A CIE Color Purity Algorithm to Detect Black and Odorous Water in Urban Rivers Using High-Resolution Multispectral Remote Sensing Images
Urban black and odorous water (BOW) is a serious global environmental problem. Since these waters are often narrow rivers or small ponds, the detection of BOW waters using traditional satellite data and algorithms is limited both by a lack of spatial resolution and by imperfect retrieval algorithms....
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 57; no. 9; pp. 6577 - 6590 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 |
| DOI | 10.1109/TGRS.2019.2907283 |
Cover
| Abstract | Urban black and odorous water (BOW) is a serious global environmental problem. Since these waters are often narrow rivers or small ponds, the detection of BOW waters using traditional satellite data and algorithms is limited both by a lack of spatial resolution and by imperfect retrieval algorithms. In this paper, we used the Chinese high-resolution remote sensing satellite Gaofen-2 (GF-2, 0.8 m). The atmospheric correction showed that the mean absolute percentage error of the derived remote sensing reflectance (<inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula>) in visible bands is 25.19%. We first measured <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> spectra of two classes of BOW [BOW with high concentrations of iron (II) sulfide, i.e., BOW1 and BOW with high concentrations of total suspended matter, i.e., BOW2] and ordinary water in Shenyang. Then, in situ <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> data were converted into <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> corresponding to the wide GF-2 bands using the spectral response functions. We used the converted <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> data to calculate several band combinations, including the baseline height, [<inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula>(green) <inline-formula> <tex-math notation="LaTeX">- R_{\mathrm {rs}} </tex-math></inline-formula>(red))/(<inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula>(green) <inline-formula> <tex-math notation="LaTeX">+ R_{\mathrm {rs}} </tex-math></inline-formula>(red)], and the color purity on a Commission Internationale de L'Eclairage (CIE) chromaticity diagram. The color purity was found to be the best index to extract BOW from ordinary water. Then, <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> (645) was applied to categorize BOW into BOW1 and BOW2. We applied the algorithm to two synchronous GF-2 images. The recognition accuracy of BOW2 and ordinary water are both 100%. The extracted river water type near Weishanhu Road was BOW1, which agreed well with ground truth. The algorithm was further applied to other GF-2 data for Shenyang and Beijing. |
|---|---|
| AbstractList | Urban black and odorous water (BOW) is a serious global environmental problem. Since these waters are often narrow rivers or small ponds, the detection of BOW waters using traditional satellite data and algorithms is limited both by a lack of spatial resolution and by imperfect retrieval algorithms. In this paper, we used the Chinese high-resolution remote sensing satellite Gaofen-2 (GF-2, 0.8 m). The atmospheric correction showed that the mean absolute percentage error of the derived remote sensing reflectance (<inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula>) in visible bands is 25.19%. We first measured <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> spectra of two classes of BOW [BOW with high concentrations of iron (II) sulfide, i.e., BOW1 and BOW with high concentrations of total suspended matter, i.e., BOW2] and ordinary water in Shenyang. Then, in situ <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> data were converted into <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> corresponding to the wide GF-2 bands using the spectral response functions. We used the converted <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> data to calculate several band combinations, including the baseline height, [<inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula>(green) <inline-formula> <tex-math notation="LaTeX">- R_{\mathrm {rs}} </tex-math></inline-formula>(red))/(<inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula>(green) <inline-formula> <tex-math notation="LaTeX">+ R_{\mathrm {rs}} </tex-math></inline-formula>(red)], and the color purity on a Commission Internationale de L'Eclairage (CIE) chromaticity diagram. The color purity was found to be the best index to extract BOW from ordinary water. Then, <inline-formula> <tex-math notation="LaTeX">R_{\mathrm {rs}} </tex-math></inline-formula> (645) was applied to categorize BOW into BOW1 and BOW2. We applied the algorithm to two synchronous GF-2 images. The recognition accuracy of BOW2 and ordinary water are both 100%. The extracted river water type near Weishanhu Road was BOW1, which agreed well with ground truth. The algorithm was further applied to other GF-2 data for Shenyang and Beijing. Urban black and odorous water (BOW) is a serious global environmental problem. Since these waters are often narrow rivers or small ponds, the detection of BOW waters using traditional satellite data and algorithms is limited both by a lack of spatial resolution and by imperfect retrieval algorithms. In this paper, we used the Chinese high-resolution remote sensing satellite Gaofen-2 (GF-2, 0.8 m). The atmospheric correction showed that the mean absolute percentage error of the derived remote sensing reflectance ([Formula Omitted]) in visible bands is 25.19%. We first measured [Formula Omitted] spectra of two classes of BOW [BOW with high concentrations of iron (II) sulfide, i.e., BOW1 and BOW with high concentrations of total suspended matter, i.e., BOW2] and ordinary water in Shenyang. Then, in situ [Formula Omitted] data were converted into [Formula Omitted] corresponding to the wide GF-2 bands using the spectral response functions. We used the converted [Formula Omitted] data to calculate several band combinations, including the baseline height, [[Formula Omitted](green) [Formula Omitted](red))/([Formula Omitted](green) [Formula Omitted](red)], and the color purity on a Commission Internationale de L’Eclairage (CIE) chromaticity diagram. The color purity was found to be the best index to extract BOW from ordinary water. Then, [Formula Omitted] (645) was applied to categorize BOW into BOW1 and BOW2. We applied the algorithm to two synchronous GF-2 images. The recognition accuracy of BOW2 and ordinary water are both 100%. The extracted river water type near Weishanhu Road was BOW1, which agreed well with ground truth. The algorithm was further applied to other GF-2 data for Shenyang and Beijing. |
| Author | Zhang, Fangfang Wang, Shenglei Yao, Yue Li, Junsheng Wu, Yanhong Zhang, Bing Shen, Qian Ye, Huping |
| Author_xml | – sequence: 1 givenname: Qian orcidid: 0000-0002-6034-0555 surname: Shen fullname: Shen, Qian email: shenqian@radi.ac.cn organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Yue orcidid: 0000-0001-5671-6399 surname: Yao fullname: Yao, Yue email: yao926983@163.com organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Junsheng orcidid: 0000-0002-8590-9736 surname: Li fullname: Li, Junsheng email: lijs@radi.ac.cn organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Fangfang orcidid: 0000-0002-9628-1817 surname: Zhang fullname: Zhang, Fangfang email: zhangff07@radi.ac.cn organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Shenglei surname: Wang fullname: Wang, Shenglei email: wangsl@radi.ac.cn organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China – sequence: 6 givenname: Yanhong orcidid: 0000-0002-5848-8809 surname: Wu fullname: Wu, Yanhong email: wuyh@radi.ac.cn organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China – sequence: 7 givenname: Huping surname: Ye fullname: Ye, Huping email: yehp@radi.ac.cn organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China – sequence: 8 givenname: Bing orcidid: 0000-0001-7311-9844 surname: Zhang fullname: Zhang, Bing email: zb@radi.ac.cn organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China |
| BookMark | eNp9kE1P3DAQhq0KpC60P6DqZSTO2fojiZPjsnytRAVaWPUYOc5kMWTtxXaQ-Af8bLxdxKGH-jKW5n1n5n2OyIF1Fgn5weiUMVr_ur9c3k05ZfWU11TySnwhE1YUVUbLPD8gk9QpM17V_Cs5CuGRUpYXTE7I2wzmi3OYu8F5uB29ia8wG9YufR42EB2cYUQd4XRQ-gmU7eCmc96NAf6oiB6MhZVvlYWleUEfYBWMXcOVWT9kSwxuGKNxFn6PQzRhmwZ5NcASNy4i3KH9K15s1BrDN3LYqyHg9496TFYX5_fzq-z65nIxn11nmtciZlKJMmct62gvdK9a1Ustcll1KY7gQkndcVbQrkMtC6ll3ypala2QOcWOYS2Oycl-7ta75xFDbB7d6G1a2fCELb0yL5OK7VXauxA89s3Wm43yrw2jzQ54swPe7IA3H8CTR_7j0SaqXf6U2gz_df7cOw0ifm6qylqydM87gSGREQ |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_3390_s22124593 crossref_primary_10_1016_j_watres_2024_121673 crossref_primary_10_1016_j_jclepro_2024_144625 crossref_primary_10_1016_j_jhazmat_2023_132080 crossref_primary_10_1016_j_isprsjprs_2023_03_019 crossref_primary_10_1109_JSTARS_2021_3114355 crossref_primary_10_1109_TGRS_2020_3020162 crossref_primary_10_3390_rs13204047 crossref_primary_10_1016_j_rse_2020_111949 crossref_primary_10_1016_j_scitotenv_2022_158374 crossref_primary_10_1515_geo_2022_0412 crossref_primary_10_1080_07038992_2023_2237591 crossref_primary_10_1109_MGRS_2021_3063465 crossref_primary_10_1109_JSTARS_2023_3298108 crossref_primary_10_3390_rs13091729 crossref_primary_10_1016_j_jclepro_2023_137781 crossref_primary_10_1016_j_rsma_2024_103666 crossref_primary_10_3390_rs13244967 crossref_primary_10_1109_TGRS_2022_3160513 crossref_primary_10_3390_rs12040716 crossref_primary_10_3390_w14081254 crossref_primary_10_3390_rs14020374 crossref_primary_10_1016_j_seppur_2024_130233 crossref_primary_10_1007_s10661_023_12222_5 crossref_primary_10_1016_j_rse_2024_114381 crossref_primary_10_1364_OE_413164 crossref_primary_10_3390_app13042117 crossref_primary_10_3390_su16010092 crossref_primary_10_1016_j_envpol_2020_116166 |
| Cites_doi | 10.1007/s10750-016-2928-y 10.1109/JSTARS.2014.2360564 10.1029/2002GL016479 10.1109/IGARSS.2013.6723571 10.3390/rs8060497 10.1023/A:1005219405638 10.1021/acs.est.5b03518 10.1016/j.rse.2004.11.009 10.1016/j.sjbs.2014.07.002 10.1016/j.jes.2014.09.040 10.1016/j.rse.2009.05.012 10.2175/106143098X121842 10.1016/S0034-4257(96)00073-9 10.1111/j.1440-1770.2004.00246.x 10.3133/sir20045047 10.1016/j.watres.2009.04.001 10.1364/AO.52.001693 10.1016/S1352-2310(99)00342-8 10.5194/isprsarchives-XL-1-W1-139-2013 10.1016/j.jenvman.2010.03.009 10.1016/j.scitotenv.2014.02.113 10.3390/s151025663 10.1016/j.envres.2008.02.001 10.1080/07438140209353938 10.1016/S0034-4257(97)00162-4 10.1016/j.scitotenv.2014.02.087 10.1007/s11270-007-9373-5 10.1016/S0045-6535(00)00483-5 10.2166/wst.1988.0242 10.1088/1475-4878/33/3/301 10.5004/dwt.2017.20856 10.1007/s10533-008-9239-y 10.1016/S1385-1101(98)00030-6 10.2166/wst.1983.0143 10.1016/j.scitotenv.2016.06.244 10.1016/j.scitotenv.2010.10.010 10.3133/sir20065095 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2019.2907283 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 6590 |
| ExternalDocumentID | 10_1109_TGRS_2019_2907283 8697133 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Chinese Academy of Sciences grantid: XDA19040302 funderid: 10.13039/501100002367 – fundername: National Natural Science Foundation of China grantid: 41571361 funderid: 10.13039/501100001809 – fundername: National Water Pollution Control and Treatment Science and Technology Major Project grantid: 2017ZX07302-003 – fundername: National Key Research and Development Program grantid: 2017YFB0503902 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M RIG |
| ID | FETCH-LOGICAL-c293t-7a3641b1d0f3cfabaf7c3478d451323a7cd2150ddec757c7fba086b3740ed1e93 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:28:02 EDT 2025 Wed Oct 01 02:19:53 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Wed Aug 27 02:46:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-7a3641b1d0f3cfabaf7c3478d451323a7cd2150ddec757c7fba086b3740ed1e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7311-9844 0000-0002-6034-0555 0000-0001-5671-6399 0000-0002-5848-8809 0000-0002-9628-1817 0000-0002-8590-9736 |
| PQID | 2283333646 |
| PQPubID | 85465 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_8697133 proquest_journals_2283333646 crossref_primary_10_1109_TGRS_2019_2907283 crossref_citationtrail_10_1109_TGRS_2019_2907283 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 (ref5) 2015 ref12 ref15 ref14 ref53 ref55 ref11 ref54 ref10 fang (ref16) 1993; 12 ref17 ref19 ref18 ref51 ref50 liu (ref38) 2013; 1 luckin (ref1) 1986; 8 ref46 zou (ref32) 2014 ref47 cao (ref42) 2017 (ref45) 2014 ref49 ref8 ref7 yan (ref27) 2009; 28 ref9 ref3 ref40 mueller (ref48) 2003 ref35 ref34 ref37 kutser (ref28) 2009; 3 ref36 ref31 ref30 ref33 ref2 ref39 (ref44) 2016 gu (ref4) 1983; 2 lv (ref21) 2014; 48 ying (ref56) 1997; 16 (ref52) 1932 ref24 ref26 ref25 ref20 ref22 zhao (ref23) 2015; 43 (ref6) 2015 jin (ref41) 2017; 34 ref29 wen (ref43) 2017; 2018 |
| References_xml | – volume: 3 year: 2009 ident: ref28 article-title: Variations in colored dissolved organic matter between boreal lakes studied by satellite remote sensing publication-title: J Appl Remote Sens – ident: ref40 doi: 10.1007/s10750-016-2928-y – volume: 12 start-page: 21 year: 1993 ident: ref16 article-title: Study of the phenomena of water blackening and stink on Suzhou Creek publication-title: Shanghai Environmental Sciences – volume: 28 start-page: 23 year: 2009 ident: ref27 article-title: The black water around the Changjiang (Yangtze) Estuary in the spring of 2003 publication-title: Acta Oceanol Sin – ident: ref53 doi: 10.1109/JSTARS.2014.2360564 – ident: ref25 doi: 10.1029/2002GL016479 – ident: ref47 doi: 10.1109/IGARSS.2013.6723571 – ident: ref29 doi: 10.3390/rs8060497 – ident: ref10 doi: 10.1023/A:1005219405638 – ident: ref39 doi: 10.1021/acs.est.5b03518 – year: 2014 ident: ref45 publication-title: CRESDA – ident: ref26 doi: 10.1016/j.rse.2004.11.009 – ident: ref34 doi: 10.1016/j.sjbs.2014.07.002 – ident: ref22 doi: 10.1016/j.jes.2014.09.040 – ident: ref51 doi: 10.1016/j.rse.2009.05.012 – ident: ref9 doi: 10.2175/106143098X121842 – start-page: 1 year: 2003 ident: ref48 article-title: Special topics in ocean optics protocols publication-title: Ocean optics protocols for satellite ocean color sensor validation – ident: ref50 doi: 10.1016/S0034-4257(96)00073-9 – ident: ref13 doi: 10.1111/j.1440-1770.2004.00246.x – ident: ref18 doi: 10.3133/sir20045047 – volume: 43 start-page: 27 year: 2015 ident: ref23 article-title: Study on the practice and route of combating urban black-and-malodorous water body publication-title: Environ Prot – ident: ref20 doi: 10.1016/j.watres.2009.04.001 – ident: ref49 doi: 10.1364/AO.52.001693 – volume: 16 start-page: 23 year: 1997 ident: ref56 article-title: The mechanism of blackening and stink and effects of resuspended sediments on Suzhou Creek water quality publication-title: Shanghai Environmental Sciences – ident: ref11 doi: 10.1016/S1352-2310(99)00342-8 – year: 2015 ident: ref6 publication-title: Ministry Of Housing Urban-Rural Development – ident: ref37 doi: 10.5194/isprsarchives-XL-1-W1-139-2013 – ident: ref2 doi: 10.1016/j.jenvman.2010.03.009 – ident: ref33 doi: 10.1016/j.scitotenv.2014.02.113 – volume: 48 start-page: 711 year: 2014 ident: ref21 article-title: Study on the water quality and environmental conditions of the formation of black-odorous water publication-title: J Huazhong Normal Univ Nat Sci – ident: ref55 doi: 10.3390/s151025663 – year: 2017 ident: ref42 article-title: Study on analysis of optical properties and remote sensing identifiable models of black and malodorous water in typical cities in China – volume: 8 start-page: 198 year: 1986 ident: ref1 article-title: Urban history publication-title: Pollution and Control A Social History of the Thames in the Nineteenth Century – volume: 2 start-page: 24 year: 1983 ident: ref4 article-title: Preliminary prediction of the trends of black-odor in Huangpu River publication-title: Shanghai Environmental Sciences – ident: ref31 doi: 10.1016/j.envres.2008.02.001 – year: 2016 ident: ref44 publication-title: Ministry of Housing and Urban-Rural Development of the People's Republic of China – ident: ref17 doi: 10.1080/07438140209353938 – ident: ref46 doi: 10.1016/S0034-4257(97)00162-4 – ident: ref15 doi: 10.1016/j.scitotenv.2014.02.087 – volume: 2018 start-page: 57 year: 2017 ident: ref43 article-title: Remote sensing identification of urban black-odor water bodies based on high-resolution images: A case study in Nanjing publication-title: Environ Sci – ident: ref36 doi: 10.1007/s11270-007-9373-5 – ident: ref12 doi: 10.1016/S0045-6535(00)00483-5 – ident: ref8 doi: 10.2166/wst.1988.0242 – start-page: 12100 year: 2014 ident: ref32 article-title: A study on retrieval algorithm of black water aggregation in Taihu Lake based on HJ-1 satellite images publication-title: Proc Conf 35th Int Symp Remote Sens Environ (ISRSE) – volume: 1 start-page: 3222 year: 2013 ident: ref38 article-title: Retrieving water quality from high resolution IKONOS multispectral imagery by multiple regression and artificial neural networks in Lake Cihu, Huangshi publication-title: Proc of 35th IAHR World Congress – ident: ref54 doi: 10.1088/1475-4878/33/3/301 – ident: ref24 doi: 10.5004/dwt.2017.20856 – year: 2015 ident: ref5 publication-title: Action Plan for Prevention and Control of Water Pollution – ident: ref3 doi: 10.1007/s10533-008-9239-y – volume: 34 start-page: 107 year: 2017 ident: ref41 article-title: Urban black-odor water body remote sensing monitoring based on GF-2 satellite data fusion publication-title: Sci Tech Manage Land Resour – ident: ref30 doi: 10.1016/S1385-1101(98)00030-6 – start-page: 19 year: 1932 ident: ref52 publication-title: Commission internationale de L'Eclairage Proceedings – ident: ref7 doi: 10.2166/wst.1983.0143 – ident: ref35 doi: 10.1016/j.scitotenv.2016.06.244 – ident: ref14 doi: 10.1016/j.scitotenv.2010.10.010 – ident: ref19 doi: 10.3133/sir20065095 |
| SSID | ssj0014517 |
| Score | 2.4747481 |
| Snippet | Urban black and odorous water (BOW) is a serious global environmental problem. Since these waters are often narrow rivers or small ponds, the detection of BOW... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6577 |
| SubjectTerms | Algorithms Atmospheric correction Atmospheric measurements Black and odorous water (BOW) Chromaticity Color color purity algorithm Colour Data Detection Error correction Error detection Gaofen (GF) Ground truth High resolution Image color analysis Image resolution Object recognition Purity Reflectance Remote sensing Resolution Response functions River water Rivers Satellites Spatial discrimination Spatial resolution Spectral sensitivity Sulfides Sulphides Suspended matter Urban areas visible bands water color Water pollution |
| Title | A CIE Color Purity Algorithm to Detect Black and Odorous Water in Urban Rivers Using High-Resolution Multispectral Remote Sensing Images |
| URI | https://ieeexplore.ieee.org/document/8697133 https://www.proquest.com/docview/2283333646 |
| Volume | 57 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21lZDgUKAFsVDQHDghsk1ib5wcV0tLi1RA267oLbLHTkG0SZXNXvgF_GzGTnbFlxA55TCOLL3JeMbzZgbgZUWJMOwpRxOn00iqvIoMe-JRmjry9x5akK93PnufnSzku8vJ5Ra83tTCOOcC-cyN_WvI5duGVv6q7DDPCh9TbcO2yrO-VmuTMZCTZCiNziIOItIhg5nExeHF2_m5J3EV45RDwTQXv5xBYajKH5Y4HC_H9-FsvbGeVfJ1vOrMmL791rPxf3f-AHYHPxOnvWI8hC1X78G9n7oP7sGdwP6k5T58n-Ls9AhnbAhb_Bjm2eH0-qrhl8832DX4xvlcA4bbPtS1xQ-2aZvVEj-xq9rilxoXrdE1zgPLAwMPAT2FJPLpgV65MdT6hsrOlnc2d6wkDs89gZ6FT2_YsC0fweL46GJ2Eg0jGiJiP6GLlBaZTExi40pQpY2uFAlG3DIcIhVakWWfImYbSmqiSFVGcwxlhJKxs4krxGPYqZvaPQG0HOmRJWKpWCpdFNKStDrxDmCVUD6CeA1aSUP_cj9G47oMcUxclB7n0uNcDjiP4NVmyW3fvONfwvset43gANkIDtaaUQ6_97L0PYP4yWT29O-rnsFd_-2ejHYAO127cs_Ze-nMi6C2PwA2OewJ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VIgQceLRFDRSYAyeEU9u79sbHKLQk0BSUJqI3a18GRGtXjnPhF_CzmV07UQsI4ZMPs_JK33h2ZuebGYBXhY6YIk85SKyMAy4GRaDIEw_i2Gp37yGZdvXO09N0vODvz5PzLXizqYWx1nryme27V5_LN5Veuauyw0GauZjqFtxOOOdJW621yRnwJOqKo9OAwoi4y2FGYXY4fzc7czSurB9TMBgP2I1TyI9V-cMW-wPm-CFM11treSXf-6tG9fWP37o2_u_eH8GDztPEYasaj2HLljtw_1r_wR244_mferkLP4c4mhzhiExhjZ_8RDscXnyp6OXrJTYVvrUu24D-vg9lafCjqepqtcTP5KzW-K3ERa1kiTPP80DPREBHIglcgqBVb_TVvr62s6adzSypicUzR6En4cklmbblHiyOj-ajcdANaQg0eQpNICRLeaQiExZMF1LJQmhGmBuCg8VMCm3IqwjJimqRCC0KJSmKUkzw0JrIZuwJbJdVafcBDcV62mhNUiEXMsu40dzIyLmARaQHPQjXoOW662DuBmlc5D6SCbPc4Zw7nPMO5x683iy5att3_Et41-G2Eewg68HBWjPy7gdf5q5rED0pT5_-fdVLuDueT0_yk8nph2dwz32npaYdwHZTr-xz8mUa9cKr8C-1R-9W |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CIE+Color+Purity+Algorithm+to+Detect+Black+and+Odorous+Water+in+Urban+Rivers+Using+High-Resolution+Multispectral+Remote+Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Shen%2C+Qian&rft.au=Yao%2C+Yue&rft.au=Li%2C+Junsheng&rft.au=Zhang%2C+Fangfang&rft.date=2019-09-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=9&rft.spage=6577&rft.epage=6590&rft_id=info:doi/10.1109%2FTGRS.2019.2907283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2019_2907283 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |