Principal Component-Based Approach for Profile Optimization Algorithms in DOCSIS 3.1
Data over cable service interface specification (DOCSIS) introduced the possibility of a variable bit-loading over the subcarriers within a channel in its release DOCSIS 3.1. This variable bit-loading will improve the data rates. However, to limit the encoding processing overhead, the concept of pro...
Saved in:
| Published in | IEEE eTransactions on network and service management Vol. 15; no. 3; pp. 934 - 945 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-4537 1932-4537 |
| DOI | 10.1109/TNSM.2018.2828704 |
Cover
| Abstract | Data over cable service interface specification (DOCSIS) introduced the possibility of a variable bit-loading over the subcarriers within a channel in its release DOCSIS 3.1. This variable bit-loading will improve the data rates. However, to limit the encoding processing overhead, the concept of profiles was introduced. Each profile defines the modulation per subcarrier for a given channel while the number of allowed profiles is limited. Thus, an efficient profile assignment scheme, which determines the best set of profiles based on the users' channel conditions, is needed. Although various profile assignment algorithms have been proposed in the literature, realistic evaluation of these schemes has been difficult, as channel quality measurements of real DOCSIS 3.1 systems has not previously been available. In this paper, we exploit DOCSIS 3.1 measurement data to evaluate performance of the proposed algorithms. We propose to employ principal component analysis to derive low-dimensional clustering variables in order to ensure efficient profile optimization. We show how this technique can be employed with different clustering algorithms to improve the spectrum efficiency of the profiles by extracting the most important information of the channels in low-dimensional vectors. This not only reduces the complexity of the clustering, but also ensures better throughput. Moreover, we adapt the clustering algorithms to tailor them to the profile optimization problem. Finally, we present an exhaustive simulation-based performance analysis to compare the different algorithms for various scenarios using extrapolation of the measurements data. |
|---|---|
| AbstractList | Data over cable service interface specification (DOCSIS) introduced the possibility of a variable bit-loading over the subcarriers within a channel in its release DOCSIS 3.1. This variable bit-loading will improve the data rates. However, to limit the encoding processing overhead, the concept of profiles was introduced. Each profile defines the modulation per subcarrier for a given channel while the number of allowed profiles is limited. Thus, an efficient profile assignment scheme, which determines the best set of profiles based on the users’ channel conditions, is needed. Although various profile assignment algorithms have been proposed in the literature, realistic evaluation of these schemes has been difficult, as channel quality measurements of real DOCSIS 3.1 systems has not previously been available. In this paper, we exploit DOCSIS 3.1 measurement data to evaluate performance of the proposed algorithms. We propose to employ principal component analysis to derive low-dimensional clustering variables in order to ensure efficient profile optimization. We show how this technique can be employed with different clustering algorithms to improve the spectrum efficiency of the profiles by extracting the most important information of the channels in low-dimensional vectors. This not only reduces the complexity of the clustering, but also ensures better throughput. Moreover, we adapt the clustering algorithms to tailor them to the profile optimization problem. Finally, we present an exhaustive simulation-based performance analysis to compare the different algorithms for various scenarios using extrapolation of the measurements data. |
| Author | Bedeer, Ebrahim Hossain, Md. Jahangir Howlett, Colin Ben Ghorbel, Mahdi Cheng, Julian Berscheid, Brian |
| Author_xml | – sequence: 1 givenname: Mahdi orcidid: 0000-0002-4517-0017 surname: Ben Ghorbel fullname: Ben Ghorbel, Mahdi email: mahdi.benghorbel@ubc.ca organization: School of Engineering, University of British Columbia, Kelowna, Canada – sequence: 2 givenname: Brian surname: Berscheid fullname: Berscheid, Brian email: brian.berscheid@usask.ca organization: Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada – sequence: 3 givenname: Ebrahim surname: Bedeer fullname: Bedeer, Ebrahim email: e.bedeer.mohamed@ulster.ac.uk organization: School of Engineering, Ulster University, Jordanstown, U.K – sequence: 4 givenname: Md. Jahangir orcidid: 0000-0002-3377-7831 surname: Hossain fullname: Hossain, Md. Jahangir email: jahangir.hossain@ubc.ca organization: School of Engineering, University of British Columbia, Kelowna, Canada – sequence: 5 givenname: Colin surname: Howlett fullname: Howlett, Colin email: colin.howlett@vecima.com organization: Vecima Networks Inc., Victoria, Canada – sequence: 6 givenname: Julian orcidid: 0000-0001-6310-8236 surname: Cheng fullname: Cheng, Julian email: julian.cheng@ubc.ca organization: School of Engineering, University of British Columbia, Kelowna, Canada |
| BookMark | eNp9kMtOwzAQRS1UJNrCByA2llgn-JU4XpbyqlRopZa15SQOdZXEwXYX8PWktEKIBdJIM4t77szcERi0ttUAXGIUY4zEzfpl9RwThLOYZCTjiJ2AIRaURCyhfPBrPgMj77cIJRkWZAjWS2fawnSqhlPbdL1pG6Jb5XUJJ13nrCo2sLIOLp2tTK3hogumMZ8qGNvCSf1mnQmbxkPTwrvFdDVbQRrjc3Baqdrri2Mfg9eH-_X0KZovHmfTyTwqiKAh4kmeY8SQpkSUQqQp57TSWhVaC1FpmiqelUShPKtYmpaMphxhhnIhFC2pInQMrg--_aHvO-2D3Nqda_uVkmBEEtaX6FX8oCqc9d7pShYmfD8QnDK1xEjuI5T7COU-QnmMsCfxH7JzplHu41_m6sAYrfWPPqMM85TRL3hKfUI |
| CODEN | ITNSC4 |
| CitedBy_id | crossref_primary_10_1109_TNSM_2020_3044850 crossref_primary_10_1109_TMLCN_2024_3455268 crossref_primary_10_1109_TNSM_2019_2901879 crossref_primary_10_1109_TGCN_2021_3079369 crossref_primary_10_1109_TVT_2021_3090083 |
| Cites_doi | 10.1109/MCOM.2015.7060491 10.1007/s10994-009-5103-0 10.1017/CBO9780511805967 10.1109/TIT.1982.1056489 10.1109/ICCW.2015.7247181 10.1002/9781118445112.stat06472 10.1109/ISIT.2016.7541420 10.1109/TIT.2009.2021326 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TNSM.2018.2828704 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1932-4537 |
| EndPage | 945 |
| ExternalDocumentID | 10_1109_TNSM_2018_2828704 8341764 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE AAYXX CITATION RIG |
| ID | FETCH-LOGICAL-c293t-75bb1040e329d9966773feeacee99fe36a78d2a0b8f466d43670140b99a3d3a23 |
| IEDL.DBID | RIE |
| ISSN | 1932-4537 |
| IngestDate | Mon Jun 30 10:21:41 EDT 2025 Wed Oct 01 02:39:29 EDT 2025 Thu Apr 24 23:04:12 EDT 2025 Wed Aug 27 02:55:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-75bb1040e329d9966773feeacee99fe36a78d2a0b8f466d43670140b99a3d3a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6310-8236 0000-0002-3377-7831 0000-0002-4517-0017 |
| PQID | 2102542549 |
| PQPubID | 85504 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_8341764 proquest_journals_2102542549 crossref_citationtrail_10_1109_TNSM_2018_2828704 crossref_primary_10_1109_TNSM_2018_2828704 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Sept. 2018-9-00 20180901 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-Sept. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE eTransactions on network and service management |
| PublicationTitleAbbrev | T-NSM |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref14 jump (ref2) 2017 ref11 (ref5) 2017 al-banna (ref3) 2014 white (ref9) 2016 ref17 ref16 ref19 ref18 ref7 (ref1) 2014 sundaresan (ref8) 2016 (ref13) 2017 (ref4) 2017 arthur (ref20) 2007 brucker (ref15) 1978 ghorbel (ref10) 2016 chapman (ref6) 2013 |
| References_xml | – ident: ref7 doi: 10.1109/MCOM.2015.7060491 – ident: ref16 doi: 10.1007/s10994-009-5103-0 – year: 2017 ident: ref5 publication-title: Data-Over-Cable Service Interface Specifications (DOCSIS® 3 1) MAC and Upper Layer Protocols Interface Specification – year: 2017 ident: ref13 publication-title: Cable Modem Operations Support System Interface Specification – start-page: 485 year: 2013 ident: ref6 article-title: The power of DOCSIS 3.1 downstream profiles publication-title: Spring Technical Forum Proceedings – year: 2014 ident: ref3 publication-title: The Spectral Efficiency of DOCSIS 3 1 Systems – start-page: 219 year: 2016 ident: ref9 article-title: DOCSIS 3.1 profile management application and algorithms publication-title: Spring Technical Forum Proceedings – ident: ref14 doi: 10.1017/CBO9780511805967 – ident: ref19 doi: 10.1109/TIT.1982.1056489 – ident: ref11 doi: 10.1109/ICCW.2015.7247181 – year: 2014 ident: ref1 publication-title: New Generation of DOCSIS Technology – start-page: 1027 year: 2007 ident: ref20 article-title: K-means++: The advantages of careful seeding publication-title: Proc 18th Annu ACM-SIAM Symp Discr Algorithms (SODA) – start-page: 45 year: 1978 ident: ref15 article-title: On the complexity of clustering problems publication-title: Proc Workshop Held Univ Bonn Optim Oper Res – start-page: 130 year: 2016 ident: ref8 article-title: Applications of machine learning in cable access networks publication-title: Spring Technical Forum Proceedings – year: 2017 ident: ref2 publication-title: Introduction to DOCSIS 3 1 – ident: ref18 doi: 10.1002/9781118445112.stat06472 – year: 2017 ident: ref4 publication-title: Data-Over-Cable Service Interface Specifications (DOCSIS® 3 1) Physical Layer Specification – start-page: 69 year: 2016 ident: ref10 article-title: A clustering-based approach for low-complexity adaptive profile selection in DOCSIS 3.1 publication-title: Proc 28th Biennial Symp Commun (BSC) – ident: ref12 doi: 10.1109/ISIT.2016.7541420 – ident: ref17 doi: 10.1109/TIT.2009.2021326 |
| SSID | ssj0058192 |
| Score | 2.148302 |
| Snippet | Data over cable service interface specification (DOCSIS) introduced the possibility of a variable bit-loading over the subcarriers within a channel in its... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 934 |
| SubjectTerms | Adaptive modulation Algorithms Cable modems Clustering Clustering algorithms Complexity theory Computer simulation data over cable networks OFDM Optimization Principal components analysis profile optimization Quadrature amplitude modulation Signal to noise ratio Subcarriers |
| Title | Principal Component-Based Approach for Profile Optimization Algorithms in DOCSIS 3.1 |
| URI | https://ieeexplore.ieee.org/document/8341764 https://www.proquest.com/docview/2102542549 |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1932-4537 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0058192 issn: 1932-4537 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ6AJz34QiO-0oMn4y4L3W7bI6IETUATIOG2abddJSoYWC7-etvdLjFqjLc9tM1kpjszXzv9BuAiwjgkTAlPpTTwQiISTwhFPakY4doEVJyTVfcHUW8c3k_IpAJX67cwWuu8-Ez79jO_y1fzZGWPyhrMuFwahVWoUhYVb7VKr0sssZe7tWwGvDEaDPu2cIv5FlNQ14etjDt5I5Uf3jcPKd0d6JfCFJUkL_4qk37y8Y2n8b_S7sK2yy1Ru9gMe1DRs33Y-sI4WIPRY3G4boZZTzCfmSW8axPJFGo7dnFk0lj0WLTyRg_Go7y5p5qo_fo0X0yz57clms7QzUNneDdE2G8ewLh7O-r0PNdYwUtMdM88SqQ0MCzQxhDKAh5KcaqNC9aa81TjSFCmWiKQLA2jSIWW5M0AMcm5wAqLFj6EjZmR8AgQIRJz1dQtbXIBSbFgEqdUmSyIyKSJWR2CUu1x4ljHbfOL1zhHHwGPraVia6nYWaoOl-sp7wXlxl-Da1bz64FO6XU4LW0bu59yGVt0S0KLiI9_n3UCm3btooTsFDayxUqfmZwjk-f5ZvsEhqPTEQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6JQwAMTIiGt7TgZS6EqjxakthJbZMcOVPSB2nTh12MnToUAIbYM5-Tkc-7us8_fAZz5GBMaSO7IhHkOoTx2OJfMETKgodIBFWdk1e2O3-qTu2f6vAQXi7swSqms-Ey55jE7y5eTeG62yi4D7XKZT5ZhhRJCaH5bq_C71FB72XPLqhde9jrdtindClyDKpjtxFZEnqyVyg__mwWV5ia0C3XyWpI3d54KN_74xtT4X323YMNml6ieL4dtWFLjHVj_wjm4C72nfHtdixlfMBnrVzhXOpZJVLf84kgnsugpb-aNHrVPGdnLmqg-fJlMB-nraIYGY3T92OjedhF2q3vQb970Gi3HtlZwYh3fU4dRITQQ85Q2hTSQhzGcKO2ElQrDRGGfs0DWuCeChPi-JIbmTUMxEYYcS8xreB9KY63hASBKBQ5lVdWUzgYEwzwQOGFS50FUxFUclMErpj2KLe-4aX8xjDL84YWRsVRkLBVZS5XhfDHkPSfd-Et418z8QtBOehkqhW0j-1vOIoNvKTGY-PD3Uaew2uq1H6KH2879EayZ7-QFZRUopdO5OtYZSCpOsoX3Cb2S1l4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principal+Component-Based+Approach+for+Profile+Optimization+Algorithms+in+DOCSIS+3.1&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Mahdi+Ben+Ghorbel&rft.au=Berscheid%2C+Brian&rft.au=Bedeer%2C+Ebrahim&rft.au=Md+Jahangir+Hossain&rft.date=2018-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=1932-4537&rft.volume=15&rft.issue=3&rft.spage=934&rft_id=info:doi/10.1109%2FTNSM.2018.2828704&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon |