water. Then, <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> (645) was applied to categorize BOW into BOW1 and BOW2. We applied the algorithm to two synchronous GF-2 images. The recognition accuracy of BOW2 and ordinary water are both 100%. The extracted river water type near Weishanhu Road was BOW1, which agreed well with ground truth. The algorithm was further applied to other GF-2 data for Shenyang and Beijing.
Urban black and odorous water (BOW) is a serious global environmental problem. Since these waters are often narrow rivers or small ponds, the detection of BOW waters using traditional satellite data and algorithms is limited both by a lack of spatial resolution and by imperfect retrieval algorithms. In this paper, we used the Chinese high-resolution remote sensing satellite Gaofen-2 (GF-2, 0.8 m). The atmospheric correction showed that the mean absolute percentage error of the derived remote sensing reflectance ([Formula Omitted]) in visible bands is 25.19%. We first measured [Formula Omitted] spectra of two classes of BOW [BOW with high concentrations of iron (II) sulfide, i.e., BOW1 and BOW with high concentrations of total suspended matter, i.e., BOW2] and ordinary water in Shenyang. Then, in situ [Formula Omitted] data were converted into [Formula Omitted] corresponding to the wide GF-2 bands using the spectral response functions. We used the converted [Formula Omitted] data to calculate several band combinations, including the baseline height, [[Formula Omitted](green) [Formula Omitted](red))/([Formula Omitted](green) [Formula Omitted](red)], and the color purity on a Commission Internationale de L’Eclairage (CIE) chromaticity diagram. The color purity was found to be the best index to extract BOW from ordinary water. Then, [Formula Omitted] (645) was applied to categorize BOW into BOW1 and BOW2. We applied the algorithm to two synchronous GF-2 images. The recognition accuracy of BOW2 and ordinary water are both 100%. The extracted river water type near Weishanhu Road was BOW1, which agreed well with ground truth. The algorithm was further applied to other GF-2 data for Shenyang and Beijing.
Author Zhang, Fangfang
Wang, Shenglei
Yao, Yue
Li, Junsheng
Wu, Yanhong
Zhang, Bing
Shen, Qian
Ye, Huping
Author_xml – sequence: 1
  givenname: Qian
  orcidid: 0000-0002-6034-0555
  surname: Shen
  fullname: Shen, Qian
  email: shenqian@radi.ac.cn
  organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Yue
  orcidid: 0000-0001-5671-6399
  surname: Yao
  fullname: Yao, Yue
  email: yao926983@163.com
  organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Junsheng
  orcidid: 0000-0002-8590-9736
  surname: Li
  fullname: Li, Junsheng
  email: lijs@radi.ac.cn
  organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Fangfang
  orcidid: 0000-0002-9628-1817
  surname: Zhang
  fullname: Zhang, Fangfang
  email: zhangff07@radi.ac.cn
  organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Shenglei
  surname: Wang
  fullname: Wang, Shenglei
  email: wangsl@radi.ac.cn
  organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Yanhong
  orcidid: 0000-0002-5848-8809
  surname: Wu
  fullname: Wu, Yanhong
  email: wuyh@radi.ac.cn
  organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
– sequence: 7
  givenname: Huping
  surname: Ye
  fullname: Ye, Huping
  email: yehp@radi.ac.cn
  organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
– sequence: 8
  givenname: Bing
  orcidid: 0000-0001-7311-9844
  surname: Zhang
  fullname: Zhang, Bing
  email: zb@radi.ac.cn
  organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kE1P3DAQhq0KpC60P6DqZSTO2fojiZPjsnytRAVaWPUYOc5kMWTtxXaQ-Af8bLxdxKGH-jKW5n1n5n2OyIF1Fgn5weiUMVr_ur9c3k05ZfWU11TySnwhE1YUVUbLPD8gk9QpM17V_Cs5CuGRUpYXTE7I2wzmi3OYu8F5uB29ia8wG9YufR42EB2cYUQd4XRQ-gmU7eCmc96NAf6oiB6MhZVvlYWleUEfYBWMXcOVWT9kSwxuGKNxFn6PQzRhmwZ5NcASNy4i3KH9K15s1BrDN3LYqyHg9496TFYX5_fzq-z65nIxn11nmtciZlKJMmct62gvdK9a1Ustcll1KY7gQkndcVbQrkMtC6ll3ypala2QOcWOYS2Oycl-7ta75xFDbB7d6G1a2fCELb0yL5OK7VXauxA89s3Wm43yrw2jzQ54swPe7IA3H8CTR_7j0SaqXf6U2gz_df7cOw0ifm6qylqydM87gSGREQ
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_s22124593
crossref_primary_10_1016_j_watres_2024_121673
crossref_primary_10_1016_j_jclepro_2024_144625
crossref_primary_10_1016_j_jhazmat_2023_132080
crossref_primary_10_1016_j_isprsjprs_2023_03_019
crossref_primary_10_1109_JSTARS_2021_3114355
crossref_primary_10_1109_TGRS_2020_3020162
crossref_primary_10_3390_rs13204047
crossref_primary_10_1016_j_rse_2020_111949
crossref_primary_10_1016_j_scitotenv_2022_158374
crossref_primary_10_1515_geo_2022_0412
crossref_primary_10_1080_07038992_2023_2237591
crossref_primary_10_1109_MGRS_2021_3063465
crossref_primary_10_1109_JSTARS_2023_3298108
crossref_primary_10_3390_rs13091729
crossref_primary_10_1016_j_jclepro_2023_137781
crossref_primary_10_1016_j_rsma_2024_103666
crossref_primary_10_3390_rs13244967
crossref_primary_10_1109_TGRS_2022_3160513
crossref_primary_10_3390_rs12040716
crossref_primary_10_3390_w14081254
crossref_primary_10_3390_rs14020374
crossref_primary_10_1016_j_seppur_2024_130233
crossref_primary_10_1007_s10661_023_12222_5
crossref_primary_10_1016_j_rse_2024_114381
crossref_primary_10_1364_OE_413164
crossref_primary_10_3390_app13042117
crossref_primary_10_3390_su16010092
crossref_primary_10_1016_j_envpol_2020_116166
Cites_doi 10.1007/s10750-016-2928-y
10.1109/JSTARS.2014.2360564
10.1029/2002GL016479
10.1109/IGARSS.2013.6723571
10.3390/rs8060497
10.1023/A:1005219405638
10.1021/acs.est.5b03518
10.1016/j.rse.2004.11.009
10.1016/j.sjbs.2014.07.002
10.1016/j.jes.2014.09.040
10.1016/j.rse.2009.05.012
10.2175/106143098X121842
10.1016/S0034-4257(96)00073-9
10.1111/j.1440-1770.2004.00246.x
10.3133/sir20045047
10.1016/j.watres.2009.04.001
10.1364/AO.52.001693
10.1016/S1352-2310(99)00342-8
10.5194/isprsarchives-XL-1-W1-139-2013
10.1016/j.jenvman.2010.03.009
10.1016/j.scitotenv.2014.02.113
10.3390/s151025663
10.1016/j.envres.2008.02.001
10.1080/07438140209353938
10.1016/S0034-4257(97)00162-4
10.1016/j.scitotenv.2014.02.087
10.1007/s11270-007-9373-5
10.1016/S0045-6535(00)00483-5
10.2166/wst.1988.0242
10.1088/1475-4878/33/3/301
10.5004/dwt.2017.20856
10.1007/s10533-008-9239-y
10.1016/S1385-1101(98)00030-6
10.2166/wst.1983.0143
10.1016/j.scitotenv.2016.06.244
10.1016/j.scitotenv.2010.10.010
10.3133/sir20065095
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2019.2907283
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 6590
ExternalDocumentID 10_1109_TGRS_2019_2907283
8697133
Genre orig-research
GrantInformation_xml – fundername: Chinese Academy of Sciences
  grantid: XDA19040302
  funderid: 10.13039/501100002367
– fundername: National Natural Science Foundation of China
  grantid: 41571361
  funderid: 10.13039/501100001809
– fundername: National Water Pollution Control and Treatment Science and Technology Major Project
  grantid: 2017ZX07302-003
– fundername: National Key Research and Development Program
  grantid: 2017YFB0503902
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c293t-7a3641b1d0f3cfabaf7c3478d451323a7cd2150ddec757c7fba086b3740ed1e93
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:28:02 EDT 2025
Wed Oct 01 02:19:53 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Wed Aug 27 02:46:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-7a3641b1d0f3cfabaf7c3478d451323a7cd2150ddec757c7fba086b3740ed1e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7311-9844
0000-0002-6034-0555
0000-0001-5671-6399
0000-0002-5848-8809
0000-0002-9628-1817
0000-0002-8590-9736
PQID 2283333646
PQPubID 85465
PageCount 14
ParticipantIDs ieee_primary_8697133
proquest_journals_2283333646
crossref_primary_10_1109_TGRS_2019_2907283
crossref_citationtrail_10_1109_TGRS_2019_2907283
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref5) 2015
ref12
ref15
ref14
ref53
ref55
ref11
ref54
ref10
fang (ref16) 1993; 12
ref17
ref19
ref18
ref51
ref50
liu (ref38) 2013; 1
luckin (ref1) 1986; 8
ref46
zou (ref32) 2014
ref47
cao (ref42) 2017
(ref45) 2014
ref49
ref8
ref7
yan (ref27) 2009; 28
ref9
ref3
ref40
mueller (ref48) 2003
ref35
ref34
ref37
kutser (ref28) 2009; 3
ref36
ref31
ref30
ref33
ref2
ref39
(ref44) 2016
gu (ref4) 1983; 2
lv (ref21) 2014; 48
ying (ref56) 1997; 16
(ref52) 1932
ref24
ref26
ref25
ref20
ref22
zhao (ref23) 2015; 43
(ref6) 2015
jin (ref41) 2017; 34
ref29
wen (ref43) 2017; 2018
References_xml – volume: 3
  year: 2009
  ident: ref28
  article-title: Variations in colored dissolved organic matter between boreal lakes studied by satellite remote sensing
  publication-title: J Appl Remote Sens
– ident: ref40
  doi: 10.1007/s10750-016-2928-y
– volume: 12
  start-page: 21
  year: 1993
  ident: ref16
  article-title: Study of the phenomena of water blackening and stink on Suzhou Creek
  publication-title: Shanghai Environmental Sciences
– volume: 28
  start-page: 23
  year: 2009
  ident: ref27
  article-title: The black water around the Changjiang (Yangtze) Estuary in the spring of 2003
  publication-title: Acta Oceanol Sin
– ident: ref53
  doi: 10.1109/JSTARS.2014.2360564
– ident: ref25
  doi: 10.1029/2002GL016479
– ident: ref47
  doi: 10.1109/IGARSS.2013.6723571
– ident: ref29
  doi: 10.3390/rs8060497
– ident: ref10
  doi: 10.1023/A:1005219405638
– ident: ref39
  doi: 10.1021/acs.est.5b03518
– year: 2014
  ident: ref45
  publication-title: CRESDA
– ident: ref26
  doi: 10.1016/j.rse.2004.11.009
– ident: ref34
  doi: 10.1016/j.sjbs.2014.07.002
– ident: ref22
  doi: 10.1016/j.jes.2014.09.040
– ident: ref51
  doi: 10.1016/j.rse.2009.05.012
– ident: ref9
  doi: 10.2175/106143098X121842
– start-page: 1
  year: 2003
  ident: ref48
  article-title: Special topics in ocean optics protocols
  publication-title: Ocean optics protocols for satellite ocean color sensor validation
– ident: ref50
  doi: 10.1016/S0034-4257(96)00073-9
– ident: ref13
  doi: 10.1111/j.1440-1770.2004.00246.x
– ident: ref18
  doi: 10.3133/sir20045047
– volume: 43
  start-page: 27
  year: 2015
  ident: ref23
  article-title: Study on the practice and route of combating urban black-and-malodorous water body
  publication-title: Environ Prot
– ident: ref20
  doi: 10.1016/j.watres.2009.04.001
– ident: ref49
  doi: 10.1364/AO.52.001693
– volume: 16
  start-page: 23
  year: 1997
  ident: ref56
  article-title: The mechanism of blackening and stink and effects of resuspended sediments on Suzhou Creek water quality
  publication-title: Shanghai Environmental Sciences
– ident: ref11
  doi: 10.1016/S1352-2310(99)00342-8
– year: 2015
  ident: ref6
  publication-title: Ministry Of Housing Urban-Rural Development
– ident: ref37
  doi: 10.5194/isprsarchives-XL-1-W1-139-2013
– ident: ref2
  doi: 10.1016/j.jenvman.2010.03.009
– ident: ref33
  doi: 10.1016/j.scitotenv.2014.02.113
– volume: 48
  start-page: 711
  year: 2014
  ident: ref21
  article-title: Study on the water quality and environmental conditions of the formation of black-odorous water
  publication-title: J Huazhong Normal Univ Nat Sci
– ident: ref55
  doi: 10.3390/s151025663
– year: 2017
  ident: ref42
  article-title: Study on analysis of optical properties and remote sensing identifiable models of black and malodorous water in typical cities in China
– volume: 8
  start-page: 198
  year: 1986
  ident: ref1
  article-title: Urban history
  publication-title: Pollution and Control A Social History of the Thames in the Nineteenth Century
– volume: 2
  start-page: 24
  year: 1983
  ident: ref4
  article-title: Preliminary prediction of the trends of black-odor in Huangpu River
  publication-title: Shanghai Environmental Sciences
– ident: ref31
  doi: 10.1016/j.envres.2008.02.001
– year: 2016
  ident: ref44
  publication-title: Ministry of Housing and Urban-Rural Development of the People's Republic of China
– ident: ref17
  doi: 10.1080/07438140209353938
– ident: ref46
  doi: 10.1016/S0034-4257(97)00162-4
– ident: ref15
  doi: 10.1016/j.scitotenv.2014.02.087
– volume: 2018
  start-page: 57
  year: 2017
  ident: ref43
  article-title: Remote sensing identification of urban black-odor water bodies based on high-resolution images: A case study in Nanjing
  publication-title: Environ Sci
– ident: ref36
  doi: 10.1007/s11270-007-9373-5
– ident: ref12
  doi: 10.1016/S0045-6535(00)00483-5
– ident: ref8
  doi: 10.2166/wst.1988.0242
– start-page: 12100
  year: 2014
  ident: ref32
  article-title: A study on retrieval algorithm of black water aggregation in Taihu Lake based on HJ-1 satellite images
  publication-title: Proc Conf 35th Int Symp Remote Sens Environ (ISRSE)
– volume: 1
  start-page: 3222
  year: 2013
  ident: ref38
  article-title: Retrieving water quality from high resolution IKONOS multispectral imagery by multiple regression and artificial neural networks in Lake Cihu, Huangshi
  publication-title: Proc of 35th IAHR World Congress
– ident: ref54
  doi: 10.1088/1475-4878/33/3/301
– ident: ref24
  doi: 10.5004/dwt.2017.20856
– year: 2015
  ident: ref5
  publication-title: Action Plan for Prevention and Control of Water Pollution
– ident: ref3
  doi: 10.1007/s10533-008-9239-y
– volume: 34
  start-page: 107
  year: 2017
  ident: ref41
  article-title: Urban black-odor water body remote sensing monitoring based on GF-2 satellite data fusion
  publication-title: Sci Tech Manage Land Resour
– ident: ref30
  doi: 10.1016/S1385-1101(98)00030-6
– start-page: 19
  year: 1932
  ident: ref52
  publication-title: Commission internationale de L'Eclairage Proceedings
– ident: ref7
  doi: 10.2166/wst.1983.0143
– ident: ref35
  doi: 10.1016/j.scitotenv.2016.06.244
– ident: ref14
  doi: 10.1016/j.scitotenv.2010.10.010
– ident: ref19
  doi: 10.3133/sir20065095
SSID ssj0014517
Score 2.4747481
Snippet Urban black and odorous water (BOW) is a serious global environmental problem. Since these waters are often narrow rivers or small ponds, the detection of BOW...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6577
SubjectTerms Algorithms
Atmospheric correction
Atmospheric measurements
Black and odorous water (BOW)
Chromaticity
Color
color purity algorithm
Colour
Data
Detection
Error correction
Error detection
Gaofen (GF)
Ground truth
High resolution
Image color analysis
Image resolution
Object recognition
Purity
Reflectance
Remote sensing
Resolution
Response functions
River water
Rivers
Satellites
Spatial discrimination
Spatial resolution
Spectral sensitivity
Sulfides
Sulphides
Suspended matter
Urban areas
visible bands
water color
Water pollution
Title A CIE Color Purity Algorithm to Detect Black and Odorous Water in Urban Rivers Using High-Resolution Multispectral Remote Sensing Images
URI https://ieeexplore.ieee.org/document/8697133
https://www.proquest.com/docview/2283333646
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21lZDgUKAFsVDQHDghsk1ib5wcV0tLi1RA267oLbLHTkG0SZXNXvgF_GzGTnbFlxA55TCOLL3JeMbzZgbgZUWJMOwpRxOn00iqvIoMe-JRmjry9x5akK93PnufnSzku8vJ5Ra83tTCOOcC-cyN_WvI5duGVv6q7DDPCh9TbcO2yrO-VmuTMZCTZCiNziIOItIhg5nExeHF2_m5J3EV45RDwTQXv5xBYajKH5Y4HC_H9-FsvbGeVfJ1vOrMmL791rPxf3f-AHYHPxOnvWI8hC1X78G9n7oP7sGdwP6k5T58n-Ls9AhnbAhb_Bjm2eH0-qrhl8832DX4xvlcA4bbPtS1xQ-2aZvVEj-xq9rilxoXrdE1zgPLAwMPAT2FJPLpgV65MdT6hsrOlnc2d6wkDs89gZ6FT2_YsC0fweL46GJ2Eg0jGiJiP6GLlBaZTExi40pQpY2uFAlG3DIcIhVakWWfImYbSmqiSFVGcwxlhJKxs4krxGPYqZvaPQG0HOmRJWKpWCpdFNKStDrxDmCVUD6CeA1aSUP_cj9G47oMcUxclB7n0uNcDjiP4NVmyW3fvONfwvset43gANkIDtaaUQ6_97L0PYP4yWT29O-rnsFd_-2ejHYAO127cs_Ze-nMi6C2PwA2OewJ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VIgQceLRFDRSYAyeEU9u79sbHKLQk0BSUJqI3a18GRGtXjnPhF_CzmV07UQsI4ZMPs_JK33h2ZuebGYBXhY6YIk85SKyMAy4GRaDIEw_i2Gp37yGZdvXO09N0vODvz5PzLXizqYWx1nryme27V5_LN5Veuauyw0GauZjqFtxOOOdJW621yRnwJOqKo9OAwoi4y2FGYXY4fzc7czSurB9TMBgP2I1TyI9V-cMW-wPm-CFM11treSXf-6tG9fWP37o2_u_eH8GDztPEYasaj2HLljtw_1r_wR244_mferkLP4c4mhzhiExhjZ_8RDscXnyp6OXrJTYVvrUu24D-vg9lafCjqepqtcTP5KzW-K3ERa1kiTPP80DPREBHIglcgqBVb_TVvr62s6adzSypicUzR6En4cklmbblHiyOj-ajcdANaQg0eQpNICRLeaQiExZMF1LJQmhGmBuCg8VMCm3IqwjJimqRCC0KJSmKUkzw0JrIZuwJbJdVafcBDcV62mhNUiEXMsu40dzIyLmARaQHPQjXoOW662DuBmlc5D6SCbPc4Zw7nPMO5x683iy5att3_Et41-G2Eewg68HBWjPy7gdf5q5rED0pT5_-fdVLuDueT0_yk8nph2dwz32npaYdwHZTr-xz8mUa9cKr8C-1R-9W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CIE+Color+Purity+Algorithm+to+Detect+Black+and+Odorous+Water+in+Urban+Rivers+Using+High-Resolution+Multispectral+Remote+Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Shen%2C+Qian&rft.au=Yao%2C+Yue&rft.au=Li%2C+Junsheng&rft.au=Zhang%2C+Fangfang&rft.date=2019-09-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=9&rft.spage=6577&rft.epage=6590&rft_id=info:doi/10.1109%2FTGRS.2019.2907283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2019_2907283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon