Principal Component-Based Approach for Profile Optimization Algorithms in DOCSIS 3.1

Data over cable service interface specification (DOCSIS) introduced the possibility of a variable bit-loading over the subcarriers within a channel in its release DOCSIS 3.1. This variable bit-loading will improve the data rates. However, to limit the encoding processing overhead, the concept of pro...

Full description

Saved in:
Bibliographic Details
Published inIEEE eTransactions on network and service management Vol. 15; no. 3; pp. 934 - 945
Main Authors Ben Ghorbel, Mahdi, Berscheid, Brian, Bedeer, Ebrahim, Hossain, Md. Jahangir, Howlett, Colin, Cheng, Julian
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4537
1932-4537
DOI10.1109/TNSM.2018.2828704

Cover

Abstract Data over cable service interface specification (DOCSIS) introduced the possibility of a variable bit-loading over the subcarriers within a channel in its release DOCSIS 3.1. This variable bit-loading will improve the data rates. However, to limit the encoding processing overhead, the concept of profiles was introduced. Each profile defines the modulation per subcarrier for a given channel while the number of allowed profiles is limited. Thus, an efficient profile assignment scheme, which determines the best set of profiles based on the users' channel conditions, is needed. Although various profile assignment algorithms have been proposed in the literature, realistic evaluation of these schemes has been difficult, as channel quality measurements of real DOCSIS 3.1 systems has not previously been available. In this paper, we exploit DOCSIS 3.1 measurement data to evaluate performance of the proposed algorithms. We propose to employ principal component analysis to derive low-dimensional clustering variables in order to ensure efficient profile optimization. We show how this technique can be employed with different clustering algorithms to improve the spectrum efficiency of the profiles by extracting the most important information of the channels in low-dimensional vectors. This not only reduces the complexity of the clustering, but also ensures better throughput. Moreover, we adapt the clustering algorithms to tailor them to the profile optimization problem. Finally, we present an exhaustive simulation-based performance analysis to compare the different algorithms for various scenarios using extrapolation of the measurements data.
AbstractList Data over cable service interface specification (DOCSIS) introduced the possibility of a variable bit-loading over the subcarriers within a channel in its release DOCSIS 3.1. This variable bit-loading will improve the data rates. However, to limit the encoding processing overhead, the concept of profiles was introduced. Each profile defines the modulation per subcarrier for a given channel while the number of allowed profiles is limited. Thus, an efficient profile assignment scheme, which determines the best set of profiles based on the users’ channel conditions, is needed. Although various profile assignment algorithms have been proposed in the literature, realistic evaluation of these schemes has been difficult, as channel quality measurements of real DOCSIS 3.1 systems has not previously been available. In this paper, we exploit DOCSIS 3.1 measurement data to evaluate performance of the proposed algorithms. We propose to employ principal component analysis to derive low-dimensional clustering variables in order to ensure efficient profile optimization. We show how this technique can be employed with different clustering algorithms to improve the spectrum efficiency of the profiles by extracting the most important information of the channels in low-dimensional vectors. This not only reduces the complexity of the clustering, but also ensures better throughput. Moreover, we adapt the clustering algorithms to tailor them to the profile optimization problem. Finally, we present an exhaustive simulation-based performance analysis to compare the different algorithms for various scenarios using extrapolation of the measurements data.
Author Bedeer, Ebrahim
Hossain, Md. Jahangir
Howlett, Colin
Ben Ghorbel, Mahdi
Cheng, Julian
Berscheid, Brian
Author_xml – sequence: 1
  givenname: Mahdi
  orcidid: 0000-0002-4517-0017
  surname: Ben Ghorbel
  fullname: Ben Ghorbel, Mahdi
  email: mahdi.benghorbel@ubc.ca
  organization: School of Engineering, University of British Columbia, Kelowna, Canada
– sequence: 2
  givenname: Brian
  surname: Berscheid
  fullname: Berscheid, Brian
  email: brian.berscheid@usask.ca
  organization: Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada
– sequence: 3
  givenname: Ebrahim
  surname: Bedeer
  fullname: Bedeer, Ebrahim
  email: e.bedeer.mohamed@ulster.ac.uk
  organization: School of Engineering, Ulster University, Jordanstown, U.K
– sequence: 4
  givenname: Md. Jahangir
  orcidid: 0000-0002-3377-7831
  surname: Hossain
  fullname: Hossain, Md. Jahangir
  email: jahangir.hossain@ubc.ca
  organization: School of Engineering, University of British Columbia, Kelowna, Canada
– sequence: 5
  givenname: Colin
  surname: Howlett
  fullname: Howlett, Colin
  email: colin.howlett@vecima.com
  organization: Vecima Networks Inc., Victoria, Canada
– sequence: 6
  givenname: Julian
  orcidid: 0000-0001-6310-8236
  surname: Cheng
  fullname: Cheng, Julian
  email: julian.cheng@ubc.ca
  organization: School of Engineering, University of British Columbia, Kelowna, Canada
BookMark eNp9kMtOwzAQRS1UJNrCByA2llgn-JU4XpbyqlRopZa15SQOdZXEwXYX8PWktEKIBdJIM4t77szcERi0ttUAXGIUY4zEzfpl9RwThLOYZCTjiJ2AIRaURCyhfPBrPgMj77cIJRkWZAjWS2fawnSqhlPbdL1pG6Jb5XUJJ13nrCo2sLIOLp2tTK3hogumMZ8qGNvCSf1mnQmbxkPTwrvFdDVbQRrjc3Baqdrri2Mfg9eH-_X0KZovHmfTyTwqiKAh4kmeY8SQpkSUQqQp57TSWhVaC1FpmiqelUShPKtYmpaMphxhhnIhFC2pInQMrg--_aHvO-2D3Nqda_uVkmBEEtaX6FX8oCqc9d7pShYmfD8QnDK1xEjuI5T7COU-QnmMsCfxH7JzplHu41_m6sAYrfWPPqMM85TRL3hKfUI
CODEN ITNSC4
CitedBy_id crossref_primary_10_1109_TNSM_2020_3044850
crossref_primary_10_1109_TMLCN_2024_3455268
crossref_primary_10_1109_TNSM_2019_2901879
crossref_primary_10_1109_TGCN_2021_3079369
crossref_primary_10_1109_TVT_2021_3090083
Cites_doi 10.1109/MCOM.2015.7060491
10.1007/s10994-009-5103-0
10.1017/CBO9780511805967
10.1109/TIT.1982.1056489
10.1109/ICCW.2015.7247181
10.1002/9781118445112.stat06472
10.1109/ISIT.2016.7541420
10.1109/TIT.2009.2021326
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TNSM.2018.2828704
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-4537
EndPage 945
ExternalDocumentID 10_1109_TNSM_2018_2828704
8341764
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c293t-75bb1040e329d9966773feeacee99fe36a78d2a0b8f466d43670140b99a3d3a23
IEDL.DBID RIE
ISSN 1932-4537
IngestDate Mon Jun 30 10:21:41 EDT 2025
Wed Oct 01 02:39:29 EDT 2025
Thu Apr 24 23:04:12 EDT 2025
Wed Aug 27 02:55:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-75bb1040e329d9966773feeacee99fe36a78d2a0b8f466d43670140b99a3d3a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6310-8236
0000-0002-3377-7831
0000-0002-4517-0017
PQID 2102542549
PQPubID 85504
PageCount 12
ParticipantIDs ieee_primary_8341764
proquest_journals_2102542549
crossref_citationtrail_10_1109_TNSM_2018_2828704
crossref_primary_10_1109_TNSM_2018_2828704
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Sept.
2018-9-00
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-Sept.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE eTransactions on network and service management
PublicationTitleAbbrev T-NSM
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
jump (ref2) 2017
ref11
(ref5) 2017
al-banna (ref3) 2014
white (ref9) 2016
ref17
ref16
ref19
ref18
ref7
(ref1) 2014
sundaresan (ref8) 2016
(ref13) 2017
(ref4) 2017
arthur (ref20) 2007
brucker (ref15) 1978
ghorbel (ref10) 2016
chapman (ref6) 2013
References_xml – ident: ref7
  doi: 10.1109/MCOM.2015.7060491
– ident: ref16
  doi: 10.1007/s10994-009-5103-0
– year: 2017
  ident: ref5
  publication-title: Data-Over-Cable Service Interface Specifications (DOCSIS® 3 1) MAC and Upper Layer Protocols Interface Specification
– year: 2017
  ident: ref13
  publication-title: Cable Modem Operations Support System Interface Specification
– start-page: 485
  year: 2013
  ident: ref6
  article-title: The power of DOCSIS 3.1 downstream profiles
  publication-title: Spring Technical Forum Proceedings
– year: 2014
  ident: ref3
  publication-title: The Spectral Efficiency of DOCSIS 3 1 Systems
– start-page: 219
  year: 2016
  ident: ref9
  article-title: DOCSIS 3.1 profile management application and algorithms
  publication-title: Spring Technical Forum Proceedings
– ident: ref14
  doi: 10.1017/CBO9780511805967
– ident: ref19
  doi: 10.1109/TIT.1982.1056489
– ident: ref11
  doi: 10.1109/ICCW.2015.7247181
– year: 2014
  ident: ref1
  publication-title: New Generation of DOCSIS Technology
– start-page: 1027
  year: 2007
  ident: ref20
  article-title: K-means++: The advantages of careful seeding
  publication-title: Proc 18th Annu ACM-SIAM Symp Discr Algorithms (SODA)
– start-page: 45
  year: 1978
  ident: ref15
  article-title: On the complexity of clustering problems
  publication-title: Proc Workshop Held Univ Bonn Optim Oper Res
– start-page: 130
  year: 2016
  ident: ref8
  article-title: Applications of machine learning in cable access networks
  publication-title: Spring Technical Forum Proceedings
– year: 2017
  ident: ref2
  publication-title: Introduction to DOCSIS 3 1
– ident: ref18
  doi: 10.1002/9781118445112.stat06472
– year: 2017
  ident: ref4
  publication-title: Data-Over-Cable Service Interface Specifications (DOCSIS® 3 1) Physical Layer Specification
– start-page: 69
  year: 2016
  ident: ref10
  article-title: A clustering-based approach for low-complexity adaptive profile selection in DOCSIS 3.1
  publication-title: Proc 28th Biennial Symp Commun (BSC)
– ident: ref12
  doi: 10.1109/ISIT.2016.7541420
– ident: ref17
  doi: 10.1109/TIT.2009.2021326
SSID ssj0058192
Score 2.148302
Snippet Data over cable service interface specification (DOCSIS) introduced the possibility of a variable bit-loading over the subcarriers within a channel in its...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 934
SubjectTerms Adaptive modulation
Algorithms
Cable modems
Clustering
Clustering algorithms
Complexity theory
Computer simulation
data over cable networks
OFDM
Optimization
Principal components analysis
profile optimization
Quadrature amplitude modulation
Signal to noise ratio
Subcarriers
Title Principal Component-Based Approach for Profile Optimization Algorithms in DOCSIS 3.1
URI https://ieeexplore.ieee.org/document/8341764
https://www.proquest.com/docview/2102542549
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1932-4537
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0058192
  issn: 1932-4537
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ6AJz34QiO-0oMn4y4L3W7bI6IETUATIOG2abddJSoYWC7-etvdLjFqjLc9tM1kpjszXzv9BuAiwjgkTAlPpTTwQiISTwhFPakY4doEVJyTVfcHUW8c3k_IpAJX67cwWuu8-Ez79jO_y1fzZGWPyhrMuFwahVWoUhYVb7VKr0sssZe7tWwGvDEaDPu2cIv5FlNQ14etjDt5I5Uf3jcPKd0d6JfCFJUkL_4qk37y8Y2n8b_S7sK2yy1Ru9gMe1DRs33Y-sI4WIPRY3G4boZZTzCfmSW8axPJFGo7dnFk0lj0WLTyRg_Go7y5p5qo_fo0X0yz57clms7QzUNneDdE2G8ewLh7O-r0PNdYwUtMdM88SqQ0MCzQxhDKAh5KcaqNC9aa81TjSFCmWiKQLA2jSIWW5M0AMcm5wAqLFj6EjZmR8AgQIRJz1dQtbXIBSbFgEqdUmSyIyKSJWR2CUu1x4ljHbfOL1zhHHwGPraVia6nYWaoOl-sp7wXlxl-Da1bz64FO6XU4LW0bu59yGVt0S0KLiI9_n3UCm3btooTsFDayxUqfmZwjk-f5ZvsEhqPTEQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6JQwAMTIiGt7TgZS6EqjxakthJbZMcOVPSB2nTh12MnToUAIbYM5-Tkc-7us8_fAZz5GBMaSO7IhHkOoTx2OJfMETKgodIBFWdk1e2O3-qTu2f6vAQXi7swSqms-Ey55jE7y5eTeG62yi4D7XKZT5ZhhRJCaH5bq_C71FB72XPLqhde9jrdtindClyDKpjtxFZEnqyVyg__mwWV5ia0C3XyWpI3d54KN_74xtT4X323YMNml6ieL4dtWFLjHVj_wjm4C72nfHtdixlfMBnrVzhXOpZJVLf84kgnsugpb-aNHrVPGdnLmqg-fJlMB-nraIYGY3T92OjedhF2q3vQb970Gi3HtlZwYh3fU4dRITQQ85Q2hTSQhzGcKO2ElQrDRGGfs0DWuCeChPi-JIbmTUMxEYYcS8xreB9KY63hASBKBQ5lVdWUzgYEwzwQOGFS50FUxFUclMErpj2KLe-4aX8xjDL84YWRsVRkLBVZS5XhfDHkPSfd-Et418z8QtBOehkqhW0j-1vOIoNvKTGY-PD3Uaew2uq1H6KH2879EayZ7-QFZRUopdO5OtYZSCpOsoX3Cb2S1l4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principal+Component-Based+Approach+for+Profile+Optimization+Algorithms+in+DOCSIS+3.1&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Mahdi+Ben+Ghorbel&rft.au=Berscheid%2C+Brian&rft.au=Bedeer%2C+Ebrahim&rft.au=Md+Jahangir+Hossain&rft.date=2018-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=1932-4537&rft.volume=15&rft.issue=3&rft.spage=934&rft_id=info:doi/10.1109%2FTNSM.2018.2828704&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon