RIS Enhanced Massive Non-Orthogonal Multiple Access Networks: Deployment and Passive Beamforming Design
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS) with the aid of non-orthogonal multiple access (NOMA) technology. The problem of joint deployment, phase shift design, as well as power allocation in the multiple-input-singl...
Saved in:
| Published in | IEEE journal on selected areas in communications Vol. 39; no. 4; pp. 1057 - 1071 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0733-8716 1558-0008 |
| DOI | 10.1109/JSAC.2020.3018823 |
Cover
| Abstract | A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS) with the aid of non-orthogonal multiple access (NOMA) technology. The problem of joint deployment, phase shift design, as well as power allocation in the multiple-input-single-output (MISO) NOMA network is formulated for maximizing the energy efficiency with considering users particular data requirements. To tackle this pertinent problem, machine learning approaches are adopted in two steps. Firstly, a novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset. Secondly, a decaying double deep Q-network (D 3 QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS. In the proposed algorithm, the base station, which controls the RIS by a controller, acts as an agent. The agent periodically observes the state of the RIS-enhanced system for attaining the optimal deployment and design policies of the RIS by learning from its mistakes and the feedback of users. Additionally, it is proved that the proposed D 3 QN based deployment and design algorithm is capable of converging within mild conditions. Simulation results are provided for illustrating that the proposed LSTM-based ESN algorithm is capable of striking a tradeoff between the prediction accuracy and computational complexity. Finally, it is demonstrated that the proposed D 3 QN based algorithm outperforms the benchmarks, while the NOMA-enhanced RIS system is capable of achieving higher energy efficiency than orthogonal multiple access (OMA) enabled RIS system. |
|---|---|
| AbstractList | A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS) with the aid of non-orthogonal multiple access (NOMA) technology. The problem of joint deployment, phase shift design, as well as power allocation in the multiple-input-single-output (MISO) NOMA network is formulated for maximizing the energy efficiency with considering users particular data requirements. To tackle this pertinent problem, machine learning approaches are adopted in two steps. Firstly, a novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users’ tele-traffic demand by leveraging a real dataset. Secondly, a decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS. In the proposed algorithm, the base station, which controls the RIS by a controller, acts as an agent. The agent periodically observes the state of the RIS-enhanced system for attaining the optimal deployment and design policies of the RIS by learning from its mistakes and the feedback of users. Additionally, it is proved that the proposed D3QN based deployment and design algorithm is capable of converging within mild conditions. Simulation results are provided for illustrating that the proposed LSTM-based ESN algorithm is capable of striking a tradeoff between the prediction accuracy and computational complexity. Finally, it is demonstrated that the proposed D3QN based algorithm outperforms the benchmarks, while the NOMA-enhanced RIS system is capable of achieving higher energy efficiency than orthogonal multiple access (OMA) enabled RIS system. A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS) with the aid of non-orthogonal multiple access (NOMA) technology. The problem of joint deployment, phase shift design, as well as power allocation in the multiple-input-single-output (MISO) NOMA network is formulated for maximizing the energy efficiency with considering users particular data requirements. To tackle this pertinent problem, machine learning approaches are adopted in two steps. Firstly, a novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset. Secondly, a decaying double deep Q-network (D 3 QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS. In the proposed algorithm, the base station, which controls the RIS by a controller, acts as an agent. The agent periodically observes the state of the RIS-enhanced system for attaining the optimal deployment and design policies of the RIS by learning from its mistakes and the feedback of users. Additionally, it is proved that the proposed D 3 QN based deployment and design algorithm is capable of converging within mild conditions. Simulation results are provided for illustrating that the proposed LSTM-based ESN algorithm is capable of striking a tradeoff between the prediction accuracy and computational complexity. Finally, it is demonstrated that the proposed D 3 QN based algorithm outperforms the benchmarks, while the NOMA-enhanced RIS system is capable of achieving higher energy efficiency than orthogonal multiple access (OMA) enabled RIS system. |
| Author | Poor, H. Vincent Liu, Xiao Liu, Yuanwei Chen, Yue |
| Author_xml | – sequence: 1 givenname: Xiao orcidid: 0000-0002-0205-9212 surname: Liu fullname: Liu, Xiao email: x.liu@qmul.ac.uk organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K – sequence: 2 givenname: Yuanwei orcidid: 0000-0002-6389-8941 surname: Liu fullname: Liu, Yuanwei email: yuanwei.liu@qmul.ac.uk organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K – sequence: 3 givenname: Yue surname: Chen fullname: Chen, Yue email: yue.chen@qmul.ac.uk organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K – sequence: 4 givenname: H. Vincent orcidid: 0000-0002-2062-131X surname: Poor fullname: Poor, H. Vincent email: poor@princeton.edu organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA |
| BookMark | eNp9kE1PGzEQhi0EUkPgB1RcLPW86djezXq5peGjVHwJ2vPK6x0nDhs72A4o_75ZJeLAgdNIo_d5R_Mck0PnHRLyncGIMah-_nmeTEccOIwEMCm5OCADVhQyAwB5SAZQCpHJko2_keMYFwAszyUfkNnTzTO9dHPlNLb0TsVo35Dee5c9hDT3M-9UR-_WXbKrDulEa4yR3mN69-ElntMLXHV-s0SXqHItfdzzv1AtjQ9L62bbSLQzd0KOjOoinu7nkPy7uvw7_Z3dPlzfTCe3meaVSNm4KThUGrGEVlamaQujjCwb5KZRxVgwAS1KY1jOGm20Hudcyn5XmS3WMjEkP3a9q-Bf1xhTvfDrsH0i1rwAUQDjVZ9iu5QOPsaApl4Fu1RhUzOoe59177PufdZ7n1um_MRom1Sy3qWgbPclebYjLSJ-XKpYmUtg4j_4loW_ |
| CODEN | ISACEM |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3482564 crossref_primary_10_1109_JSAC_2022_3145234 crossref_primary_10_1016_j_phycom_2023_102007 crossref_primary_10_1109_TWC_2021_3122409 crossref_primary_10_3390_electronics13142797 crossref_primary_10_1109_JIOT_2021_3130444 crossref_primary_10_1109_COMST_2023_3309529 crossref_primary_10_3390_s22145405 crossref_primary_10_1109_TCOMM_2021_3079128 crossref_primary_10_1109_TVT_2022_3190557 crossref_primary_10_1109_TWC_2024_3396437 crossref_primary_10_1109_JSEN_2021_3076517 crossref_primary_10_1109_TWC_2024_3453398 crossref_primary_10_3390_electronics11091411 crossref_primary_10_1109_TWC_2024_3522249 crossref_primary_10_1186_s13638_023_02296_7 crossref_primary_10_3390_electronics13091688 crossref_primary_10_1109_TCCN_2023_3288108 crossref_primary_10_1109_TWC_2021_3057232 crossref_primary_10_1016_j_phycom_2021_101386 crossref_primary_10_1109_TWC_2022_3181747 crossref_primary_10_1109_TGCN_2024_3393554 crossref_primary_10_1109_OJAP_2023_3329767 crossref_primary_10_1109_TCOMM_2023_3322173 crossref_primary_10_1109_TVT_2021_3090255 crossref_primary_10_1109_TWC_2023_3284897 crossref_primary_10_1109_ACCESS_2022_3220682 crossref_primary_10_1109_JSAC_2020_3041401 crossref_primary_10_1186_s13638_023_02309_5 crossref_primary_10_1049_cmu2_12375 crossref_primary_10_1109_JIOT_2023_3312776 crossref_primary_10_1016_j_phycom_2023_102060 crossref_primary_10_1109_JPROC_2022_3174030 crossref_primary_10_3390_s23031705 crossref_primary_10_1109_TCOMM_2023_3255903 crossref_primary_10_1109_COMST_2021_3077737 crossref_primary_10_1109_JSAC_2021_3126079 crossref_primary_10_1109_TCOMM_2023_3328259 crossref_primary_10_1186_s13634_023_01070_7 crossref_primary_10_1109_TGCN_2023_3307428 crossref_primary_10_1109_JSAC_2022_3196320 crossref_primary_10_1109_TWC_2022_3152703 crossref_primary_10_1109_TCOMM_2024_3422170 crossref_primary_10_1109_COMST_2020_2996032 crossref_primary_10_1109_JSAC_2022_3143205 crossref_primary_10_1007_s11276_023_03639_4 crossref_primary_10_1109_JPROC_2022_3174140 crossref_primary_10_1109_TWC_2021_3122959 crossref_primary_10_1109_TWC_2024_3475296 crossref_primary_10_1109_COMST_2023_3249835 crossref_primary_10_1109_TWC_2022_3151624 crossref_primary_10_23919_ICN_2022_0007 crossref_primary_10_1109_JSAC_2022_3145908 crossref_primary_10_1109_JSTSP_2021_3127725 crossref_primary_10_1109_COMST_2023_3340099 crossref_primary_10_3390_computers14010015 crossref_primary_10_1016_j_dcan_2023_09_002 crossref_primary_10_1109_TVT_2022_3168392 crossref_primary_10_1016_j_phycom_2023_102045 crossref_primary_10_1109_JSTSP_2022_3175013 crossref_primary_10_1109_TITS_2024_3392596 crossref_primary_10_1145_3571072 crossref_primary_10_1109_TVT_2022_3177132 crossref_primary_10_1109_JIOT_2023_3245288 crossref_primary_10_1109_ACCESS_2021_3061429 crossref_primary_10_3390_electronics13040735 crossref_primary_10_1109_LCOMM_2021_3058142 crossref_primary_10_1109_TWC_2023_3306048 crossref_primary_10_1109_TCOMM_2024_3370618 crossref_primary_10_1145_3696414 crossref_primary_10_1016_j_adhoc_2023_103163 crossref_primary_10_1109_JIOT_2022_3178983 crossref_primary_10_1109_TSP_2022_3146791 crossref_primary_10_1109_OJCOMS_2024_3378266 crossref_primary_10_1109_ACCESS_2024_3418900 crossref_primary_10_1109_TCOMM_2024_3357428 crossref_primary_10_1109_ACCESS_2021_3092335 crossref_primary_10_1109_JIOT_2022_3188544 crossref_primary_10_1109_TWC_2023_3244279 crossref_primary_10_1109_TCOMM_2024_3372883 crossref_primary_10_1016_j_comnet_2022_108977 crossref_primary_10_1109_LWC_2021_3058768 crossref_primary_10_1109_TCOMM_2021_3097726 crossref_primary_10_1109_TGCN_2022_3145026 crossref_primary_10_1109_TCOMM_2021_3066587 crossref_primary_10_1049_cmu2_12571 crossref_primary_10_1109_TCOMM_2021_3127265 crossref_primary_10_1109_LWC_2024_3489718 crossref_primary_10_1109_TVT_2023_3262696 crossref_primary_10_1109_TWC_2024_3402267 crossref_primary_10_1186_s13638_024_02389_x crossref_primary_10_1109_ACCESS_2021_3107316 crossref_primary_10_1109_ACCESS_2021_3102301 crossref_primary_10_1109_TVT_2023_3254541 crossref_primary_10_1109_JSAC_2022_3144726 crossref_primary_10_3390_s23187793 crossref_primary_10_1109_ACCESS_2021_3125461 crossref_primary_10_1109_TGCN_2022_3144465 crossref_primary_10_1109_JIOT_2023_3309859 crossref_primary_10_1109_JSAC_2021_3087233 crossref_primary_10_1016_j_comnet_2023_109697 crossref_primary_10_1109_TWC_2021_3081423 crossref_primary_10_1109_TWC_2023_3299609 crossref_primary_10_1109_JPROC_2024_3404491 crossref_primary_10_1109_ACCESS_2022_3157651 crossref_primary_10_1109_JSYST_2022_3195557 crossref_primary_10_1109_TCOMM_2023_3296619 crossref_primary_10_1109_TWC_2022_3197079 crossref_primary_10_1016_j_adhoc_2024_103635 crossref_primary_10_1186_s13677_023_00528_1 crossref_primary_10_1109_ACCESS_2024_3380354 crossref_primary_10_1109_TWC_2022_3181214 crossref_primary_10_1109_JSAC_2022_3192053 crossref_primary_10_1109_TCOMM_2024_3350970 crossref_primary_10_1109_TVT_2023_3326488 crossref_primary_10_1109_ACCESS_2021_3079639 |
| Cites_doi | 10.1109/CVPR.2015.7299173 10.1016/j.jmaa.2018.02.056 10.1109/MCOM.2018.1700659 10.1109/LWC.2019.2950624 10.1109/ACCESS.2016.2598380 10.1109/JSTSP.2018.2824762 10.1109/JSAC.2020.3000835 10.1109/TWC.2018.2855130 10.1109/TVT.2019.2920284 10.1109/MWC.2016.1500356WC 10.1109/JSTSP.2014.2317671 10.1109/JSAC.2017.2725519 10.1109/TWC.2019.2922609 10.1109/SPAWC.2019.8815412 10.1186/s13638-019-1438-9 10.1109/JPROC.2017.2768666 10.1109/TCOMM.2015.2394393 10.1109/TWC.2017.2779504 10.1109/TWC.2017.2650987 10.1109/MWC.2018.1700080 10.1109/JSAC.2016.2549378 10.1109/TBDATA.2017.2734100 10.1109/LAWP.2016.2626318 10.1109/MWC.2019.1800601 10.1109/GLOBECOM38437.2019.9014204 10.1109/TWC.2019.2936025 10.1109/GLOCOMW.2018.8644519 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/JSAC.2020.3018823 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0008 |
| EndPage | 1071 |
| ExternalDocumentID | 10_1109_JSAC_2020_3018823 9174801 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c293t-6b5209cee70d89fbd5faf87be2fba563130de8ff141bcfcc6428830de9f09cd13 |
| IEDL.DBID | RIE |
| ISSN | 0733-8716 |
| IngestDate | Mon Jun 30 10:25:50 EDT 2025 Wed Oct 01 02:47:41 EDT 2025 Thu Apr 24 23:03:50 EDT 2025 Wed Aug 27 02:47:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-6b5209cee70d89fbd5faf87be2fba563130de8ff141bcfcc6428830de9f09cd13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6389-8941 0000-0002-2062-131X 0000-0002-0205-9212 |
| PQID | 2503501291 |
| PQPubID | 85481 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_JSAC_2020_3018823 ieee_primary_9174801 crossref_citationtrail_10_1109_JSAC_2020_3018823 proquest_journals_2503501291 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE journal on selected areas in communications |
| PublicationTitleAbbrev | J-SAC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref11 taha (ref22) 2019 ref10 huang (ref2) 2019 ref16 mu (ref18) 2019 ye (ref6) 2019 zhang (ref52) 2019 ref51 ref50 abeywickrama (ref9) 2019 ref45 ref42 even-dar (ref49) 2002 ref41 ding (ref7) 2019 ref44 ref43 ref8 melo (ref47) 2001 qingqing (ref33) 2019; 58 jung (ref27) 2019 ref5 di renzo (ref4) 2019 ref40 liang (ref26) 2019 zhang (ref31) 2019 hou (ref1) 2019 ref35 van hasselt (ref46) 2016 ref34 jensen (ref14) 2019 ref37 ref36 ref30 ref32 ref39 liu (ref19) 2019 ref24 ref23 yang (ref3) 2019 ref20 guo (ref15) 2019 ref21 hasselt (ref48) 2010 basar (ref38) 2019 ref29 pan (ref28) 2019 li (ref17) 2019 nadeem (ref25) 2019 |
| References_xml | – year: 2019 ident: ref15 article-title: Weighted sum-rate optimization for intelligent reflecting surface enhanced wireless networks publication-title: arXiv 1905 07920 – volume: 58 start-page: 106 year: 2019 ident: ref33 article-title: Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network publication-title: IEEE Commun Mag – ident: ref51 doi: 10.1109/CVPR.2015.7299173 – ident: ref50 doi: 10.1016/j.jmaa.2018.02.056 – year: 2019 ident: ref18 article-title: Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization publication-title: arXiv 1910 13636 – ident: ref11 doi: 10.1109/MCOM.2018.1700659 – ident: ref5 doi: 10.1109/LWC.2019.2950624 – ident: ref40 doi: 10.1109/ACCESS.2016.2598380 – year: 2019 ident: ref31 article-title: Prospective multiple antenna technologies for beyond 5G publication-title: arXiv 1910 00092 – year: 2019 ident: ref28 article-title: Intelligent reflecting surface for multicell MIMO communications publication-title: arXiv 1904 00453 – ident: ref44 doi: 10.1109/JSTSP.2018.2824762 – ident: ref24 doi: 10.1109/JSAC.2020.3000835 – ident: ref43 doi: 10.1109/TWC.2018.2855130 – ident: ref32 doi: 10.1109/TVT.2019.2920284 – ident: ref20 doi: 10.1109/MWC.2016.1500356WC – year: 2019 ident: ref6 article-title: Joint reflecting and precoding designs for SER minimization in reconfigurable intelligent surfaces assisted MIMO systems publication-title: arXiv 1906 11466 – ident: ref13 doi: 10.1109/JSTSP.2014.2317671 – ident: ref36 doi: 10.1109/JSAC.2017.2725519 – start-page: 1 year: 2001 ident: ref47 article-title: Convergence of Q-learning: A simple proof – year: 2019 ident: ref2 article-title: Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends publication-title: arXiv 1911 12296 – ident: ref16 doi: 10.1109/TWC.2019.2922609 – ident: ref23 doi: 10.1109/SPAWC.2019.8815412 – ident: ref10 doi: 10.1186/s13638-019-1438-9 – start-page: 2613 year: 2010 ident: ref48 article-title: Double Q-learning publication-title: Proc Adv Neural Inf Process Syst – year: 2019 ident: ref9 article-title: Intelligent reflecting surface: Practical phase shift model and beamforming optimization publication-title: arXiv 1907 06002 – ident: ref30 doi: 10.1109/JPROC.2017.2768666 – year: 2019 ident: ref22 article-title: Enabling large intelligent surfaces with compressive sensing and deep learning publication-title: arXiv 1904 10136 – year: 2019 ident: ref14 article-title: An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator publication-title: arXiv 1909 09440 – ident: ref41 doi: 10.1109/TCOMM.2015.2394393 – ident: ref42 doi: 10.1109/TWC.2017.2779504 – year: 2019 ident: ref26 article-title: Large intelligent surface/antennas (LISA): Making reflective radios smart publication-title: arXiv 1906 06578 – year: 2019 ident: ref38 article-title: Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G publication-title: arXiv 1904 06704 – ident: ref29 doi: 10.1109/TWC.2017.2650987 – ident: ref37 doi: 10.1109/MWC.2018.1700080 – ident: ref35 doi: 10.1109/JSAC.2016.2549378 – start-page: 1499 year: 2002 ident: ref49 article-title: Convergence of optimistic and incremental Q-learning publication-title: Proc Adv Neural Inf Process Syst – year: 2019 ident: ref52 article-title: Capacity characterization for intelligent reflecting surface aided MIMO communication publication-title: arXiv 1910 01573 – year: 2019 ident: ref25 article-title: Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems publication-title: arXiv 1903 08127 – year: 2019 ident: ref4 article-title: Reconfigurable intelligent surfaces vs. Relaying: Differences, similarities, and performance comparison publication-title: arXiv 1908 08747 – year: 2019 ident: ref19 article-title: When machine learning meets big data: A wireless communication perspective publication-title: arXiv 1901 08329 – year: 2019 ident: ref3 article-title: Intelligent reflecting surface assisted non-orthogonal multiple access publication-title: arxiv 1907 03133 – ident: ref45 doi: 10.1109/TBDATA.2017.2734100 – start-page: 2094 year: 2016 ident: ref46 article-title: Deep reinforcement learning with double Q-learning publication-title: Proc 13th AAAI Conf Artif Intell – year: 2019 ident: ref7 article-title: A simple design of IRS-NOMA transmission publication-title: arXiv 1907 09918 – ident: ref12 doi: 10.1109/LAWP.2016.2626318 – ident: ref21 doi: 10.1109/MWC.2019.1800601 – ident: ref34 doi: 10.1109/GLOBECOM38437.2019.9014204 – year: 2019 ident: ref17 article-title: Joint beamforming design in multi-cluster MISO NOMA intelligent reflecting surface-aided downlink communication networks publication-title: arXiv 1909 06972 – ident: ref8 doi: 10.1109/TWC.2019.2936025 – year: 2019 ident: ref1 article-title: MIMO assisted networks relying on large intelligent surfaces: A stochastic geometry model publication-title: arXiv 1910 00959 – ident: ref39 doi: 10.1109/GLOCOMW.2018.8644519 – year: 2019 ident: ref27 article-title: Performance analysis of large intelligent surfaces (LISs): Uplink spectral efficiency and pilot training publication-title: arXiv 1904 00453 |
| SSID | ssj0014482 |
| Score | 2.6815832 |
| Snippet | A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS) with the aid of non-orthogonal... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1057 |
| SubjectTerms | Algorithms Array signal processing Beamforming Control algorithms Control theory Deep reinforcement learning Energy conversion efficiency Energy efficiency Machine learning Machine learning algorithms NOMA non-orthogonal multiple access Nonorthogonal multiple access Optimization Prediction algorithms reconfigurable intelligent surfaces Throughput User requirements Wireless networks |
| Title | RIS Enhanced Massive Non-Orthogonal Multiple Access Networks: Deployment and Passive Beamforming Design |
| URI | https://ieeexplore.ieee.org/document/9174801 https://www.proquest.com/docview/2503501291 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0008 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014482 issn: 0733-8716 databaseCode: RIE dateStart: 19830101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAGzEYKAdOiGx9ri23MUADaQPxkHarkjYBCegQdBd-PXaaTbyEuFVV3FRyGn9f_cUG2I-yIM5dLbij3ZAHQgacqs7xIE5CEchcC1NSaDjqDu6Ci3E4rsHh_CyMUsqIz1SbLk0uP59kU_pV1kFqQdVO6lCP4m51VmueMUCaYTIGke9zIgE2g-k6SefiptdHJughQXVcRJT-lxhkmqr82IlNeDlbhuHsxSpVyWN7Wsp29v6tZuN_33wFlizOZL1qYaxCTRVrsPip-uA63F-f37DT4sFoANgQUTTufGw0Kfjla_kwuSeMzoZWcMh6prMiG1Wy8bcjdqKoVzDNy0SRsytrf6zEMwFhnAKHkDxkA-7OTm_7A277LvAMg3_Ju5K0MRg9IyePEy3zUAsdR1J5Woqw62PYy1WstRu4MtNZRhQmpnuJRrPc9TehUUwKtQUs9EWo_NB3EoG8RUQx4hOHHqI18pzIa4Iz80Sa2aLk1BvjKTXkxElScl5Kzkut85pwMDd5qSpy_DV4nZwxH2j90ITWzN2p_WbfUgSDlGX1Enf7d6sdWPBI0WJ0Oy1olK9TtYuQpJR7Zi1-ACK43Oc |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROFAOLRQQWyj4wAnhJQ97k3Db8tDyyIJ4SNwiO7FBaputIHvpr--M4121gBC3KPLEkcbxfF_m8wzAdlKKtAqt4oENJRdKC05V57hIM6mErqxyJYXyYW9wK07v5N0M7E7PwhhjnPjMdOnS5fKrUTmmX2V7SC2o2skHmJNCCNme1prmDJBouJxBEsecaIDPYYZBtnd63T9ALhghRQ1CxJTxf1HItVV5sRe7AHP8GfLJq7W6kh_dcaO75Z9nVRvf--6L8MkjTdZvl8YSzJj6Cyz8U39wGe6vTq7ZUf3gVAAsRxyNex8bjmp-8dg8jO4JpbPcSw5Z3_VWZMNWOP60zw4NdQumeZmqK3bp7b8b9YugME6BQ0ggsgK3x0c3BwPuOy_wEsN_w3ua1DEYP5OgSjOrK2mVTRNtIquV7MUY-CqTWhuKUJe2LInEpHQvs2hWhfEqzNaj2qwBk7GSJpZxkClkLipJEaEE9BBrkekkUQeCiSeK0pclp-4YPwtHT4KsIOcV5LzCO68DO1OT321NjrcGL5MzpgO9HzqwMXF34b_apwLhIOVZoyz8-rrVFswPbvLz4vxkeLYOHyPStzgVzwbMNo9j8w0BSqM33br8C9xG4DQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RIS+Enhanced+Massive+Non-Orthogonal+Multiple+Access+Networks%3A+Deployment+and+Passive+Beamforming+Design&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Liu%2C+Xiao&rft.au=Liu%2C+Yuanwei&rft.au=Chen%2C+Yue&rft.au=Poor%2C+H.+Vincent&rft.date=2021-04-01&rft.pub=IEEE&rft.issn=0733-8716&rft.volume=39&rft.issue=4&rft.spage=1057&rft.epage=1071&rft_id=info:doi/10.1109%2FJSAC.2020.3018823&rft.externalDocID=9174801 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon |