Graph Matching Via the Lens of Supermodularity
Graph matching, the problem of aligning a pair of graphs so as to minimize their edge disagreements, has received widespread attention owing to its broad spectrum of applications in data science. As the problem is NP-hard in the worst-case, a variety of approximation algorithms have been proposed fo...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 34; no. 5; pp. 2200 - 2211 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1041-4347 1558-2191 |
DOI | 10.1109/TKDE.2020.3008128 |
Cover
Abstract | Graph matching, the problem of aligning a pair of graphs so as to minimize their edge disagreements, has received widespread attention owing to its broad spectrum of applications in data science. As the problem is NP-hard in the worst-case, a variety of approximation algorithms have been proposed for obtaining high quality, suboptimal solutions. In this article, we approach the task of designing an efficient polynomial-time approximation algorithm for graph matching from a previously unconsidered perspective. Our key result is that graph matching can be formulated as maximizing a monotone, supermodular set function subject to matroid intersection constraints. We leverage this fact to apply a discrete optimization variant of the minorization-maximization algorithm which exploits supermodularity of the objective function to iteratively construct and maximize a sequence of global lower bounds on the objective. At each step, we solve a maximum weight matching problem in a bipartite graph. Differing from prior approaches, the algorithm exploits the combinatorial structure inherent in the problem to generate a sequence of iterates featuring monotonically non-decreasing objective value while always adhering to the combinatorial matching constraints. Experiments on real-world data demonstrate the empirical effectiveness of the algorithm relative to the prevailing state-of-the-art. |
---|---|
AbstractList | Graph matching, the problem of aligning a pair of graphs so as to minimize their edge disagreements, has received widespread attention owing to its broad spectrum of applications in data science. As the problem is NP-hard in the worst-case, a variety of approximation algorithms have been proposed for obtaining high quality, suboptimal solutions. In this article, we approach the task of designing an efficient polynomial-time approximation algorithm for graph matching from a previously unconsidered perspective. Our key result is that graph matching can be formulated as maximizing a monotone, supermodular set function subject to matroid intersection constraints. We leverage this fact to apply a discrete optimization variant of the minorization-maximization algorithm which exploits supermodularity of the objective function to iteratively construct and maximize a sequence of global lower bounds on the objective. At each step, we solve a maximum weight matching problem in a bipartite graph. Differing from prior approaches, the algorithm exploits the combinatorial structure inherent in the problem to generate a sequence of iterates featuring monotonically non-decreasing objective value while always adhering to the combinatorial matching constraints. Experiments on real-world data demonstrate the empirical effectiveness of the algorithm relative to the prevailing state-of-the-art. |
Author | Sidiropoulos, Nicholas D. Konar, Aritra |
Author_xml | – sequence: 1 givenname: Aritra orcidid: 0000-0002-9330-0277 surname: Konar fullname: Konar, Aritra email: aritra@virginia.edu organization: Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA – sequence: 2 givenname: Nicholas D. orcidid: 0000-0002-3385-7911 surname: Sidiropoulos fullname: Sidiropoulos, Nicholas D. email: nikos@virginia.edu organization: Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA |
BookMark | eNp9kLFOwzAQQC1UJNrCByCWSMwJd7ZjOyMqpSCKGCislus61FWbBMcZ-vekasXAwHQ3vHcnvREZVHXlCLlGyBChuFu8PEwzChQyBqCQqjMyxDxXKcUCB_0OHFPOuLwgo7bdQA9JhUOSzYJp1smriXbtq6_k05skrl0yd1Wb1GXy3jUu7OpVtzXBx_0lOS_NtnVXpzkmH4_TxeQpnb_Nnif389TSgsVUKGsllAXNmcxh6YQBuhJSWOBWlDlXVCmEXAFFkA7LJXeWrTiUVEmqnGBjcnu824T6u3Nt1Ju6C1X_UlPB80Jxhqyn5JGyoW7b4EptfTTR11UMxm81gj7E0Yc4-hBHn-L0Jv4xm-B3Juz_dW6OjnfO_fIFMsmEZD_dYG6L |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_1109_TKDE_2022_3221084 crossref_primary_10_1016_j_physrep_2024_11_006 |
Cites_doi | 10.1109/TIP.2010.2040448 10.1073/pnas.0806627105 10.1109/ICDM.2019.00141 10.1145/2487788.2488173 10.1080/10556780108805828 10.1126/science.1089167 10.1561/9781601987570 10.1007/bf02278710 10.1016/j.tcs.2016.01.033 10.1109/CVPR.2005.320 10.1109/34.6778 10.2307/2314570 10.1109/ICCV.2011.6126316 10.1093/bioinformatics/btp196 10.1109/TNSE.2019.2913233 10.1007/978-3-642-68874-4_10 10.1007/s12532-010-0012-6 10.1002/nav.3800020109 10.1080/15427951.2012.625256 10.1093/acprof:oso/9780198566946.001.0001 10.1145/2435209.2435212 10.1145/1217299.1217301 10.1093/bioinformatics/bts592 10.1109/TKDE.2014.2320716 10.1186/1471-2105-10-S1-S59 10.2307/1907742 10.1145/321958.321975 10.1103/PhysRevE.70.056122 10.3115/1220835.1220850 10.1007/BF02614365 10.1371/journal.pone.0121002 10.1109/SP.2009.22 10.1038/30918.PMID9623998 10.1145/316194.316229 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TKDE.2020.3008128 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2191 |
EndPage | 2211 |
ExternalDocumentID | 10_1109_TKDE_2020_3008128 9137367 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: IIS-1908070 funderid: 10.13039/100000001 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-68cc70f9253750be6a02d676c04c6f548288105802107e1fb4ec3d40f28728e63 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Mon Jun 30 03:05:38 EDT 2025 Tue Jul 01 01:19:37 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Wed Aug 27 02:36:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-68cc70f9253750be6a02d676c04c6f548288105802107e1fb4ec3d40f28728e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9330-0277 0000-0002-3385-7911 |
PQID | 2645984313 |
PQPubID | 85438 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2645984313 ieee_primary_9137367 crossref_citationtrail_10_1109_TKDE_2020_3008128 crossref_primary_10_1109_TKDE_2020_3008128 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 Sherali (ref12) 2013; 31 Fujishige (ref23) 2005; 58 ref26 ref25 ref22 ref21 Babai (ref9) Bai (ref20) ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 ref40 Berlingerio (ref32) |
References_xml | – ident: ref2 doi: 10.1109/TIP.2010.2040448 – ident: ref4 doi: 10.1073/pnas.0806627105 – ident: ref21 doi: 10.1109/ICDM.2019.00141 – ident: ref36 doi: 10.1145/2487788.2488173 – ident: ref13 doi: 10.1080/10556780108805828 – ident: ref38 doi: 10.1126/science.1089167 – ident: ref19 doi: 10.1561/9781601987570 – ident: ref27 doi: 10.1007/bf02278710 – ident: ref31 doi: 10.1016/j.tcs.2016.01.033 – ident: ref1 doi: 10.1109/CVPR.2005.320 – ident: ref30 doi: 10.1109/34.6778 – ident: ref29 doi: 10.2307/2314570 – ident: ref3 doi: 10.1109/ICCV.2011.6126316 – ident: ref5 doi: 10.1093/bioinformatics/btp196 – ident: ref18 doi: 10.1109/TNSE.2019.2913233 – start-page: 684 volume-title: Proc. ACM Symp. Theory Comput. ident: ref9 article-title: Graph isomorphism in quasi-polynomial time – ident: ref22 doi: 10.1007/978-3-642-68874-4_10 – ident: ref16 doi: 10.1007/s12532-010-0012-6 – volume: 58 volume-title: Submodular Functions and Optimization year: 2005 ident: ref23 – start-page: 314 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref20 article-title: Greed is still good: Maximizing monotone submodular + supermodular functions – ident: ref24 doi: 10.1561/9781601987570 – ident: ref26 doi: 10.1002/nav.3800020109 – ident: ref37 doi: 10.1080/15427951.2012.625256 – ident: ref25 doi: 10.1093/acprof:oso/9780198566946.001.0001 – ident: ref17 doi: 10.1145/2435209.2435212 – ident: ref39 doi: 10.1145/1217299.1217301 – ident: ref6 doi: 10.1093/bioinformatics/bts592 – ident: ref34 doi: 10.1109/TKDE.2014.2320716 – ident: ref15 doi: 10.1186/1471-2105-10-S1-S59 – volume: 31 volume-title: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems year: 2013 ident: ref12 – ident: ref10 doi: 10.2307/1907742 – ident: ref11 doi: 10.1145/321958.321975 – ident: ref40 doi: 10.1103/PhysRevE.70.056122 – ident: ref7 doi: 10.3115/1220835.1220850 – ident: ref28 doi: 10.1007/BF02614365 – ident: ref14 doi: 10.1371/journal.pone.0121002 – ident: ref8 doi: 10.1109/SP.2009.22 – ident: ref33 doi: 10.1038/30918.PMID9623998 – start-page: 1439 volume-title: Proc. IEEE/ACM Int. Conf. Adv. Soc. Netw. Anal. Mining ident: ref32 article-title: NetSimile: A scalable approach to size-independent network similarity – ident: ref35 doi: 10.1145/316194.316229 |
SSID | ssj0008781 |
Score | 2.4025538 |
Snippet | Graph matching, the problem of aligning a pair of graphs so as to minimize their edge disagreements, has received widespread attention owing to its broad... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2200 |
SubjectTerms | Algorithms Approximation Approximation algorithms Approximation methods Bipartite graph Combinatorial analysis Data science discrete optimization Graph matching Graph theory Indexes Linear programming Lower bounds Mathematical analysis matroid intersection Maximization minorization-maximization Optimization Polynomials Proteins supermodularity weighted bipartite matching |
Title | Graph Matching Via the Lens of Supermodularity |
URI | https://ieeexplore.ieee.org/document/9137367 https://www.proquest.com/docview/2645984313 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4I8pLHpgQaR3bsZ0RAaUCykKL2KL4EQmB2grahV_POY8KAUJsGezIurPvvs--B8CJ8XHqFBNRnhcuEiaRkeZxHknmqBcuhN-E-47BveyPxM1T8rQEZ4tcGO99GXzmO-GzfMt3EzsPV2XdNOaKS7UMy0qlVa7WwupqVTYkRXaBnIgLVb9gxjTtDm8vr5AJMiSowQOGxutffFDZVOWHJS7dS28dBs3CqqiSl858Zjr241vNxv-ufAPWapxJzquNsQlLfrwF600PB1If6S1Y_VKQcBs616F-NRmgfQ43U-TxOSeIEMkdkl0yKcjDfIqWfOJC7CrC9x0Y9a6GF_2o7qgQWXTrs0hqaxUtUpZwRArGy5wyJ5W0VFhZIHlhWiPg0oEIKh8XRnjLnaAF8iqmveS70BpPxn4PiNcFdYitYiONiJXRNsW_JY5xY5I89W2gjYwzW5cbD10vXrOSdtA0C2rJglqyWi1tOF1MmVa1Nv4avB3EvBhYS7gNh40is_o0vmcsVMzRCJX4_u-zDmCFhbSGMpDxEFqzt7k_QrAxM8flLvsEDVfNmg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VGICBRwFRKOCBCZHi2I7tjIhXgZaFgtii-BEJgVoE7cKv55ymVQUIsWWwI-vOvvs--x4Ah8bHqVNMRHleuEiYREaax3kkmaNeuBB-E-47uney_SBunpKnGhxPc2G892XwmW-Fz_It3w3sKFyVnaQxV1yqOVhIkFWocbbW1O5qVbYkRX6BrIgLVb1hxjQ96d2eXyAXZEhRgw8MrddnvFDZVuWHLS4dzOUqdCdLG8eVvLRGQ9Oyn9-qNv537WuwUiFNcjreGutQ8_06rE66OJDqUNdheaYk4Qa0rkIFa9JFCx3upsjjc04QI5IO0l0yKMj96A1t-cCF6FUE8JvwcHnRO2tHVU-FyKJjH0ZSW6tokbKEI1YwXuaUOamkpcLKAukL0xohlw5UUPm4MMJb7gQtkFkx7SXfgvn-oO-3gXhdUIfoKjbSiFgZbVP8W-IYNybJU98AOpFxZquC46HvxWtWEg-aZkEtWVBLVqmlAUfTKW_jaht_Dd4IYp4OrCTcgOZEkVl1Hj8yFmrmaARLfOf3WQew2O51O1nn-u52F5ZYSHIowxqbMD98H_k9hB5Ds1_uuC8LvtDr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Matching+Via+the+Lens+of+Supermodularity&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Konar%2C+Aritra&rft.au=Sidiropoulos%2C+Nicholas+D.&rft.date=2022-05-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=34&rft.issue=5&rft.spage=2200&rft.epage=2211&rft_id=info:doi/10.1109%2FTKDE.2020.3008128&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2020_3008128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |