RIS Enhanced Massive Non-Orthogonal Multiple Access Networks: Deployment and Passive Beamforming Design

A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS) with the aid of non-orthogonal multiple access (NOMA) technology. The problem of joint deployment, phase shift design, as well as power allocation in the multiple-input-singl...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 39; no. 4; pp. 1057 - 1071
Main Authors Liu, Xiao, Liu, Yuanwei, Chen, Yue, Poor, H. Vincent
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8716
1558-0008
DOI10.1109/JSAC.2020.3018823

Cover

Abstract A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS) with the aid of non-orthogonal multiple access (NOMA) technology. The problem of joint deployment, phase shift design, as well as power allocation in the multiple-input-single-output (MISO) NOMA network is formulated for maximizing the energy efficiency with considering users particular data requirements. To tackle this pertinent problem, machine learning approaches are adopted in two steps. Firstly, a novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset. Secondly, a decaying double deep Q-network (D 3 QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS. In the proposed algorithm, the base station, which controls the RIS by a controller, acts as an agent. The agent periodically observes the state of the RIS-enhanced system for attaining the optimal deployment and design policies of the RIS by learning from its mistakes and the feedback of users. Additionally, it is proved that the proposed D 3 QN based deployment and design algorithm is capable of converging within mild conditions. Simulation results are provided for illustrating that the proposed LSTM-based ESN algorithm is capable of striking a tradeoff between the prediction accuracy and computational complexity. Finally, it is demonstrated that the proposed D 3 QN based algorithm outperforms the benchmarks, while the NOMA-enhanced RIS system is capable of achieving higher energy efficiency than orthogonal multiple access (OMA) enabled RIS system.
AbstractList A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS) with the aid of non-orthogonal multiple access (NOMA) technology. The problem of joint deployment, phase shift design, as well as power allocation in the multiple-input-single-output (MISO) NOMA network is formulated for maximizing the energy efficiency with considering users particular data requirements. To tackle this pertinent problem, machine learning approaches are adopted in two steps. Firstly, a novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users’ tele-traffic demand by leveraging a real dataset. Secondly, a decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS. In the proposed algorithm, the base station, which controls the RIS by a controller, acts as an agent. The agent periodically observes the state of the RIS-enhanced system for attaining the optimal deployment and design policies of the RIS by learning from its mistakes and the feedback of users. Additionally, it is proved that the proposed D3QN based deployment and design algorithm is capable of converging within mild conditions. Simulation results are provided for illustrating that the proposed LSTM-based ESN algorithm is capable of striking a tradeoff between the prediction accuracy and computational complexity. Finally, it is demonstrated that the proposed D3QN based algorithm outperforms the benchmarks, while the NOMA-enhanced RIS system is capable of achieving higher energy efficiency than orthogonal multiple access (OMA) enabled RIS system.
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS) with the aid of non-orthogonal multiple access (NOMA) technology. The problem of joint deployment, phase shift design, as well as power allocation in the multiple-input-single-output (MISO) NOMA network is formulated for maximizing the energy efficiency with considering users particular data requirements. To tackle this pertinent problem, machine learning approaches are adopted in two steps. Firstly, a novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset. Secondly, a decaying double deep Q-network (D 3 QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS. In the proposed algorithm, the base station, which controls the RIS by a controller, acts as an agent. The agent periodically observes the state of the RIS-enhanced system for attaining the optimal deployment and design policies of the RIS by learning from its mistakes and the feedback of users. Additionally, it is proved that the proposed D 3 QN based deployment and design algorithm is capable of converging within mild conditions. Simulation results are provided for illustrating that the proposed LSTM-based ESN algorithm is capable of striking a tradeoff between the prediction accuracy and computational complexity. Finally, it is demonstrated that the proposed D 3 QN based algorithm outperforms the benchmarks, while the NOMA-enhanced RIS system is capable of achieving higher energy efficiency than orthogonal multiple access (OMA) enabled RIS system.
Author Poor, H. Vincent
Liu, Xiao
Liu, Yuanwei
Chen, Yue
Author_xml – sequence: 1
  givenname: Xiao
  orcidid: 0000-0002-0205-9212
  surname: Liu
  fullname: Liu, Xiao
  email: x.liu@qmul.ac.uk
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
– sequence: 2
  givenname: Yuanwei
  orcidid: 0000-0002-6389-8941
  surname: Liu
  fullname: Liu, Yuanwei
  email: yuanwei.liu@qmul.ac.uk
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
– sequence: 3
  givenname: Yue
  surname: Chen
  fullname: Chen, Yue
  email: yue.chen@qmul.ac.uk
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
– sequence: 4
  givenname: H. Vincent
  orcidid: 0000-0002-2062-131X
  surname: Poor
  fullname: Poor, H. Vincent
  email: poor@princeton.edu
  organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
BookMark eNp9kE1PGzEQhi0EUkPgB1RcLPW86djezXq5peGjVHwJ2vPK6x0nDhs72A4o_75ZJeLAgdNIo_d5R_Mck0PnHRLyncGIMah-_nmeTEccOIwEMCm5OCADVhQyAwB5SAZQCpHJko2_keMYFwAszyUfkNnTzTO9dHPlNLb0TsVo35Dee5c9hDT3M-9UR-_WXbKrDulEa4yR3mN69-ElntMLXHV-s0SXqHItfdzzv1AtjQ9L62bbSLQzd0KOjOoinu7nkPy7uvw7_Z3dPlzfTCe3meaVSNm4KThUGrGEVlamaQujjCwb5KZRxVgwAS1KY1jOGm20Hudcyn5XmS3WMjEkP3a9q-Bf1xhTvfDrsH0i1rwAUQDjVZ9iu5QOPsaApl4Fu1RhUzOoe59177PufdZ7n1um_MRom1Sy3qWgbPclebYjLSJ-XKpYmUtg4j_4loW_
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3482564
crossref_primary_10_1109_JSAC_2022_3145234
crossref_primary_10_1016_j_phycom_2023_102007
crossref_primary_10_1109_TWC_2021_3122409
crossref_primary_10_3390_electronics13142797
crossref_primary_10_1109_JIOT_2021_3130444
crossref_primary_10_1109_COMST_2023_3309529
crossref_primary_10_3390_s22145405
crossref_primary_10_1109_TCOMM_2021_3079128
crossref_primary_10_1109_TVT_2022_3190557
crossref_primary_10_1109_TWC_2024_3396437
crossref_primary_10_1109_JSEN_2021_3076517
crossref_primary_10_1109_TWC_2024_3453398
crossref_primary_10_3390_electronics11091411
crossref_primary_10_1109_TWC_2024_3522249
crossref_primary_10_1186_s13638_023_02296_7
crossref_primary_10_3390_electronics13091688
crossref_primary_10_1109_TCCN_2023_3288108
crossref_primary_10_1109_TWC_2021_3057232
crossref_primary_10_1016_j_phycom_2021_101386
crossref_primary_10_1109_TWC_2022_3181747
crossref_primary_10_1109_TGCN_2024_3393554
crossref_primary_10_1109_OJAP_2023_3329767
crossref_primary_10_1109_TCOMM_2023_3322173
crossref_primary_10_1109_TVT_2021_3090255
crossref_primary_10_1109_TWC_2023_3284897
crossref_primary_10_1109_ACCESS_2022_3220682
crossref_primary_10_1109_JSAC_2020_3041401
crossref_primary_10_1186_s13638_023_02309_5
crossref_primary_10_1049_cmu2_12375
crossref_primary_10_1109_JIOT_2023_3312776
crossref_primary_10_1016_j_phycom_2023_102060
crossref_primary_10_1109_JPROC_2022_3174030
crossref_primary_10_3390_s23031705
crossref_primary_10_1109_TCOMM_2023_3255903
crossref_primary_10_1109_COMST_2021_3077737
crossref_primary_10_1109_JSAC_2021_3126079
crossref_primary_10_1109_TCOMM_2023_3328259
crossref_primary_10_1186_s13634_023_01070_7
crossref_primary_10_1109_TGCN_2023_3307428
crossref_primary_10_1109_JSAC_2022_3196320
crossref_primary_10_1109_TWC_2022_3152703
crossref_primary_10_1109_TCOMM_2024_3422170
crossref_primary_10_1109_COMST_2020_2996032
crossref_primary_10_1109_JSAC_2022_3143205
crossref_primary_10_1007_s11276_023_03639_4
crossref_primary_10_1109_JPROC_2022_3174140
crossref_primary_10_1109_TWC_2021_3122959
crossref_primary_10_1109_TWC_2024_3475296
crossref_primary_10_1109_COMST_2023_3249835
crossref_primary_10_1109_TWC_2022_3151624
crossref_primary_10_23919_ICN_2022_0007
crossref_primary_10_1109_JSAC_2022_3145908
crossref_primary_10_1109_JSTSP_2021_3127725
crossref_primary_10_1109_COMST_2023_3340099
crossref_primary_10_3390_computers14010015
crossref_primary_10_1016_j_dcan_2023_09_002
crossref_primary_10_1109_TVT_2022_3168392
crossref_primary_10_1016_j_phycom_2023_102045
crossref_primary_10_1109_JSTSP_2022_3175013
crossref_primary_10_1109_TITS_2024_3392596
crossref_primary_10_1145_3571072
crossref_primary_10_1109_TVT_2022_3177132
crossref_primary_10_1109_JIOT_2023_3245288
crossref_primary_10_1109_ACCESS_2021_3061429
crossref_primary_10_3390_electronics13040735
crossref_primary_10_1109_LCOMM_2021_3058142
crossref_primary_10_1109_TWC_2023_3306048
crossref_primary_10_1109_TCOMM_2024_3370618
crossref_primary_10_1145_3696414
crossref_primary_10_1016_j_adhoc_2023_103163
crossref_primary_10_1109_JIOT_2022_3178983
crossref_primary_10_1109_TSP_2022_3146791
crossref_primary_10_1109_OJCOMS_2024_3378266
crossref_primary_10_1109_ACCESS_2024_3418900
crossref_primary_10_1109_TCOMM_2024_3357428
crossref_primary_10_1109_ACCESS_2021_3092335
crossref_primary_10_1109_JIOT_2022_3188544
crossref_primary_10_1109_TWC_2023_3244279
crossref_primary_10_1109_TCOMM_2024_3372883
crossref_primary_10_1016_j_comnet_2022_108977
crossref_primary_10_1109_LWC_2021_3058768
crossref_primary_10_1109_TCOMM_2021_3097726
crossref_primary_10_1109_TGCN_2022_3145026
crossref_primary_10_1109_TCOMM_2021_3066587
crossref_primary_10_1049_cmu2_12571
crossref_primary_10_1109_TCOMM_2021_3127265
crossref_primary_10_1109_LWC_2024_3489718
crossref_primary_10_1109_TVT_2023_3262696
crossref_primary_10_1109_TWC_2024_3402267
crossref_primary_10_1186_s13638_024_02389_x
crossref_primary_10_1109_ACCESS_2021_3107316
crossref_primary_10_1109_ACCESS_2021_3102301
crossref_primary_10_1109_TVT_2023_3254541
crossref_primary_10_1109_JSAC_2022_3144726
crossref_primary_10_3390_s23187793
crossref_primary_10_1109_ACCESS_2021_3125461
crossref_primary_10_1109_TGCN_2022_3144465
crossref_primary_10_1109_JIOT_2023_3309859
crossref_primary_10_1109_JSAC_2021_3087233
crossref_primary_10_1016_j_comnet_2023_109697
crossref_primary_10_1109_TWC_2021_3081423
crossref_primary_10_1109_TWC_2023_3299609
crossref_primary_10_1109_JPROC_2024_3404491
crossref_primary_10_1109_ACCESS_2022_3157651
crossref_primary_10_1109_JSYST_2022_3195557
crossref_primary_10_1109_TCOMM_2023_3296619
crossref_primary_10_1109_TWC_2022_3197079
crossref_primary_10_1016_j_adhoc_2024_103635
crossref_primary_10_1186_s13677_023_00528_1
crossref_primary_10_1109_ACCESS_2024_3380354
crossref_primary_10_1109_TWC_2022_3181214
crossref_primary_10_1109_JSAC_2022_3192053
crossref_primary_10_1109_TCOMM_2024_3350970
crossref_primary_10_1109_TVT_2023_3326488
crossref_primary_10_1109_ACCESS_2021_3079639
Cites_doi 10.1109/CVPR.2015.7299173
10.1016/j.jmaa.2018.02.056
10.1109/MCOM.2018.1700659
10.1109/LWC.2019.2950624
10.1109/ACCESS.2016.2598380
10.1109/JSTSP.2018.2824762
10.1109/JSAC.2020.3000835
10.1109/TWC.2018.2855130
10.1109/TVT.2019.2920284
10.1109/MWC.2016.1500356WC
10.1109/JSTSP.2014.2317671
10.1109/JSAC.2017.2725519
10.1109/TWC.2019.2922609
10.1109/SPAWC.2019.8815412
10.1186/s13638-019-1438-9
10.1109/JPROC.2017.2768666
10.1109/TCOMM.2015.2394393
10.1109/TWC.2017.2779504
10.1109/TWC.2017.2650987
10.1109/MWC.2018.1700080
10.1109/JSAC.2016.2549378
10.1109/TBDATA.2017.2734100
10.1109/LAWP.2016.2626318
10.1109/MWC.2019.1800601
10.1109/GLOBECOM38437.2019.9014204
10.1109/TWC.2019.2936025
10.1109/GLOCOMW.2018.8644519
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2020.3018823
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 1071
ExternalDocumentID 10_1109_JSAC_2020_3018823
9174801
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-6b5209cee70d89fbd5faf87be2fba563130de8ff141bcfcc6428830de9f09cd13
IEDL.DBID RIE
ISSN 0733-8716
IngestDate Mon Jun 30 10:25:50 EDT 2025
Wed Oct 01 02:47:41 EDT 2025
Thu Apr 24 23:03:50 EDT 2025
Wed Aug 27 02:47:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-6b5209cee70d89fbd5faf87be2fba563130de8ff141bcfcc6428830de9f09cd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6389-8941
0000-0002-2062-131X
0000-0002-0205-9212
PQID 2503501291
PQPubID 85481
PageCount 15
ParticipantIDs crossref_primary_10_1109_JSAC_2020_3018823
ieee_primary_9174801
crossref_citationtrail_10_1109_JSAC_2020_3018823
proquest_journals_2503501291
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref11
taha (ref22) 2019
ref10
huang (ref2) 2019
ref16
mu (ref18) 2019
ye (ref6) 2019
zhang (ref52) 2019
ref51
ref50
abeywickrama (ref9) 2019
ref45
ref42
even-dar (ref49) 2002
ref41
ding (ref7) 2019
ref44
ref43
ref8
melo (ref47) 2001
qingqing (ref33) 2019; 58
jung (ref27) 2019
ref5
di renzo (ref4) 2019
ref40
liang (ref26) 2019
zhang (ref31) 2019
hou (ref1) 2019
ref35
van hasselt (ref46) 2016
ref34
jensen (ref14) 2019
ref37
ref36
ref30
ref32
ref39
liu (ref19) 2019
ref24
ref23
yang (ref3) 2019
ref20
guo (ref15) 2019
ref21
hasselt (ref48) 2010
basar (ref38) 2019
ref29
pan (ref28) 2019
li (ref17) 2019
nadeem (ref25) 2019
References_xml – year: 2019
  ident: ref15
  article-title: Weighted sum-rate optimization for intelligent reflecting surface enhanced wireless networks
  publication-title: arXiv 1905 07920
– volume: 58
  start-page: 106
  year: 2019
  ident: ref33
  article-title: Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network
  publication-title: IEEE Commun Mag
– ident: ref51
  doi: 10.1109/CVPR.2015.7299173
– ident: ref50
  doi: 10.1016/j.jmaa.2018.02.056
– year: 2019
  ident: ref18
  article-title: Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization
  publication-title: arXiv 1910 13636
– ident: ref11
  doi: 10.1109/MCOM.2018.1700659
– ident: ref5
  doi: 10.1109/LWC.2019.2950624
– ident: ref40
  doi: 10.1109/ACCESS.2016.2598380
– year: 2019
  ident: ref31
  article-title: Prospective multiple antenna technologies for beyond 5G
  publication-title: arXiv 1910 00092
– year: 2019
  ident: ref28
  article-title: Intelligent reflecting surface for multicell MIMO communications
  publication-title: arXiv 1904 00453
– ident: ref44
  doi: 10.1109/JSTSP.2018.2824762
– ident: ref24
  doi: 10.1109/JSAC.2020.3000835
– ident: ref43
  doi: 10.1109/TWC.2018.2855130
– ident: ref32
  doi: 10.1109/TVT.2019.2920284
– ident: ref20
  doi: 10.1109/MWC.2016.1500356WC
– year: 2019
  ident: ref6
  article-title: Joint reflecting and precoding designs for SER minimization in reconfigurable intelligent surfaces assisted MIMO systems
  publication-title: arXiv 1906 11466
– ident: ref13
  doi: 10.1109/JSTSP.2014.2317671
– ident: ref36
  doi: 10.1109/JSAC.2017.2725519
– start-page: 1
  year: 2001
  ident: ref47
  article-title: Convergence of Q-learning: A simple proof
– year: 2019
  ident: ref2
  article-title: Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends
  publication-title: arXiv 1911 12296
– ident: ref16
  doi: 10.1109/TWC.2019.2922609
– ident: ref23
  doi: 10.1109/SPAWC.2019.8815412
– ident: ref10
  doi: 10.1186/s13638-019-1438-9
– start-page: 2613
  year: 2010
  ident: ref48
  article-title: Double Q-learning
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2019
  ident: ref9
  article-title: Intelligent reflecting surface: Practical phase shift model and beamforming optimization
  publication-title: arXiv 1907 06002
– ident: ref30
  doi: 10.1109/JPROC.2017.2768666
– year: 2019
  ident: ref22
  article-title: Enabling large intelligent surfaces with compressive sensing and deep learning
  publication-title: arXiv 1904 10136
– year: 2019
  ident: ref14
  article-title: An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator
  publication-title: arXiv 1909 09440
– ident: ref41
  doi: 10.1109/TCOMM.2015.2394393
– ident: ref42
  doi: 10.1109/TWC.2017.2779504
– year: 2019
  ident: ref26
  article-title: Large intelligent surface/antennas (LISA): Making reflective radios smart
  publication-title: arXiv 1906 06578
– year: 2019
  ident: ref38
  article-title: Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G
  publication-title: arXiv 1904 06704
– ident: ref29
  doi: 10.1109/TWC.2017.2650987
– ident: ref37
  doi: 10.1109/MWC.2018.1700080
– ident: ref35
  doi: 10.1109/JSAC.2016.2549378
– start-page: 1499
  year: 2002
  ident: ref49
  article-title: Convergence of optimistic and incremental Q-learning
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2019
  ident: ref52
  article-title: Capacity characterization for intelligent reflecting surface aided MIMO communication
  publication-title: arXiv 1910 01573
– year: 2019
  ident: ref25
  article-title: Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems
  publication-title: arXiv 1903 08127
– year: 2019
  ident: ref4
  article-title: Reconfigurable intelligent surfaces vs. Relaying: Differences, similarities, and performance comparison
  publication-title: arXiv 1908 08747
– year: 2019
  ident: ref19
  article-title: When machine learning meets big data: A wireless communication perspective
  publication-title: arXiv 1901 08329
– year: 2019
  ident: ref3
  article-title: Intelligent reflecting surface assisted non-orthogonal multiple access
  publication-title: arxiv 1907 03133
– ident: ref45
  doi: 10.1109/TBDATA.2017.2734100
– start-page: 2094
  year: 2016
  ident: ref46
  article-title: Deep reinforcement learning with double Q-learning
  publication-title: Proc 13th AAAI Conf Artif Intell
– year: 2019
  ident: ref7
  article-title: A simple design of IRS-NOMA transmission
  publication-title: arXiv 1907 09918
– ident: ref12
  doi: 10.1109/LAWP.2016.2626318
– ident: ref21
  doi: 10.1109/MWC.2019.1800601
– ident: ref34
  doi: 10.1109/GLOBECOM38437.2019.9014204
– year: 2019
  ident: ref17
  article-title: Joint beamforming design in multi-cluster MISO NOMA intelligent reflecting surface-aided downlink communication networks
  publication-title: arXiv 1909 06972
– ident: ref8
  doi: 10.1109/TWC.2019.2936025
– year: 2019
  ident: ref1
  article-title: MIMO assisted networks relying on large intelligent surfaces: A stochastic geometry model
  publication-title: arXiv 1910 00959
– ident: ref39
  doi: 10.1109/GLOCOMW.2018.8644519
– year: 2019
  ident: ref27
  article-title: Performance analysis of large intelligent surfaces (LISs): Uplink spectral efficiency and pilot training
  publication-title: arXiv 1904 00453
SSID ssj0014482
Score 2.6815832
Snippet A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS) with the aid of non-orthogonal...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1057
SubjectTerms Algorithms
Array signal processing
Beamforming
Control algorithms
Control theory
Deep reinforcement learning
Energy conversion efficiency
Energy efficiency
Machine learning
Machine learning algorithms
NOMA
non-orthogonal multiple access
Nonorthogonal multiple access
Optimization
Prediction algorithms
reconfigurable intelligent surfaces
Throughput
User requirements
Wireless networks
Title RIS Enhanced Massive Non-Orthogonal Multiple Access Networks: Deployment and Passive Beamforming Design
URI https://ieeexplore.ieee.org/document/9174801
https://www.proquest.com/docview/2503501291
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0008
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014482
  issn: 0733-8716
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAGzEYKAdOiGx9ri23MUADaQPxkHarkjYBCegQdBd-PXaaTbyEuFVV3FRyGn9f_cUG2I-yIM5dLbij3ZAHQgacqs7xIE5CEchcC1NSaDjqDu6Ci3E4rsHh_CyMUsqIz1SbLk0uP59kU_pV1kFqQdVO6lCP4m51VmueMUCaYTIGke9zIgE2g-k6SefiptdHJughQXVcRJT-lxhkmqr82IlNeDlbhuHsxSpVyWN7Wsp29v6tZuN_33wFlizOZL1qYaxCTRVrsPip-uA63F-f37DT4sFoANgQUTTufGw0Kfjla_kwuSeMzoZWcMh6prMiG1Wy8bcjdqKoVzDNy0SRsytrf6zEMwFhnAKHkDxkA-7OTm_7A277LvAMg3_Ju5K0MRg9IyePEy3zUAsdR1J5Woqw62PYy1WstRu4MtNZRhQmpnuJRrPc9TehUUwKtQUs9EWo_NB3EoG8RUQx4hOHHqI18pzIa4Iz80Sa2aLk1BvjKTXkxElScl5Kzkut85pwMDd5qSpy_DV4nZwxH2j90ITWzN2p_WbfUgSDlGX1Enf7d6sdWPBI0WJ0Oy1olK9TtYuQpJR7Zi1-ACK43Oc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROFAOLRQQWyj4wAnhJQ97k3Db8tDyyIJ4SNwiO7FBaputIHvpr--M4121gBC3KPLEkcbxfF_m8wzAdlKKtAqt4oENJRdKC05V57hIM6mErqxyJYXyYW9wK07v5N0M7E7PwhhjnPjMdOnS5fKrUTmmX2V7SC2o2skHmJNCCNme1prmDJBouJxBEsecaIDPYYZBtnd63T9ALhghRQ1CxJTxf1HItVV5sRe7AHP8GfLJq7W6kh_dcaO75Z9nVRvf--6L8MkjTdZvl8YSzJj6Cyz8U39wGe6vTq7ZUf3gVAAsRxyNex8bjmp-8dg8jO4JpbPcSw5Z3_VWZMNWOP60zw4NdQumeZmqK3bp7b8b9YugME6BQ0ggsgK3x0c3BwPuOy_wEsN_w3ua1DEYP5OgSjOrK2mVTRNtIquV7MUY-CqTWhuKUJe2LInEpHQvs2hWhfEqzNaj2qwBk7GSJpZxkClkLipJEaEE9BBrkekkUQeCiSeK0pclp-4YPwtHT4KsIOcV5LzCO68DO1OT321NjrcGL5MzpgO9HzqwMXF34b_apwLhIOVZoyz8-rrVFswPbvLz4vxkeLYOHyPStzgVzwbMNo9j8w0BSqM33br8C9xG4DQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RIS+Enhanced+Massive+Non-Orthogonal+Multiple+Access+Networks%3A+Deployment+and+Passive+Beamforming+Design&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Liu%2C+Xiao&rft.au=Liu%2C+Yuanwei&rft.au=Chen%2C+Yue&rft.au=Poor%2C+H.+Vincent&rft.date=2021-04-01&rft.pub=IEEE&rft.issn=0733-8716&rft.volume=39&rft.issue=4&rft.spage=1057&rft.epage=1071&rft_id=info:doi/10.1109%2FJSAC.2020.3018823&rft.externalDocID=9174801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon