Graph Matching Via the Lens of Supermodularity

Graph matching, the problem of aligning a pair of graphs so as to minimize their edge disagreements, has received widespread attention owing to its broad spectrum of applications in data science. As the problem is NP-hard in the worst-case, a variety of approximation algorithms have been proposed fo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 34; no. 5; pp. 2200 - 2211
Main Authors Konar, Aritra, Sidiropoulos, Nicholas D.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2020.3008128

Cover

Abstract Graph matching, the problem of aligning a pair of graphs so as to minimize their edge disagreements, has received widespread attention owing to its broad spectrum of applications in data science. As the problem is NP-hard in the worst-case, a variety of approximation algorithms have been proposed for obtaining high quality, suboptimal solutions. In this article, we approach the task of designing an efficient polynomial-time approximation algorithm for graph matching from a previously unconsidered perspective. Our key result is that graph matching can be formulated as maximizing a monotone, supermodular set function subject to matroid intersection constraints. We leverage this fact to apply a discrete optimization variant of the minorization-maximization algorithm which exploits supermodularity of the objective function to iteratively construct and maximize a sequence of global lower bounds on the objective. At each step, we solve a maximum weight matching problem in a bipartite graph. Differing from prior approaches, the algorithm exploits the combinatorial structure inherent in the problem to generate a sequence of iterates featuring monotonically non-decreasing objective value while always adhering to the combinatorial matching constraints. Experiments on real-world data demonstrate the empirical effectiveness of the algorithm relative to the prevailing state-of-the-art.
AbstractList Graph matching, the problem of aligning a pair of graphs so as to minimize their edge disagreements, has received widespread attention owing to its broad spectrum of applications in data science. As the problem is NP-hard in the worst-case, a variety of approximation algorithms have been proposed for obtaining high quality, suboptimal solutions. In this article, we approach the task of designing an efficient polynomial-time approximation algorithm for graph matching from a previously unconsidered perspective. Our key result is that graph matching can be formulated as maximizing a monotone, supermodular set function subject to matroid intersection constraints. We leverage this fact to apply a discrete optimization variant of the minorization-maximization algorithm which exploits supermodularity of the objective function to iteratively construct and maximize a sequence of global lower bounds on the objective. At each step, we solve a maximum weight matching problem in a bipartite graph. Differing from prior approaches, the algorithm exploits the combinatorial structure inherent in the problem to generate a sequence of iterates featuring monotonically non-decreasing objective value while always adhering to the combinatorial matching constraints. Experiments on real-world data demonstrate the empirical effectiveness of the algorithm relative to the prevailing state-of-the-art.
Author Sidiropoulos, Nicholas D.
Konar, Aritra
Author_xml – sequence: 1
  givenname: Aritra
  orcidid: 0000-0002-9330-0277
  surname: Konar
  fullname: Konar, Aritra
  email: aritra@virginia.edu
  organization: Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
– sequence: 2
  givenname: Nicholas D.
  orcidid: 0000-0002-3385-7911
  surname: Sidiropoulos
  fullname: Sidiropoulos, Nicholas D.
  email: nikos@virginia.edu
  organization: Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
BookMark eNp9kLFOwzAQQC1UJNrCByCWSMwJd7ZjOyMqpSCKGCislus61FWbBMcZ-vekasXAwHQ3vHcnvREZVHXlCLlGyBChuFu8PEwzChQyBqCQqjMyxDxXKcUCB_0OHFPOuLwgo7bdQA9JhUOSzYJp1smriXbtq6_k05skrl0yd1Wb1GXy3jUu7OpVtzXBx_0lOS_NtnVXpzkmH4_TxeQpnb_Nnif389TSgsVUKGsllAXNmcxh6YQBuhJSWOBWlDlXVCmEXAFFkA7LJXeWrTiUVEmqnGBjcnu824T6u3Nt1Ju6C1X_UlPB80Jxhqyn5JGyoW7b4EptfTTR11UMxm81gj7E0Yc4-hBHn-L0Jv4xm-B3Juz_dW6OjnfO_fIFMsmEZD_dYG6L
CODEN ITKEEH
CitedBy_id crossref_primary_10_1109_TKDE_2022_3221084
crossref_primary_10_1016_j_physrep_2024_11_006
Cites_doi 10.1109/TIP.2010.2040448
10.1073/pnas.0806627105
10.1109/ICDM.2019.00141
10.1145/2487788.2488173
10.1080/10556780108805828
10.1126/science.1089167
10.1561/9781601987570
10.1007/bf02278710
10.1016/j.tcs.2016.01.033
10.1109/CVPR.2005.320
10.1109/34.6778
10.2307/2314570
10.1109/ICCV.2011.6126316
10.1093/bioinformatics/btp196
10.1109/TNSE.2019.2913233
10.1007/978-3-642-68874-4_10
10.1007/s12532-010-0012-6
10.1002/nav.3800020109
10.1080/15427951.2012.625256
10.1093/acprof:oso/9780198566946.001.0001
10.1145/2435209.2435212
10.1145/1217299.1217301
10.1093/bioinformatics/bts592
10.1109/TKDE.2014.2320716
10.1186/1471-2105-10-S1-S59
10.2307/1907742
10.1145/321958.321975
10.1103/PhysRevE.70.056122
10.3115/1220835.1220850
10.1007/BF02614365
10.1371/journal.pone.0121002
10.1109/SP.2009.22
10.1038/30918.PMID9623998
10.1145/316194.316229
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2020.3008128
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 2211
ExternalDocumentID 10_1109_TKDE_2020_3008128
9137367
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: IIS-1908070
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-68cc70f9253750be6a02d676c04c6f548288105802107e1fb4ec3d40f28728e63
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 03:05:38 EDT 2025
Tue Jul 01 01:19:37 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Wed Aug 27 02:36:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-68cc70f9253750be6a02d676c04c6f548288105802107e1fb4ec3d40f28728e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9330-0277
0000-0002-3385-7911
PQID 2645984313
PQPubID 85438
PageCount 12
ParticipantIDs proquest_journals_2645984313
ieee_primary_9137367
crossref_citationtrail_10_1109_TKDE_2020_3008128
crossref_primary_10_1109_TKDE_2020_3008128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
Sherali (ref12) 2013; 31
Fujishige (ref23) 2005; 58
ref26
ref25
ref22
ref21
Babai (ref9)
Bai (ref20)
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
ref40
Berlingerio (ref32)
References_xml – ident: ref2
  doi: 10.1109/TIP.2010.2040448
– ident: ref4
  doi: 10.1073/pnas.0806627105
– ident: ref21
  doi: 10.1109/ICDM.2019.00141
– ident: ref36
  doi: 10.1145/2487788.2488173
– ident: ref13
  doi: 10.1080/10556780108805828
– ident: ref38
  doi: 10.1126/science.1089167
– ident: ref19
  doi: 10.1561/9781601987570
– ident: ref27
  doi: 10.1007/bf02278710
– ident: ref31
  doi: 10.1016/j.tcs.2016.01.033
– ident: ref1
  doi: 10.1109/CVPR.2005.320
– ident: ref30
  doi: 10.1109/34.6778
– ident: ref29
  doi: 10.2307/2314570
– ident: ref3
  doi: 10.1109/ICCV.2011.6126316
– ident: ref5
  doi: 10.1093/bioinformatics/btp196
– ident: ref18
  doi: 10.1109/TNSE.2019.2913233
– start-page: 684
  volume-title: Proc. ACM Symp. Theory Comput.
  ident: ref9
  article-title: Graph isomorphism in quasi-polynomial time
– ident: ref22
  doi: 10.1007/978-3-642-68874-4_10
– ident: ref16
  doi: 10.1007/s12532-010-0012-6
– volume: 58
  volume-title: Submodular Functions and Optimization
  year: 2005
  ident: ref23
– start-page: 314
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref20
  article-title: Greed is still good: Maximizing monotone submodular + supermodular functions
– ident: ref24
  doi: 10.1561/9781601987570
– ident: ref26
  doi: 10.1002/nav.3800020109
– ident: ref37
  doi: 10.1080/15427951.2012.625256
– ident: ref25
  doi: 10.1093/acprof:oso/9780198566946.001.0001
– ident: ref17
  doi: 10.1145/2435209.2435212
– ident: ref39
  doi: 10.1145/1217299.1217301
– ident: ref6
  doi: 10.1093/bioinformatics/bts592
– ident: ref34
  doi: 10.1109/TKDE.2014.2320716
– ident: ref15
  doi: 10.1186/1471-2105-10-S1-S59
– volume: 31
  volume-title: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems
  year: 2013
  ident: ref12
– ident: ref10
  doi: 10.2307/1907742
– ident: ref11
  doi: 10.1145/321958.321975
– ident: ref40
  doi: 10.1103/PhysRevE.70.056122
– ident: ref7
  doi: 10.3115/1220835.1220850
– ident: ref28
  doi: 10.1007/BF02614365
– ident: ref14
  doi: 10.1371/journal.pone.0121002
– ident: ref8
  doi: 10.1109/SP.2009.22
– ident: ref33
  doi: 10.1038/30918.PMID9623998
– start-page: 1439
  volume-title: Proc. IEEE/ACM Int. Conf. Adv. Soc. Netw. Anal. Mining
  ident: ref32
  article-title: NetSimile: A scalable approach to size-independent network similarity
– ident: ref35
  doi: 10.1145/316194.316229
SSID ssj0008781
Score 2.4025538
Snippet Graph matching, the problem of aligning a pair of graphs so as to minimize their edge disagreements, has received widespread attention owing to its broad...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2200
SubjectTerms Algorithms
Approximation
Approximation algorithms
Approximation methods
Bipartite graph
Combinatorial analysis
Data science
discrete optimization
Graph matching
Graph theory
Indexes
Linear programming
Lower bounds
Mathematical analysis
matroid intersection
Maximization
minorization-maximization
Optimization
Polynomials
Proteins
supermodularity
weighted bipartite matching
Title Graph Matching Via the Lens of Supermodularity
URI https://ieeexplore.ieee.org/document/9137367
https://www.proquest.com/docview/2645984313
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4I8pLHpgQaR3bsZ0RAaUCykKL2KL4EQmB2grahV_POY8KAUJsGezIurPvvs--B8CJ8XHqFBNRnhcuEiaRkeZxHknmqBcuhN-E-47BveyPxM1T8rQEZ4tcGO99GXzmO-GzfMt3EzsPV2XdNOaKS7UMy0qlVa7WwupqVTYkRXaBnIgLVb9gxjTtDm8vr5AJMiSowQOGxutffFDZVOWHJS7dS28dBs3CqqiSl858Zjr241vNxv-ufAPWapxJzquNsQlLfrwF600PB1If6S1Y_VKQcBs616F-NRmgfQ43U-TxOSeIEMkdkl0yKcjDfIqWfOJC7CrC9x0Y9a6GF_2o7qgQWXTrs0hqaxUtUpZwRArGy5wyJ5W0VFhZIHlhWiPg0oEIKh8XRnjLnaAF8iqmveS70BpPxn4PiNcFdYitYiONiJXRNsW_JY5xY5I89W2gjYwzW5cbD10vXrOSdtA0C2rJglqyWi1tOF1MmVa1Nv4avB3EvBhYS7gNh40is_o0vmcsVMzRCJX4_u-zDmCFhbSGMpDxEFqzt7k_QrAxM8flLvsEDVfNmg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VGICBRwFRKOCBCZHi2I7tjIhXgZaFgtii-BEJgVoE7cKv55ymVQUIsWWwI-vOvvs--x4Ah8bHqVNMRHleuEiYREaax3kkmaNeuBB-E-47uney_SBunpKnGhxPc2G892XwmW-Fz_It3w3sKFyVnaQxV1yqOVhIkFWocbbW1O5qVbYkRX6BrIgLVb1hxjQ96d2eXyAXZEhRgw8MrddnvFDZVuWHLS4dzOUqdCdLG8eVvLRGQ9Oyn9-qNv537WuwUiFNcjreGutQ8_06rE66OJDqUNdheaYk4Qa0rkIFa9JFCx3upsjjc04QI5IO0l0yKMj96A1t-cCF6FUE8JvwcHnRO2tHVU-FyKJjH0ZSW6tokbKEI1YwXuaUOamkpcLKAukL0xohlw5UUPm4MMJb7gQtkFkx7SXfgvn-oO-3gXhdUIfoKjbSiFgZbVP8W-IYNybJU98AOpFxZquC46HvxWtWEg-aZkEtWVBLVqmlAUfTKW_jaht_Dd4IYp4OrCTcgOZEkVl1Hj8yFmrmaARLfOf3WQew2O51O1nn-u52F5ZYSHIowxqbMD98H_k9hB5Ds1_uuC8LvtDr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Matching+Via+the+Lens+of+Supermodularity&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Konar%2C+Aritra&rft.au=Sidiropoulos%2C+Nicholas+D.&rft.date=2022-05-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=34&rft.issue=5&rft.spage=2200&rft.epage=2211&rft_id=info:doi/10.1109%2FTKDE.2020.3008128&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2020_3008128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon