Mitigation of Through-Wall Distortions of Frontal Radar Images Using Denoising Autoencoders

Radar images of humans and other concealed objects are considerably distorted by attenuation, refraction, and multipath clutter in indoor through-wall environments. Although several methods have been proposed for removing target-independent static and dynamic clutter, there still remain considerable...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 58; no. 9; pp. 6650 - 6663
Main Authors Vishwakarma, Shelly, Ram, Shobha Sundar
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2020.2978440

Cover

Abstract Radar images of humans and other concealed objects are considerably distorted by attenuation, refraction, and multipath clutter in indoor through-wall environments. Although several methods have been proposed for removing target-independent static and dynamic clutter, there still remain considerable challenges in mitigating target-dependent clutter especially when the knowledge of the exact propagation characteristics or analytical framework is unavailable. In this article, we focus on mitigating wall effects using a machine learning-based solution-denoising autoencoders-that does not require prior information of the wall parameters or room geometry. Instead, the method relies on the availability of a large volume of training radar images gathered in through-wall conditions and the corresponding clean images captured in line-of-sight conditions. During the training phase, the autoencoder learns how to denoise the corrupted through-wall images in order to resemble the free space images. We have validated the performance of the proposed solution for both static and dynamic human subjects. The frontal radar images of static targets are obtained by processing wideband planar array measurement data with 2-D array and range processing. The frontal radar images of dynamic targets are simulated using narrowband planar array data processed with 2-D array and Doppler processing. In both simulation and measurement processes, we incorporate considerable diversity in the target and propagation conditions. Our experimental results, from both simulation and measurement data, show that the denoised images are considerably more similar to the free-space images when compared to the original through-wall images.
AbstractList Radar images of humans and other concealed objects are considerably distorted by attenuation, refraction, and multipath clutter in indoor through-wall environments. Although several methods have been proposed for removing target-independent static and dynamic clutter, there still remain considerable challenges in mitigating target-dependent clutter especially when the knowledge of the exact propagation characteristics or analytical framework is unavailable. In this article, we focus on mitigating wall effects using a machine learning-based solution—denoising autoencoders—that does not require prior information of the wall parameters or room geometry. Instead, the method relies on the availability of a large volume of training radar images gathered in through-wall conditions and the corresponding clean images captured in line-of-sight conditions. During the training phase, the autoencoder learns how to denoise the corrupted through-wall images in order to resemble the free space images. We have validated the performance of the proposed solution for both static and dynamic human subjects. The frontal radar images of static targets are obtained by processing wideband planar array measurement data with 2-D array and range processing. The frontal radar images of dynamic targets are simulated using narrowband planar array data processed with 2-D array and Doppler processing. In both simulation and measurement processes, we incorporate considerable diversity in the target and propagation conditions. Our experimental results, from both simulation and measurement data, show that the denoised images are considerably more similar to the free-space images when compared to the original through-wall images.
Author Vishwakarma, Shelly
Ram, Shobha Sundar
Author_xml – sequence: 1
  givenname: Shelly
  orcidid: 0000-0003-1035-3259
  surname: Vishwakarma
  fullname: Vishwakarma, Shelly
  email: shellyv@iiitd.ac.in
  organization: Indraprastha Institute of Information Technology Delhi, New Delhi, India
– sequence: 2
  givenname: Shobha Sundar
  surname: Ram
  fullname: Ram, Shobha Sundar
  email: shobha@iiitd.ac.in
  organization: Indraprastha Institute of Information Technology Delhi, New Delhi, India
BookMark eNp9kE1PwkAQhjcGEwH9AcZLE8_F_ezuHgkIkmBMEOLBQ7Mt27KkdHF3e_Df2wLx4MHTTDLPO5N5BqBX21oDcI_gCCEon9bz1fsIQwxHWHJBKbwCfcSYiGFCaQ_0IZJJjIXEN2Dg_R5CRBniffD5aoIpVTC2jmwRrXfONuUu_lBVFU2ND9Z1I9_NZs7WQVXRSm2VixYHVWofbbypy2iqa2tO3bgJVte53Wrnb8F1oSqv7y51CDaz5_XkJV6-zReT8TLOsSQh5hLzbaFgriijkhOBkEiQznKOmcylEkoQihFCGJIkyyRDihVa51pmjHGiyBA8nvcenf1qtA_p3jaubk-mmBLBk6TFWoqfqdxZ750u0tyE0-PBKVOlCKadybQzmXYm04vJNon-JI_OHJT7_jfzcM4YrfUvLyGFgmPyA4P7gKQ
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2023_3328841
crossref_primary_10_1049_rsn2_12065
crossref_primary_10_1109_TGRS_2023_3274207
crossref_primary_10_1109_JSEN_2022_3188165
crossref_primary_10_1109_JSEN_2024_3486458
crossref_primary_10_1109_LGRS_2022_3229954
crossref_primary_10_1109_TGRS_2022_3162333
crossref_primary_10_1088_1361_6420_ad2530
crossref_primary_10_3390_s24186145
crossref_primary_10_1109_TGRS_2021_3100455
crossref_primary_10_1109_TGRS_2021_3098122
crossref_primary_10_1109_JSEN_2023_3273533
crossref_primary_10_1109_TGRS_2022_3194560
crossref_primary_10_1017_S1759078722000733
crossref_primary_10_1109_OJSP_2021_3121199
crossref_primary_10_1109_TGRS_2021_3112579
crossref_primary_10_1109_JSTARS_2023_3296872
crossref_primary_10_3390_rs15133434
crossref_primary_10_1109_TGRS_2023_3323955
crossref_primary_10_1109_LSP_2024_3451314
Cites_doi 10.1109/TGRS.2011.2128331
10.1109/TGRS.2014.2355211
10.1109/LGRS.2008.924002
10.1109/TAES.2017.2701646
10.1109/TGRS.2012.2203310
10.1109/TAP.2012.2196962
10.1109/LGRS.2013.2283778
10.1109/TAP.1966.1138693
10.1117/12.818513
10.1109/RADAR.2016.7485326
10.1109/TGRS.2009.2037219
10.2528/PIERB10022206
10.1016/j.jfranklin.2008.03.003
10.1186/1687-6180-2013-47
10.1109/TIP.2007.899030
10.1126/science.1127647
10.1145/2689746.2689747
10.1561/2200000016
10.1007/s11063-018-9894-5
10.1109/TAES.2017.2739958
10.1007/978-3-319-74283-0
10.1109/ICPR.2010.579
10.1109/TIP.2013.2256916
10.1049/iet-rsn:20070140
10.1145/1390156.1390294
10.1109/RADAR.2011.5960591
10.1109/TAES.2014.140481
10.1109/97.995823
10.1109/TIP.2017.2786462
10.1137/080725891
10.1109/TAES.2013.120528
10.1109/TCYB.2016.2536638
10.1109/RADAR.2015.7131170
10.1109/RADAR.2018.8378796
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2020.2978440
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore DIgital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 6663
ExternalDocumentID 10_1109_TGRS_2020_2978440
9040872
Genre orig-research
GrantInformation_xml – fundername: Ministry of Electronics and Information Technology, Government of India, through the Visvesvaraya PhD Scheme
  funderid: 10.13039/501100008628
– fundername: Air Force Office of Scientific Research (AFOSR), Asian Office of Aerospace Research and Development (AOARD)
  grantid: 5IOA036; FA23861610004
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-7927dfa0ca454973811861ebc7259c9a8a83421112036bb951a5feece9b5573a3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:11:48 EDT 2025
Wed Oct 01 02:19:58 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Wed Aug 27 02:32:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-7927dfa0ca454973811861ebc7259c9a8a83421112036bb951a5feece9b5573a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1035-3259
PQID 2438766573
PQPubID 85465
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2020_2978440
proquest_journals_2438766573
ieee_primary_9040872
crossref_primary_10_1109_TGRS_2020_2978440
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref15
ref36
ref14
ref31
ref33
ref11
ref10
ref2
ref39
ref17
ref38
ref16
ref19
ref18
(ref34) 2020
ref24
ref23
tivive (ref41) 2011
ref25
ref20
amin (ref1) 2016
ref22
ref21
ref28
sutskever (ref30) 2013
ref29
ref8
bishop (ref35) 2006
ref7
socher (ref26) 2011
chen (ref27) 2012
ref9
yee (ref32) 1966; 14
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref21
  doi: 10.1109/TGRS.2011.2128331
– ident: ref13
  doi: 10.1109/TGRS.2014.2355211
– year: 2012
  ident: ref27
  article-title: Marginalized denoising autoencoders for domain adaptation
  publication-title: arXiv 1206 4683
– ident: ref3
  doi: 10.1109/LGRS.2008.924002
– ident: ref17
  doi: 10.1109/TAES.2017.2701646
– ident: ref20
  doi: 10.1109/TGRS.2012.2203310
– ident: ref33
  doi: 10.1109/TAP.2012.2196962
– ident: ref6
  doi: 10.1109/LGRS.2013.2283778
– volume: 14
  start-page: 302
  year: 1966
  ident: ref32
  article-title: Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media
  publication-title: IEEE Trans Antennas Propag
  doi: 10.1109/TAP.1966.1138693
– ident: ref19
  doi: 10.1117/12.818513
– ident: ref9
  doi: 10.1109/RADAR.2016.7485326
– ident: ref4
  doi: 10.1109/TGRS.2009.2037219
– ident: ref2
  doi: 10.2528/PIERB10022206
– ident: ref14
  doi: 10.1016/j.jfranklin.2008.03.003
– ident: ref7
  doi: 10.1186/1687-6180-2013-47
– ident: ref11
  doi: 10.1109/TIP.2007.899030
– ident: ref24
  doi: 10.1126/science.1127647
– ident: ref25
  doi: 10.1145/2689746.2689747
– ident: ref31
  doi: 10.1561/2200000016
– ident: ref39
  doi: 10.1007/s11063-018-9894-5
– year: 2016
  ident: ref1
  publication-title: Through-the-Wall Radar Imaging
– ident: ref18
  doi: 10.1109/TAES.2017.2739958
– start-page: 1139
  year: 2013
  ident: ref30
  article-title: On the importance of initialization and momentum in deep learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref15
  doi: 10.1007/978-3-319-74283-0
– ident: ref37
  doi: 10.1109/ICPR.2010.579
– ident: ref22
  doi: 10.1109/TIP.2013.2256916
– start-page: 801
  year: 2011
  ident: ref26
  article-title: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref5
  doi: 10.1049/iet-rsn:20070140
– ident: ref23
  doi: 10.1145/1390156.1390294
– ident: ref40
  doi: 10.1109/RADAR.2011.5960591
– year: 2006
  ident: ref35
  publication-title: Pattern Recognition and Machine Learning
– ident: ref8
  doi: 10.1109/TAES.2014.140481
– start-page: 1
  year: 2011
  ident: ref41
  article-title: Wall clutter mitigation based on eigen-analysis in through-the-wall radar imaging
  publication-title: Proc 17th Int Conf Digit Signal Process (DSP)
– ident: ref36
  doi: 10.1109/97.995823
– ident: ref16
  doi: 10.1109/TIP.2017.2786462
– ident: ref38
  doi: 10.1137/080725891
– ident: ref12
  doi: 10.1109/TAES.2013.120528
– ident: ref29
  doi: 10.1109/TCYB.2016.2536638
– ident: ref10
  doi: 10.1109/RADAR.2015.7131170
– ident: ref28
  doi: 10.1109/RADAR.2018.8378796
– year: 2020
  ident: ref34
  publication-title: Walabot
SSID ssj0014517
Score 2.4934962
Snippet Radar images of humans and other concealed objects are considerably distorted by attenuation, refraction, and multipath clutter in indoor through-wall...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6650
SubjectTerms Aerodynamics
Attenuation
Broadband
Clutter
Denoising autoencoders
Doppler radar
Doppler sonar
Doppler/range-enhanced frontal imaging
Indoor environments
Learning algorithms
Machine learning
Measurement
Mitigation
Narrowband
Noise reduction
Propagation
Radar
Radar imaging
Simulation
stochastic finite difference time-domain (sFDTD)
Target recognition
through-wall radar
Training
Wall effects
Title Mitigation of Through-Wall Distortions of Frontal Radar Images Using Denoising Autoencoders
URI https://ieeexplore.ieee.org/document/9040872
https://www.proquest.com/docview/2438766573
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore DIgital Library
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED9UEPTBj6k4ndIHn8TMtmmb9FHUOYX5MCcIPpQkTWGorWzti3-9l7QroiK-BZqElLvcR-7udwAnGY-zMAs9EmoaENS3gkjOBWGeVFSmaRpxUyg8uo-Gj8HdU_i0BGdtLYzW2iaf6b4Z2lh-WqjKPJWdx8hxnKHAXWY8qmu12ohBEHpNaXRE0Inwmwim58bnk5vxA3qCvtv30WcKzDvHFx1km6r8kMRWvQw2YbQ4WJ1V8tKvStlXH98wG_978i3YaOxM56JmjG1Y0nkH1r-gD3Zg1WZ_qvkOPI-mNdRGkTtF5kzq3j3EPLI7VxZHxHKn-TYwgAe48VikYubcvqE4mjs278C50nkxtaOLqiwMQKZJkt6Fx8H15HJImq4LRKHqLwmLfZZmwlUiQN-RoUb3eORpqRh6SioWXHAaoNvomRCmlGihiTDTWulYhiGjgu7BSl7keh8cnunIlN6yWKFhiIovoFQKlGjaz1LGaRfcBR0S1UCSm84Yr4l1Tdw4MaRLDOmShnRdOG2XvNd4HH9N3jGkaCc2VOhCb0HspLmx88QPKCqGCP_g4PdVh7Bm9q7zy3qwUs4qfYQGSSmPLSd-Ampe2ys
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-homnwwLaWiQLb8rCnaW6T2I6dR0TXla3lAVqp0h4i23EkNEgQTV_46zk7aYXGNO3NUuzE1l3uw3f3O4DPhUwLXvCIcEsZQX2riJZSERFpQ3We54l0hcKzy2SyYD-WfLkDX7e1MNZan3xmB27oY_l5ZdbuqmyYIsdJgQJ3lzPGeFOttY0ZMB61xdEJQTcibmOYUZgO59-vrtEXjMNBjF4Tczcdz7SQb6vyQhZ7BTN-A7PN1pq8kt-Dda0H5vEP1Mb_3ftbOGgtzeCsYY13sGPLLuw_wx_swiuf_2lWPfg1u2nANqoyqIpg3nTvIe6aPRh5JBHPn-7Z2EEe4IuvVK4egos7FEirwGceBCNbVjd-dLauKweR6dKkD2Ex_jY_n5C27wIxqPxrItJY5IUKjWLoPQrU6ZFMIquNQF_JpEoqSRk6jpELYmqNNprihbXGpppzQRV9D52yKu0RBLKwiSu-FalB0xBVH6NUK5RpNi5yIWkfwg0dMtOCkrveGLeZd07CNHOkyxzpspZ0ffiyXXLfIHL8a3LPkWI7saVCH043xM7af3aVxYyiakjwBMd_X_UJXk_ms2k2vbj8eQJ77jtNttkpdOqHtf2A5kmtP3qufAIO6954
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigation+of+Through-Wall+Distortions+of+Frontal+Radar+Images+Using+Denoising+Autoencoders&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Vishwakarma%2C+Shelly&rft.au=Shobha+Sundar+Ram&rft.date=2020-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=58&rft.issue=9&rft.spage=6650&rft_id=info:doi/10.1109%2FTGRS.2020.2978440&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon