Multiple People Identification Through Walls Using Off-the-Shelf WiFi

In this article, we are interested in through-wall gait-based identification of multiple people who are simultaneously walking in an area, using only the WiFi magnitude measurements of a small number of transceivers. This is a considerably challenging problem as the gait signatures of the walking pe...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 8; no. 8; pp. 6963 - 6974
Main Authors Korany, Belal, Cai, Hong, Mostofi, Yasamin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2020.3037945

Cover

Abstract In this article, we are interested in through-wall gait-based identification of multiple people who are simultaneously walking in an area, using only the WiFi magnitude measurements of a small number of transceivers. This is a considerably challenging problem as the gait signatures of the walking people are mixed up in the WiFi measurements. In order to solve this problem, we propose a novel multidimensional framework, spanning time, frequency, and space domains, that can separate the signal reflected from each walking person and extract its corresponding gait content, in order to identify multiple people through walls. To the best of our knowledge, this is the first time that WiFi signals can identify multiple people in an area. We extensively validate our proposed system with 92 test experiments conducted in four different areas, where the WiFi transceivers are placed behind walls, and where two or three people (randomly selected from a pool of six test subjects) are walking in the area. Our system achieves an overall average accuracy of 82% in correctly identifying whether a person walking in the test experiment (referred to as a query) is the same as a candidate person, based on 6404 query-candidate test pairs. It is noteworthy that none of the test subjects/areas has been seen in the training phase.
AbstractList In this article, we are interested in through-wall gait-based identification of multiple people who are simultaneously walking in an area, using only the WiFi magnitude measurements of a small number of transceivers. This is a considerably challenging problem as the gait signatures of the walking people are mixed up in the WiFi measurements. In order to solve this problem, we propose a novel multidimensional framework, spanning time, frequency, and space domains, that can separate the signal reflected from each walking person and extract its corresponding gait content, in order to identify multiple people through walls. To the best of our knowledge, this is the first time that WiFi signals can identify multiple people in an area. We extensively validate our proposed system with 92 test experiments conducted in four different areas, where the WiFi transceivers are placed behind walls, and where two or three people (randomly selected from a pool of six test subjects) are walking in the area. Our system achieves an overall average accuracy of 82% in correctly identifying whether a person walking in the test experiment (referred to as a query) is the same as a candidate person, based on 6404 query-candidate test pairs. It is noteworthy that none of the test subjects/areas has been seen in the training phase.
Author Cai, Hong
Mostofi, Yasamin
Korany, Belal
Author_xml – sequence: 1
  givenname: Belal
  orcidid: 0000-0001-8694-0906
  surname: Korany
  fullname: Korany, Belal
  email: belalkorany@ece.ucsb.edu
  organization: Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
– sequence: 2
  givenname: Hong
  orcidid: 0000-0002-7388-747X
  surname: Cai
  fullname: Cai, Hong
  email: hcai@ece.ucsb.edu
  organization: Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
– sequence: 3
  givenname: Yasamin
  orcidid: 0000-0003-2670-2214
  surname: Mostofi
  fullname: Mostofi, Yasamin
  email: ymostofi@ece.ucsb.edu
  organization: Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
BookMark eNp9kD1PwzAQhi0EEqX0ByCWSMwp_kjsekRVC0VFRaJVR8tJzo2rkBTbGfj3JLRCiIHpveF97nTPFTqvmxoQuiF4TAiW98-L1XpMMcVjhpmQSXqGBpRRESec0_Nf8yUaeb_HGHdYSiQfoNlLWwV7qCB6haaPRQF1sMbmOtimjtala9pdGW11Vflo4229i1bGxKGE-K2EykRbO7fX6MLoysPolEO0mc_W06d4uXpcTB-WcU4lC7FgkOC0yHTGDOc5ZEJITplIMknA5MkkmeRQmAI4EKN5VmCBjUxZBkQzjTUborvj3oNrPlrwQe2b1tXdSUVTghOa0gnpWuLYyl3jvQOjchu-3wlO20oRrHptqtemem3qpK0jyR_y4Oy7dp__MrdHxgLAT1_SdCIFY19MsHnz
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_TWC_2024_3485477
crossref_primary_10_3390_fi16040127
crossref_primary_10_3390_electronics11162607
crossref_primary_10_12677_HJWC_2021_112004
crossref_primary_10_1109_ACCESS_2024_3517668
crossref_primary_10_3390_electronics12234858
crossref_primary_10_1016_j_engappai_2023_106939
crossref_primary_10_1109_TMC_2023_3291882
crossref_primary_10_1109_JIOT_2022_3210131
crossref_primary_10_1109_JIOT_2023_3288767
crossref_primary_10_1109_TIM_2025_3546372
crossref_primary_10_1109_TWC_2024_3365853
crossref_primary_10_1109_MCOM_004_2300090
crossref_primary_10_1145_3708323
crossref_primary_10_1016_j_comnet_2024_111020
crossref_primary_10_1109_TCCN_2022_3222193
crossref_primary_10_1109_TIM_2023_3348887
crossref_primary_10_1109_JIOT_2022_3222204
crossref_primary_10_1109_JSEN_2023_3260846
crossref_primary_10_1109_ACCESS_2024_3438871
Cites_doi 10.1109/TGRS.2018.2816812
10.1007/978-0-387-09823-4_45
10.1109/TIFS.2007.902030
10.1109/JSEN.2013.2256122
10.1049/el:19970499
10.1109/ICPADS.2016.0019
10.1109/ICSMC.2009.5346830
10.1109/CHASE.2016.20
10.1016/j.sigpro.2010.08.013
10.1145/3302506.3310399
10.1109/TBME.2019.2893528
10.1109/TNN.2007.901277
10.1109/DCOSS.2016.30
10.1109/PERCOM.2018.8444589
10.1109/GLOCOM.2017.8254429
10.5552/drind.2013.1205
10.3390/s19163450
10.1109/IPSN.2016.7460727
10.3390/s19102335
10.1109/JOE.1983.1145560
10.1109/GLOCOM.2016.7841847
10.1145/3300061.3345437
10.1145/1925861.1925870
10.1145/2971648.2971670
10.1109/IPSN.2018.00053
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2020.3037945
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 6974
ExternalDocumentID 10_1109_JIOT_2020_3037945
9258973
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: 1816931
  funderid: 10.13039/100000001
– fundername: Office of Naval Research
  grantid: N00014-20-1-2779
  funderid: 10.13039/100000006
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-73e405dbab3f66ceb77962374b91efc4848cedfde6e1fa6bd070f953be1a3a0a3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Sun Jun 29 16:35:08 EDT 2025
Thu Apr 24 23:11:29 EDT 2025
Wed Oct 01 04:45:33 EDT 2025
Wed Aug 27 02:41:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-73e405dbab3f66ceb77962374b91efc4848cedfde6e1fa6bd070f953be1a3a0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8694-0906
0000-0002-7388-747X
0000-0003-2670-2214
PQID 2510425281
PQPubID 2040421
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JIOT_2020_3037945
ieee_primary_9258973
proquest_journals_2510425281
crossref_primary_10_1109_JIOT_2020_3037945
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref30
ref10
orovi? (ref14) 2011; 91
ref1
ref17
ref16
ref19
ref18
kianoush (ref2) 2019; 19
vignaud (ref15) 2009
wilson (ref26) 2002
lu (ref24) 2008; 19
ref23
ref25
ref20
ref22
ref21
ref27
wu (ref11) 2020
ref29
ref8
ref7
ref9
ref4
ref3
murphy (ref28) 2012
ref6
bisio (ref5) 2013
References_xml – ident: ref21
  doi: 10.1109/TGRS.2018.2816812
– ident: ref25
  doi: 10.1007/978-0-387-09823-4_45
– ident: ref29
  doi: 10.1109/TIFS.2007.902030
– ident: ref7
  doi: 10.1109/JSEN.2013.2256122
– ident: ref30
  doi: 10.1049/el:19970499
– ident: ref12
  doi: 10.1109/ICPADS.2016.0019
– start-page: 1
  year: 2009
  ident: ref15
  article-title: Radar high resolution range & micro-doppler analysis of human motions
  publication-title: Proc Int Radar Conf
– ident: ref13
  doi: 10.1109/ICSMC.2009.5346830
– ident: ref17
  doi: 10.1109/CHASE.2016.20
– year: 2020
  ident: ref11
  article-title: GaitWay: Monitoring and recognizing gait speed through the walls
  publication-title: IEEE Trans Mobile Comput
– volume: 91
  start-page: 1448
  year: 2011
  ident: ref14
  article-title: A new approach for classification of human gait based on time-frequency feature representations
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2010.08.013
– ident: ref6
  doi: 10.1145/3302506.3310399
– ident: ref9
  doi: 10.1109/TBME.2019.2893528
– volume: 19
  start-page: 18
  year: 2008
  ident: ref24
  article-title: MPCA: Multilinear principal component analysis of tensor objects
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.901277
– ident: ref19
  doi: 10.1109/DCOSS.2016.30
– ident: ref1
  doi: 10.1109/PERCOM.2018.8444589
– ident: ref20
  doi: 10.1109/GLOCOM.2017.8254429
– ident: ref27
  doi: 10.5552/drind.2013.1205
– volume: 19
  start-page: 3450
  year: 2019
  ident: ref2
  article-title: People counting by dense WiFi MIMO networks: Channel features and machine learning algorithms
  publication-title: SENSORS
  doi: 10.3390/s19163450
– ident: ref16
  doi: 10.1109/IPSN.2016.7460727
– ident: ref3
  doi: 10.3390/s19102335
– ident: ref22
  doi: 10.1109/JOE.1983.1145560
– ident: ref18
  doi: 10.1109/GLOCOM.2016.7841847
– year: 2012
  ident: ref28
  publication-title: Machine Learning A Probabilistic Perspective
– start-page: 161
  year: 2013
  ident: ref5
  article-title: Performance comparison of a probabilistic fingerprint-based indoor positioning system over different smartphones
  publication-title: Proc Int Symp Perform Eval Comput Telecommun Syst
– year: 2002
  ident: ref26
  article-title: Propagation losses through common building materials 2.4 GHz vs. 5 GHz
– ident: ref10
  doi: 10.1145/3300061.3345437
– ident: ref23
  doi: 10.1145/1925861.1925870
– ident: ref8
  doi: 10.1145/2971648.2971670
– ident: ref4
  doi: 10.1109/IPSN.2018.00053
SSID ssj0001105196
Score 2.3959804
Snippet In this article, we are interested in through-wall gait-based identification of multiple people who are simultaneously walking in an area, using only the WiFi...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6963
SubjectTerms Area measurement
Feature extraction
Gait
Gait analysis
Internet of Things
Legged locomotion
multiperson identification
radio-frequency (RF) sensing
RF signals
Spectrogram
through-wall sensing
Transceivers
Walls
WiFi
Wireless fidelity
Title Multiple People Identification Through Walls Using Off-the-Shelf WiFi
URI https://ieeexplore.ieee.org/document/9258973
https://www.proquest.com/docview/2510425281
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60Jy--qlitkoMncevuZh_JUaRFC1XBit6WPCYollZse_HXm2TTig_EWw4JhJnJzDeTeQAcq8L6WzrOrVsiMXINlSKuqIhSzCVDLRIpfLfP6-LyPus_5o8rcLqshUFEn3yGHbf0f_l6ouYuVHbG05zxkq7CasmKulbrM56SODBShI_LJOZn_auboXUAU-uXxtSKXf7F9PhZKj8UsLcqvQ0YLO5TJ5O8dOYz2VHv31o1_vfCm7Ae4CU5r-VhC1ZwvA0bi9ENJLzkJnQHIZGQ3PoUclIX7JoQwSPDenwPcXH2KfF5BeTGmMjCxejuCUeGPDz3nnfgvtcdXlxGYaJCpKxZn0UlRQvQtBSSmqJQKMuSW_xTZpInaFTGMqZQG40FJkYUUluFYHhOJSaCiljQXWiMJ2PcA2I1pTYlZUbFmGkmBEVrEBVzrC95zFoQL4hdqdBu3E29GFXe7Yh55fhTOf5UgT8tOFkeea17bfy1uenovdwYSN2C9oKjVXiN08piOKebUpbs_37qANZSl6viejjmbWjM3uZ4aMHGTB55KfsAL5TRyw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5BeoALaXmIAG196Kliw-56vWsfESJK0gQqNRHcVn6MBQIFBMmFX4_tdYLaoqo3H2zJmhnPfDOeB8A3XTp_y6TMuSUKE99QKRGayiRHpjgamSkZun1elP1pMbxm12twvKqFQcSQfIZdvwx_-eZBL3yo7ETkjIuKrsMHVhQFa6q13iIqmYcjZfy6zFJxMhxcTpwLmDvPNKVO8NhvxidMU_lLBQe70mvDeHmjJp3krruYq65--aNZ4_9e-SNsRYBJThuJ-ARrONuG9nJ4A4lveQfOxzGVkPwMSeSkKdm1MYZHJs0AH-Ij7c8kZBaQS2sTBxiTXzd4b8nVbe92F6a988lZP4kzFRLtDPs8qSg6iGaUVNSWpUZVVcIhoKpQIkOrC15wjcYaLDGzslTGqQQrGFWYSSpTSfegNXuY4T4QpyuNrSi3OsXCcCkpOpOouWd-JVLegXRJ7FrHhuN-7sV9HRyPVNSeP7XnTx3504HvqyOPTbeNf23e8fRebYyk7sDRkqN1fI_PtUNxXjvlPDt4_9RX2OhPxqN6NLj4cQibuc9c8R0d2RG05k8L_Oygx1x9CRL3ClUw1Rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+People+Identification+Through+Walls+Using+Off-the-Shelf+WiFi&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Korany%2C+Belal&rft.au=Cai%2C+Hong&rft.au=Mostofi%2C+Yasamin&rft.date=2021-04-15&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=8&rft.issue=8&rft.spage=6963&rft.epage=6974&rft_id=info:doi/10.1109%2FJIOT.2020.3037945&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2020_3037945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon