Digital Holography Based Three-Dimensional Multi-Target Locating for Automated Cell Micromanipulation

Microrobotic contact manipulation enables automated and precise cell capture, positioning and screening and has potential in biomedical engineering and disease detection. However, when using an optical microscope for visual positioning of targets, the poor clarity, limited cell-background contrast a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 21; no. 1; pp. 332 - 342
Main Authors Wang, Huaping, Bai, Kailun, Chen, Jiancong, Shi, Qing, Sun, Tao, Cui, Juan, Huang, Qiang, Fukuda, Toshio
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-5955
1558-3783
DOI10.1109/TASE.2022.3228809

Cover

Abstract Microrobotic contact manipulation enables automated and precise cell capture, positioning and screening and has potential in biomedical engineering and disease detection. However, when using an optical microscope for visual positioning of targets, the poor clarity, limited cell-background contrast and lack of global 3D information of the cells in the field of view hinder global strategy making and automation, thereby affecting the accuracy and efficiency of manipulation. Here, we propose the 3D locating of multiple biological targets based on digital holography. Global-local combined visual feedback is developed for overall spatial locating and partial locating in a liquid-phase bright-field environment. By applying a filtering-based planar locating algorithm and maximum-area-based depth detection algorithm, the 3D global distribution of micro-targets in the field of view is periodically updated with a high detection rate. By applying a planar locating algorithm based on a convolutional neural network and a depth detection algorithm based on a gradient descent, the 3D fast locating of targets is performed precisely. Experiments show that the detection rate of the global positioning is 95.1%, the mean average precision of the local planar positioning is 90.53%, and the deviation of the local depth positioning is <inline-formula> <tex-math notation="LaTeX">1.22~\mu \text{m} </tex-math></inline-formula>. When capturing cells, this method reaches an average speed of 7.4 cells/min and a collection rate of 90.5%. We anticipate that our method will support the research in cell-based bioengineering including cell screening and early disease diagnosis. Note to Practitioners-Automated cell manipulation is one of the most significant techniques in cell-based biomedical applications. This paper introduces a three-dimensional multi-target visual positioning method for automated cell manipulation. Combining with holographic imaging technique, the global information for the cells in the limited field of view is provided with improved imaging clarity and extended depth of field. The visual recognition algorithm can screen and extract the rare cells in the cell population, which will support the research in the field of early disease diagnosis and biomedicine. The research outcome provides an effective and precise solution to achieve biological targets positioning, capture, and screening within 3D liquid-phase bright-field environment.
AbstractList Microrobotic contact manipulation enables automated and precise cell capture, positioning and screening and has potential in biomedical engineering and disease detection. However, when using an optical microscope for visual positioning of targets, the poor clarity, limited cell-background contrast and lack of global 3D information of the cells in the field of view hinder global strategy making and automation, thereby affecting the accuracy and efficiency of manipulation. Here, we propose the 3D locating of multiple biological targets based on digital holography. Global–local combined visual feedback is developed for overall spatial locating and partial locating in a liquid-phase bright-field environment. By applying a filtering-based planar locating algorithm and maximum-area-based depth detection algorithm, the 3D global distribution of micro-targets in the field of view is periodically updated with a high detection rate. By applying a planar locating algorithm based on a convolutional neural network and a depth detection algorithm based on a gradient descent, the 3D fast locating of targets is performed precisely. Experiments show that the detection rate of the global positioning is 95.1%, the mean average precision of the local planar positioning is 90.53%, and the deviation of the local depth positioning is [Formula Omitted]. When capturing cells, this method reaches an average speed of 7.4 cells/min and a collection rate of 90.5%. We anticipate that our method will support the research in cell-based bioengineering including cell screening and early disease diagnosis. Note to Practitioners—Automated cell manipulation is one of the most significant techniques in cell-based biomedical applications. This paper introduces a three-dimensional multi-target visual positioning method for automated cell manipulation. Combining with holographic imaging technique, the global information for the cells in the limited field of view is provided with improved imaging clarity and extended depth of field. The visual recognition algorithm can screen and extract the rare cells in the cell population, which will support the research in the field of early disease diagnosis and biomedicine. The research outcome provides an effective and precise solution to achieve biological targets positioning, capture, and screening within 3D liquid-phase bright-field environment.
Microrobotic contact manipulation enables automated and precise cell capture, positioning and screening and has potential in biomedical engineering and disease detection. However, when using an optical microscope for visual positioning of targets, the poor clarity, limited cell-background contrast and lack of global 3D information of the cells in the field of view hinder global strategy making and automation, thereby affecting the accuracy and efficiency of manipulation. Here, we propose the 3D locating of multiple biological targets based on digital holography. Global-local combined visual feedback is developed for overall spatial locating and partial locating in a liquid-phase bright-field environment. By applying a filtering-based planar locating algorithm and maximum-area-based depth detection algorithm, the 3D global distribution of micro-targets in the field of view is periodically updated with a high detection rate. By applying a planar locating algorithm based on a convolutional neural network and a depth detection algorithm based on a gradient descent, the 3D fast locating of targets is performed precisely. Experiments show that the detection rate of the global positioning is 95.1%, the mean average precision of the local planar positioning is 90.53%, and the deviation of the local depth positioning is <inline-formula> <tex-math notation="LaTeX">1.22~\mu \text{m} </tex-math></inline-formula>. When capturing cells, this method reaches an average speed of 7.4 cells/min and a collection rate of 90.5%. We anticipate that our method will support the research in cell-based bioengineering including cell screening and early disease diagnosis. Note to Practitioners-Automated cell manipulation is one of the most significant techniques in cell-based biomedical applications. This paper introduces a three-dimensional multi-target visual positioning method for automated cell manipulation. Combining with holographic imaging technique, the global information for the cells in the limited field of view is provided with improved imaging clarity and extended depth of field. The visual recognition algorithm can screen and extract the rare cells in the cell population, which will support the research in the field of early disease diagnosis and biomedicine. The research outcome provides an effective and precise solution to achieve biological targets positioning, capture, and screening within 3D liquid-phase bright-field environment.
Author Chen, Jiancong
Huang, Qiang
Sun, Tao
Bai, Kailun
Wang, Huaping
Shi, Qing
Cui, Juan
Fukuda, Toshio
Author_xml – sequence: 1
  givenname: Huaping
  orcidid: 0000-0001-8440-3402
  surname: Wang
  fullname: Wang, Huaping
  email: wanghuaping@bit.edu.cn
  organization: School of Mechatronical Engineering, Intelligent Robotics Institute, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Kailun
  surname: Bai
  fullname: Bai, Kailun
  email: kelenbai@163.com
  organization: Science and Technology on Space Physics Laboratory, Beijing, China
– sequence: 3
  givenname: Jiancong
  orcidid: 0000-0001-9848-1866
  surname: Chen
  fullname: Chen, Jiancong
  email: 3120200146@bit.edu.cn
  organization: School of Mechatronical Engineering, Intelligent Robotics Institute, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Qing
  orcidid: 0000-0002-9914-7314
  surname: Shi
  fullname: Shi, Qing
  email: shiqing@bit.edu.cn
  organization: Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Tao
  orcidid: 0000-0003-1599-3466
  surname: Sun
  fullname: Sun, Tao
  email: 3120120061@bit.edu.cn
  organization: Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
– sequence: 6
  givenname: Juan
  orcidid: 0000-0002-4025-4641
  surname: Cui
  fullname: Cui, Juan
  email: cuijuan@nuc.edu.cn
  organization: Key Laboratory of Instrumentation Science Dynamic Measurement, Ministry of Education, North University of China, Taiyuan, China
– sequence: 7
  givenname: Qiang
  orcidid: 0000-0001-5269-4161
  surname: Huang
  fullname: Huang, Qiang
  email: qhuang@bit.edu.cn
  organization: Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, China
– sequence: 8
  givenname: Toshio
  orcidid: 0000-0002-3885-7152
  surname: Fukuda
  fullname: Fukuda, Toshio
  email: tofukuda@nifty.com
  organization: Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, China
BookMark eNp9kLtOwzAUQC1UJCjwAYglEnOKn4k9lpaXVMRAmaNLclNcpXGxnYG_x1ERAwOTbekc-_pMyaR3PRJyyeiMMWpu1vPXuxmnnM8E51pTc0ROmVI6F6UWk3EvVa6MUidkGsKWUi61oacEl3ZjI3TZo-vcxsP-4yu7hYBNtv7wiPnS7rAP1vUJeR66aPM1-A3GbOVqiLbfZK3z2XyIbgcxWQvsEmhrn8693Q9dglx_To5b6AJe_Kxn5O3-br14zFcvD0-L-SqvuRExL95ZwVUjm7JG2XAtUCFTpSgNAAcA0xQSirYWjZFSN0LIWmvZClC1BipKcUauD_fuvfscMMRq6wafZg8VN4xJrQtKE8UOVJoyBI9ttfd2B_6rYrQaa1ZjzWqsWf3UTE75x6lTtvFv0YPt_jWvDqZFxN-XjDGcMim-AfgMhOE
CODEN ITASC7
CitedBy_id crossref_primary_10_1088_1361_665X_adaef9
crossref_primary_10_3390_app14198790
crossref_primary_10_3390_s24020711
Cites_doi 10.1364/OE.20.023480
10.1364/OL.39.002759
10.1146/annurev-control-053018-023755
10.34133/2021/8907148
10.1109/ISIE.2018.8433651
10.1109/TRO.2009.2034831
10.1364/BOE.8.004466
10.34133/2022/9780569
10.1364/AO.39.004070
10.1364/AO.45.000851
10.1109/TIE.2014.2347004
10.1371/journal.pone.0000862
10.1117/1.3080133
10.1002/jemt.20118
10.1038/nbt0102-87
10.34133/2021/9794610
10.1002/cyto.a.20404
10.1177/027836402128964116
10.1016/j.ijleo.2019.02.038
10.1364/AO.38.006994
10.1364/OL.24.000291
10.1007/978-3-642-12012-1
10.1109/UVS.2019.8658300
10.1088/2050-6120/3/4/042004
10.1063/1.3035549
10.1109/TIE.2014.2352605
10.1364/AO.58.00A202
10.1007/s10439-013-0791-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2022.3228809
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library (LUT)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 342
ExternalDocumentID 10_1109_TASE_2022_3228809
9992014
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Program of Shanxi Province
  grantid: 20210302124033
– fundername: National Key Research and Development Program of China
  grantid: 2019YFB1309701
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62073042; 62088101
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-6b1625d4d7ce4d283e5e157379aa2aaa9d64a6fc3d9448d334c884f3a5c8a0373
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Mon Jun 30 04:41:10 EDT 2025
Wed Oct 01 03:35:43 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Wed Aug 27 01:59:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-6b1625d4d7ce4d283e5e157379aa2aaa9d64a6fc3d9448d334c884f3a5c8a0373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1599-3466
0000-0001-5269-4161
0000-0002-4025-4641
0000-0002-3885-7152
0000-0002-9914-7314
0000-0001-8440-3402
0000-0001-9848-1866
PQID 2911488600
PQPubID 27623
PageCount 11
ParticipantIDs proquest_journals_2911488600
crossref_citationtrail_10_1109_TASE_2022_3228809
crossref_primary_10_1109_TASE_2022_3228809
ieee_primary_9992014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Jan.
2024-1-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Prewitt (ref32) 1970; 10
Redmon (ref28) 2018
Goodman (ref13) 2005
ref23
ref26
ref25
Goodfellow (ref27) 2016
ref22
ref21
Ghiglia (ref24) 1998
ref29
ref8
ref7
ref9
Ren (ref20)
ref4
ref3
ref6
Leach (ref33) 2011; 8
ref5
References_xml – ident: ref10
  doi: 10.1364/OE.20.023480
– ident: ref17
  doi: 10.1364/OL.39.002759
– ident: ref1
  doi: 10.1146/annurev-control-053018-023755
– ident: ref9
  doi: 10.34133/2021/8907148
– ident: ref21
  doi: 10.1109/ISIE.2018.8433651
– ident: ref2
  doi: 10.1109/TRO.2009.2034831
– ident: ref14
  doi: 10.1364/BOE.8.004466
– ident: ref30
  doi: 10.34133/2022/9780569
– ident: ref22
  doi: 10.1364/AO.39.004070
– volume-title: Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software
  year: 1998
  ident: ref24
– ident: ref25
  doi: 10.1364/AO.45.000851
– ident: ref11
  doi: 10.1109/TIE.2014.2347004
– ident: ref3
  doi: 10.1371/journal.pone.0000862
– ident: ref18
  doi: 10.1117/1.3080133
– ident: ref34
  doi: 10.1002/jemt.20118
– ident: ref7
  doi: 10.1038/nbt0102-87
– ident: ref19
  doi: 10.34133/2021/9794610
– ident: ref6
  doi: 10.1002/cyto.a.20404
– start-page: 581
  volume-title: Introduction to Fourier Optics
  year: 2005
  ident: ref13
– ident: ref5
  doi: 10.1177/027836402128964116
– ident: ref31
  doi: 10.1016/j.ijleo.2019.02.038
– ident: ref15
  doi: 10.1364/AO.38.006994
– volume: 10
  start-page: 15
  issue: 1
  year: 1970
  ident: ref32
  article-title: Object enhancement and extraction
  publication-title: Picture Process. Psychopictorics
– ident: ref12
  doi: 10.1364/OL.24.000291
– year: 2018
  ident: ref28
  article-title: YOLOv3: An incremental improvement
– volume: 8
  volume-title: Optical Measurement of Surface Topography
  year: 2011
  ident: ref33
  doi: 10.1007/978-3-642-12012-1
– start-page: 1
  volume-title: Proc. SPIE
  ident: ref20
  article-title: Autofocusing in digital holography using deep learning
– ident: ref29
  doi: 10.1109/UVS.2019.8658300
– ident: ref8
  doi: 10.1088/2050-6120/3/4/042004
– ident: ref23
  doi: 10.1063/1.3035549
– volume-title: Deep Learning
  year: 2016
  ident: ref27
– ident: ref4
  doi: 10.1109/TIE.2014.2352605
– ident: ref16
  doi: 10.1364/AO.58.00A202
– ident: ref26
  doi: 10.1007/s10439-013-0791-9
SSID ssj0024890
Score 2.4012394
Snippet Microrobotic contact manipulation enables automated and precise cell capture, positioning and screening and has potential in biomedical engineering and disease...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 332
SubjectTerms Algorithms
Artificial neural networks
Automation
Bioengineering
Biomedical engineering
Biomedical materials
cell manipulation
Clarity
Depth of field
Diagnosis
digital holography
Field of view
Holography
Image reconstruction
Imaging techniques
Liquid phases
Medical diagnosis
Medical electronics
Medical imaging
Micromanipulation
Micromanipulators
Microrobotic manipulation
Microscopy
Multiple target tracking
Optical microscopes
Three-dimensional displays
Visual fields
visual positioning
Visualization
Title Digital Holography Based Three-Dimensional Multi-Target Locating for Automated Cell Micromanipulation
URI https://ieeexplore.ieee.org/document/9992014
https://www.proquest.com/docview/2911488600
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD0wIlzSx43gsL1UIWCgSW-TYF4RAKYJ04ddzdtLyFGLLcLYsfRffd2f7O4D9olRoTVxy1ROUoGQouE5VypWM0VFCUWKQXby6Tge34uJO3s3A4fQtDCKGy2fY9Z_hLN-N7NiXyo6IzFC8ErMwq7K0eav1oauXhXqKZwRcainbE8xepI-G_ZszygTjuEveS_6qv8Sg0FTlx04cwsv5ElxNFtbcKnnsjuuia9--aTb-d-XLsNjyTNZvHGMFZrBahYVP6oNrgKcP975lCBtMhavZMQU1x4YEMPJTL_zfiHaw8E6XD8O1cXY58nW-6p4R4WX9cT0i1kujTvCJDMMFP1M9TPqCrcPt-dnwZMDbrgvcUuiveVr0KCdywimLwhH7QIk9qRKljYmNMdqlwqSlTZym1M4libBZJsrESJuZKFHJBsxVowo3gSmaxKF1QkRkFWGmbBHTriFSE0trow5EExxy20qS-84YT3lITSKde-hyD13eQteBg-mQ50aP4y_jNQ_F1LBFoQM7E7Dz9o99zWPtM8OM-N_W76O2YZ7mFk35ZQfm6pcx7hIhqYu94Invagjcew
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB51y4HlwGtBdFnAB04Id9PEjuNj91EVaPdCKu0tcuxJVVGlqyW98Ot37KRleQhxy2GcWPomnm_s8TcA78tKoTVxxdVIUIKSoeA6VSlXMkZHCUWFQXZxfpVOF-Lztbzuwcf9XRhEDMVnOPSP4SzfbezWb5WdEpmheCUO4IEUQsj2ttZPZb0s7Kh4TsCllrI7wxxF-jQff72kXDCOh-S_5LH6lygU2qr8sRaHADN5AvPd1Nq6km_DbVMO7Y_fVBv_d-5P4XHHNNm4dY1n0MP6OTy6pz94BHixWvqmIWy6l65mZxTWHMsJYuQXXvq_le1g4aYuz0PhOJtt_E5fvWREedl422yI99Koc1yTYSjxM_Vq1xnsBSwml_n5lHd9F7il4N_wtBxRVuSEUxaFI_6BEkdSJUobExtjtEuFSSubOE3JnUsSYbNMVImRNjNRopKX0K83Nb4CpuglDq0TIiKrCDNly5jWDZGaWFobDSDa4VDYTpTc98ZYFyE5iXThoSs8dEUH3QA-7IfctIoc_zI-8lDsDTsUBnCyA7vo_tnvRax9bpgRAzz--6h38HCaz2fF7NPVl9dwSN8R7WbMCfSb2y2-IXrSlG-DV94BHX_fyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Holography+Based+Three-Dimensional+Multi-Target+Locating+for+Automated+Cell+Micromanipulation&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Wang%2C+Huaping&rft.au=Bai%2C+Kailun&rft.au=Chen%2C+Jiancong&rft.au=Shi%2C+Qing&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=21&rft.issue=1&rft.spage=332&rft_id=info:doi/10.1109%2FTASE.2022.3228809&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon