Mitigation of Through-Wall Distortions of Frontal Radar Images Using Denoising Autoencoders
Radar images of humans and other concealed objects are considerably distorted by attenuation, refraction, and multipath clutter in indoor through-wall environments. Although several methods have been proposed for removing target-independent static and dynamic clutter, there still remain considerable...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 58; no. 9; pp. 6650 - 6663 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 |
| DOI | 10.1109/TGRS.2020.2978440 |
Cover
| Abstract | Radar images of humans and other concealed objects are considerably distorted by attenuation, refraction, and multipath clutter in indoor through-wall environments. Although several methods have been proposed for removing target-independent static and dynamic clutter, there still remain considerable challenges in mitigating target-dependent clutter especially when the knowledge of the exact propagation characteristics or analytical framework is unavailable. In this article, we focus on mitigating wall effects using a machine learning-based solution-denoising autoencoders-that does not require prior information of the wall parameters or room geometry. Instead, the method relies on the availability of a large volume of training radar images gathered in through-wall conditions and the corresponding clean images captured in line-of-sight conditions. During the training phase, the autoencoder learns how to denoise the corrupted through-wall images in order to resemble the free space images. We have validated the performance of the proposed solution for both static and dynamic human subjects. The frontal radar images of static targets are obtained by processing wideband planar array measurement data with 2-D array and range processing. The frontal radar images of dynamic targets are simulated using narrowband planar array data processed with 2-D array and Doppler processing. In both simulation and measurement processes, we incorporate considerable diversity in the target and propagation conditions. Our experimental results, from both simulation and measurement data, show that the denoised images are considerably more similar to the free-space images when compared to the original through-wall images. |
|---|---|
| AbstractList | Radar images of humans and other concealed objects are considerably distorted by attenuation, refraction, and multipath clutter in indoor through-wall environments. Although several methods have been proposed for removing target-independent static and dynamic clutter, there still remain considerable challenges in mitigating target-dependent clutter especially when the knowledge of the exact propagation characteristics or analytical framework is unavailable. In this article, we focus on mitigating wall effects using a machine learning-based solution—denoising autoencoders—that does not require prior information of the wall parameters or room geometry. Instead, the method relies on the availability of a large volume of training radar images gathered in through-wall conditions and the corresponding clean images captured in line-of-sight conditions. During the training phase, the autoencoder learns how to denoise the corrupted through-wall images in order to resemble the free space images. We have validated the performance of the proposed solution for both static and dynamic human subjects. The frontal radar images of static targets are obtained by processing wideband planar array measurement data with 2-D array and range processing. The frontal radar images of dynamic targets are simulated using narrowband planar array data processed with 2-D array and Doppler processing. In both simulation and measurement processes, we incorporate considerable diversity in the target and propagation conditions. Our experimental results, from both simulation and measurement data, show that the denoised images are considerably more similar to the free-space images when compared to the original through-wall images. |
| Author | Vishwakarma, Shelly Ram, Shobha Sundar |
| Author_xml | – sequence: 1 givenname: Shelly orcidid: 0000-0003-1035-3259 surname: Vishwakarma fullname: Vishwakarma, Shelly email: shellyv@iiitd.ac.in organization: Indraprastha Institute of Information Technology Delhi, New Delhi, India – sequence: 2 givenname: Shobha Sundar surname: Ram fullname: Ram, Shobha Sundar email: shobha@iiitd.ac.in organization: Indraprastha Institute of Information Technology Delhi, New Delhi, India |
| BookMark | eNp9kE1PwkAQhjcGEwH9AcZLE8_F_ezuHgkIkmBMEOLBQ7Mt27KkdHF3e_Df2wLx4MHTTDLPO5N5BqBX21oDcI_gCCEon9bz1fsIQwxHWHJBKbwCfcSYiGFCaQ_0IZJJjIXEN2Dg_R5CRBniffD5aoIpVTC2jmwRrXfONuUu_lBVFU2ND9Z1I9_NZs7WQVXRSm2VixYHVWofbbypy2iqa2tO3bgJVte53Wrnb8F1oSqv7y51CDaz5_XkJV6-zReT8TLOsSQh5hLzbaFgriijkhOBkEiQznKOmcylEkoQihFCGJIkyyRDihVa51pmjHGiyBA8nvcenf1qtA_p3jaubk-mmBLBk6TFWoqfqdxZ750u0tyE0-PBKVOlCKadybQzmXYm04vJNon-JI_OHJT7_jfzcM4YrfUvLyGFgmPyA4P7gKQ |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TGRS_2023_3328841 crossref_primary_10_1049_rsn2_12065 crossref_primary_10_1109_TGRS_2023_3274207 crossref_primary_10_1109_JSEN_2022_3188165 crossref_primary_10_1109_JSEN_2024_3486458 crossref_primary_10_1109_LGRS_2022_3229954 crossref_primary_10_1109_TGRS_2022_3162333 crossref_primary_10_1088_1361_6420_ad2530 crossref_primary_10_3390_s24186145 crossref_primary_10_1109_TGRS_2021_3100455 crossref_primary_10_1109_TGRS_2021_3098122 crossref_primary_10_1109_JSEN_2023_3273533 crossref_primary_10_1109_TGRS_2022_3194560 crossref_primary_10_1017_S1759078722000733 crossref_primary_10_1109_OJSP_2021_3121199 crossref_primary_10_1109_TGRS_2021_3112579 crossref_primary_10_1109_JSTARS_2023_3296872 crossref_primary_10_3390_rs15133434 crossref_primary_10_1109_TGRS_2023_3323955 crossref_primary_10_1109_LSP_2024_3451314 |
| Cites_doi | 10.1109/TGRS.2011.2128331 10.1109/TGRS.2014.2355211 10.1109/LGRS.2008.924002 10.1109/TAES.2017.2701646 10.1109/TGRS.2012.2203310 10.1109/TAP.2012.2196962 10.1109/LGRS.2013.2283778 10.1109/TAP.1966.1138693 10.1117/12.818513 10.1109/RADAR.2016.7485326 10.1109/TGRS.2009.2037219 10.2528/PIERB10022206 10.1016/j.jfranklin.2008.03.003 10.1186/1687-6180-2013-47 10.1109/TIP.2007.899030 10.1126/science.1127647 10.1145/2689746.2689747 10.1561/2200000016 10.1007/s11063-018-9894-5 10.1109/TAES.2017.2739958 10.1007/978-3-319-74283-0 10.1109/ICPR.2010.579 10.1109/TIP.2013.2256916 10.1049/iet-rsn:20070140 10.1145/1390156.1390294 10.1109/RADAR.2011.5960591 10.1109/TAES.2014.140481 10.1109/97.995823 10.1109/TIP.2017.2786462 10.1137/080725891 10.1109/TAES.2013.120528 10.1109/TCYB.2016.2536638 10.1109/RADAR.2015.7131170 10.1109/RADAR.2018.8378796 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2020.2978440 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore DIgital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 6663 |
| ExternalDocumentID | 10_1109_TGRS_2020_2978440 9040872 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Electronics and Information Technology, Government of India, through the Visvesvaraya PhD Scheme funderid: 10.13039/501100008628 – fundername: Air Force Office of Scientific Research (AFOSR), Asian Office of Aerospace Research and Development (AOARD) grantid: 5IOA036; FA23861610004 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-7927dfa0ca454973811861ebc7259c9a8a83421112036bb951a5feece9b5573a3 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:11:48 EDT 2025 Wed Oct 01 02:19:58 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Wed Aug 27 02:32:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-7927dfa0ca454973811861ebc7259c9a8a83421112036bb951a5feece9b5573a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1035-3259 |
| PQID | 2438766573 |
| PQPubID | 85465 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2020_2978440 proquest_journals_2438766573 ieee_primary_9040872 crossref_primary_10_1109_TGRS_2020_2978440 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref37 ref15 ref36 ref14 ref31 ref33 ref11 ref10 ref2 ref39 ref17 ref38 ref16 ref19 ref18 (ref34) 2020 ref24 ref23 tivive (ref41) 2011 ref25 ref20 amin (ref1) 2016 ref22 ref21 ref28 sutskever (ref30) 2013 ref29 ref8 bishop (ref35) 2006 ref7 socher (ref26) 2011 chen (ref27) 2012 ref9 yee (ref32) 1966; 14 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref21 doi: 10.1109/TGRS.2011.2128331 – ident: ref13 doi: 10.1109/TGRS.2014.2355211 – year: 2012 ident: ref27 article-title: Marginalized denoising autoencoders for domain adaptation publication-title: arXiv 1206 4683 – ident: ref3 doi: 10.1109/LGRS.2008.924002 – ident: ref17 doi: 10.1109/TAES.2017.2701646 – ident: ref20 doi: 10.1109/TGRS.2012.2203310 – ident: ref33 doi: 10.1109/TAP.2012.2196962 – ident: ref6 doi: 10.1109/LGRS.2013.2283778 – volume: 14 start-page: 302 year: 1966 ident: ref32 article-title: Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media publication-title: IEEE Trans Antennas Propag doi: 10.1109/TAP.1966.1138693 – ident: ref19 doi: 10.1117/12.818513 – ident: ref9 doi: 10.1109/RADAR.2016.7485326 – ident: ref4 doi: 10.1109/TGRS.2009.2037219 – ident: ref2 doi: 10.2528/PIERB10022206 – ident: ref14 doi: 10.1016/j.jfranklin.2008.03.003 – ident: ref7 doi: 10.1186/1687-6180-2013-47 – ident: ref11 doi: 10.1109/TIP.2007.899030 – ident: ref24 doi: 10.1126/science.1127647 – ident: ref25 doi: 10.1145/2689746.2689747 – ident: ref31 doi: 10.1561/2200000016 – ident: ref39 doi: 10.1007/s11063-018-9894-5 – year: 2016 ident: ref1 publication-title: Through-the-Wall Radar Imaging – ident: ref18 doi: 10.1109/TAES.2017.2739958 – start-page: 1139 year: 2013 ident: ref30 article-title: On the importance of initialization and momentum in deep learning publication-title: Proc Int Conf Mach Learn – ident: ref15 doi: 10.1007/978-3-319-74283-0 – ident: ref37 doi: 10.1109/ICPR.2010.579 – ident: ref22 doi: 10.1109/TIP.2013.2256916 – start-page: 801 year: 2011 ident: ref26 article-title: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection publication-title: Proc Adv Neural Inf Process Syst – ident: ref5 doi: 10.1049/iet-rsn:20070140 – ident: ref23 doi: 10.1145/1390156.1390294 – ident: ref40 doi: 10.1109/RADAR.2011.5960591 – year: 2006 ident: ref35 publication-title: Pattern Recognition and Machine Learning – ident: ref8 doi: 10.1109/TAES.2014.140481 – start-page: 1 year: 2011 ident: ref41 article-title: Wall clutter mitigation based on eigen-analysis in through-the-wall radar imaging publication-title: Proc 17th Int Conf Digit Signal Process (DSP) – ident: ref36 doi: 10.1109/97.995823 – ident: ref16 doi: 10.1109/TIP.2017.2786462 – ident: ref38 doi: 10.1137/080725891 – ident: ref12 doi: 10.1109/TAES.2013.120528 – ident: ref29 doi: 10.1109/TCYB.2016.2536638 – ident: ref10 doi: 10.1109/RADAR.2015.7131170 – ident: ref28 doi: 10.1109/RADAR.2018.8378796 – year: 2020 ident: ref34 publication-title: Walabot |
| SSID | ssj0014517 |
| Score | 2.4934962 |
| Snippet | Radar images of humans and other concealed objects are considerably distorted by attenuation, refraction, and multipath clutter in indoor through-wall... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6650 |
| SubjectTerms | Aerodynamics Attenuation Broadband Clutter Denoising autoencoders Doppler radar Doppler sonar Doppler/range-enhanced frontal imaging Indoor environments Learning algorithms Machine learning Measurement Mitigation Narrowband Noise reduction Propagation Radar Radar imaging Simulation stochastic finite difference time-domain (sFDTD) Target recognition through-wall radar Training Wall effects |
| Title | Mitigation of Through-Wall Distortions of Frontal Radar Images Using Denoising Autoencoders |
| URI | https://ieeexplore.ieee.org/document/9040872 https://www.proquest.com/docview/2438766573 |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore DIgital Library customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED9UEPTBj6k4ndIHn8TMtmmb9FHUOYX5MCcIPpQkTWGorWzti3-9l7QroiK-BZqElLvcR-7udwAnGY-zMAs9EmoaENS3gkjOBWGeVFSmaRpxUyg8uo-Gj8HdU_i0BGdtLYzW2iaf6b4Z2lh-WqjKPJWdx8hxnKHAXWY8qmu12ohBEHpNaXRE0Inwmwim58bnk5vxA3qCvtv30WcKzDvHFx1km6r8kMRWvQw2YbQ4WJ1V8tKvStlXH98wG_978i3YaOxM56JmjG1Y0nkH1r-gD3Zg1WZ_qvkOPI-mNdRGkTtF5kzq3j3EPLI7VxZHxHKn-TYwgAe48VikYubcvqE4mjs278C50nkxtaOLqiwMQKZJkt6Fx8H15HJImq4LRKHqLwmLfZZmwlUiQN-RoUb3eORpqRh6SioWXHAaoNvomRCmlGihiTDTWulYhiGjgu7BSl7keh8cnunIlN6yWKFhiIovoFQKlGjaz1LGaRfcBR0S1UCSm84Yr4l1Tdw4MaRLDOmShnRdOG2XvNd4HH9N3jGkaCc2VOhCb0HspLmx88QPKCqGCP_g4PdVh7Bm9q7zy3qwUs4qfYQGSSmPLSd-Ampe2ys |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-homnwwLaWiQLb8rCnaW6T2I6dR0TXla3lAVqp0h4i23EkNEgQTV_46zk7aYXGNO3NUuzE1l3uw3f3O4DPhUwLXvCIcEsZQX2riJZSERFpQ3We54l0hcKzy2SyYD-WfLkDX7e1MNZan3xmB27oY_l5ZdbuqmyYIsdJgQJ3lzPGeFOttY0ZMB61xdEJQTcibmOYUZgO59-vrtEXjMNBjF4Tczcdz7SQb6vyQhZ7BTN-A7PN1pq8kt-Dda0H5vEP1Mb_3ftbOGgtzeCsYY13sGPLLuw_wx_swiuf_2lWPfg1u2nANqoyqIpg3nTvIe6aPRh5JBHPn-7Z2EEe4IuvVK4egos7FEirwGceBCNbVjd-dLauKweR6dKkD2Ex_jY_n5C27wIxqPxrItJY5IUKjWLoPQrU6ZFMIquNQF_JpEoqSRk6jpELYmqNNprihbXGpppzQRV9D52yKu0RBLKwiSu-FalB0xBVH6NUK5RpNi5yIWkfwg0dMtOCkrveGLeZd07CNHOkyxzpspZ0ffiyXXLfIHL8a3LPkWI7saVCH043xM7af3aVxYyiakjwBMd_X_UJXk_ms2k2vbj8eQJ77jtNttkpdOqHtf2A5kmtP3qufAIO6954 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigation+of+Through-Wall+Distortions+of+Frontal+Radar+Images+Using+Denoising+Autoencoders&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Vishwakarma%2C+Shelly&rft.au=Shobha+Sundar+Ram&rft.date=2020-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=58&rft.issue=9&rft.spage=6650&rft_id=info:doi/10.1109%2FTGRS.2020.2978440&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |