High Accuracy and Low Complexity LiDAR Place Recognition using Unitary Invariant Frobenius Norm

Simultaneous Localization and Mapping (SLAM) is used in solving the problems of localization, navigation, and map construction for autonomous vehicles moving in unknown environments. Place recognition is an inevitable subject in SLAM, and the current lidar-based methods have been popularized for the...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 23; no. 11; p. 1
Main Authors Wang, Wuqi, Min, Haigen, Wu, Xia, Hou, Xinmeng, Li, Yao, Zhao, Xiangmo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2022.3221979

Cover

Abstract Simultaneous Localization and Mapping (SLAM) is used in solving the problems of localization, navigation, and map construction for autonomous vehicles moving in unknown environments. Place recognition is an inevitable subject in SLAM, and the current lidar-based methods have been popularized for their rising environmental robustness. Currently, the place recognition method with lidar has attracted much attention due to its high environmental robustness. However, many 3D laser point cloud methods for place recognition descriptors construction with the local or global point-cloud data omitting some intrinsic properties of the point clouds. In this article, we propose a place recognition method based on the unitary invariance of the Frobenius norm for utilizing different attributes of ground points and non-ground points. Specifically, the interpretable filtering framework and a dynamic threshold adjustment strategy are raised according to different environments and sensors with intensity and geometric information. As commissioning, the comparative experiments are conducted with CHDloop datasets and public KITTI datasets of different scales and access types. Compared to the original Scan Context (SC) and Intensity Scan Context (ISC) methods, our proposed method achieves higher efficiency while maintaining a improved recall rate and precision. This novel method has been integrated into the existing LiDAR SLAM and formed a new framework FSC_ALOAM that reduces drifts in point-cloud mapping. The entire process improves the accordance of maps at the identical position in auto-driving.
AbstractList Simultaneous localization and mapping (SLAM) is used in solving the problems of localization, navigation, and map construction for autonomous vehicles moving in unknown environments. Place recognition is an inevitable subject in SLAM, and the current lidar-based methods have been popularized for their rising environmental robustness. Currently, the place recognition method with lidar has attracted much attention due to its high environmental robustness. However, many 3-D laser point cloud methods for place recognition descriptors construction with the local or global point-cloud data omit some intrinsic properties of the point clouds. In this article, we propose a place recognition method based on the unitary invariance of the Frobenius norm for utilizing different attributes of ground points and non-ground points. Specifically, the interpretable filtering framework and a dynamic threshold adjustment strategy are raised according to different environments and sensors with intensity and geometric information. As commissioning, the comparative experiments are conducted with CHDloop datasets and public KITTI datasets of different scales and access types. Compared to the original scan context (SC) and intensity SC (ISC) methods, our proposed method achieves higher efficiency while maintaining an improved recall rate and precision. This novel method has been integrated into the existing lidar SLAM and formed a new framework FSC_ALOAM that reduces drifts in point-cloud mapping. The entire process improves the accordance of maps at the identical position in auto-driving.
Simultaneous Localization and Mapping (SLAM) is used in solving the problems of localization, navigation, and map construction for autonomous vehicles moving in unknown environments. Place recognition is an inevitable subject in SLAM, and the current lidar-based methods have been popularized for their rising environmental robustness. Currently, the place recognition method with lidar has attracted much attention due to its high environmental robustness. However, many 3D laser point cloud methods for place recognition descriptors construction with the local or global point-cloud data omitting some intrinsic properties of the point clouds. In this article, we propose a place recognition method based on the unitary invariance of the Frobenius norm for utilizing different attributes of ground points and non-ground points. Specifically, the interpretable filtering framework and a dynamic threshold adjustment strategy are raised according to different environments and sensors with intensity and geometric information. As commissioning, the comparative experiments are conducted with CHDloop datasets and public KITTI datasets of different scales and access types. Compared to the original Scan Context (SC) and Intensity Scan Context (ISC) methods, our proposed method achieves higher efficiency while maintaining a improved recall rate and precision. This novel method has been integrated into the existing LiDAR SLAM and formed a new framework FSC_ALOAM that reduces drifts in point-cloud mapping. The entire process improves the accordance of maps at the identical position in auto-driving.
Author Li, Yao
Zhao, Xiangmo
Wang, Wuqi
Min, Haigen
Hou, Xinmeng
Wu, Xia
Author_xml – sequence: 1
  givenname: Wuqi
  orcidid: 0000-0002-6164-5940
  surname: Wang
  fullname: Wang, Wuqi
  organization: School of Information Engineering, Chang'an University and the Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Xi'an, China
– sequence: 2
  givenname: Haigen
  orcidid: 0000-0002-3609-3574
  surname: Min
  fullname: Min, Haigen
  organization: School of Information Engineering, Chang'an University and the Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Xi'an, China
– sequence: 3
  givenname: Xia
  orcidid: 0000-0002-5459-0419
  surname: Wu
  fullname: Wu, Xia
  organization: School of Information Engineering, Chang'an University and the Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Xi'an, China
– sequence: 4
  givenname: Xinmeng
  surname: Hou
  fullname: Hou, Xinmeng
  organization: School of Information Engineering, Chang'an University and the Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Xi'an, China
– sequence: 5
  givenname: Yao
  surname: Li
  fullname: Li, Yao
  organization: School of Information Engineering, Chang'an University and the Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Xi'an, China
– sequence: 6
  givenname: Xiangmo
  orcidid: 0000-0002-0116-5988
  surname: Zhao
  fullname: Zhao, Xiangmo
  organization: School of Information Engineering, Chang'an University and the Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Xi'an, China
BookMark eNp9kE1PAjEQhhuDiYD-AOOliefFfuxXjwRBMAQNSuKt6XZnsQRa7O6q_Ht3A_HgwbnMTPK-8_H0UMc6CwhdUzKglIi7x5fxYsAIYwPOGBWJOENdGkVpQJMw7bQ1J0HIk7cL1CvLDSGNJkq6SE7N-h0Pta690gesbI7n7guP3G6_hW9THfDc3A-X-HmrNOAlaLe2pjLO4ro0do1XTaf8Ac_sp_JG2QpPvMvAmrrEC-d3l-i8UNsSrk65j1aT8etoGsyfHmaj4TzQTPAqiONC8EgDhYhxIJAwolSWQJhSyAnEcUpTFosiLJQuWJhlMYcQopxolgsWCd5Ht8e5e-8-aigruXG1t81KyVJGSSwIb1XJUaW9K0sPhdTN-e07lVdmKymRLU3Z0pQtTXmi2TjpH-fem13z-b-em6PHAMCvXoioiZj_AL5Kgj4
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JSEN_2023_3306377
crossref_primary_10_1109_JSEN_2024_3363894
crossref_primary_10_1145_3707446
crossref_primary_10_3390_electronics14030421
crossref_primary_10_1109_JSEN_2024_3388965
crossref_primary_10_3390_s24041228
Cites_doi 10.1109/TRO.2016.2624754
10.1109/IROS.2008.4650967
10.1109/ICRA.2013.6630945
10.1142/S0219691318400027
10.1016/j.cviu.2014.04.011
10.15607/RSS.2014.X.007
10.1109/JSEN.2019.2937740
10.1109/TRO.2021.3116424
10.1109/IROS.2018.8594299
10.1117/12.57955
10.1109/CVPR.2007.383150
10.1109/ICRA.2012.6224623
10.15607/RSS.2010.VI.010
10.1109/ICRA48506.2021.9560915
10.1016/j.laa.2008.05.020
10.1109/IROS.2018.8593376
10.1109/ICRA40945.2020.9196764
10.1109/34.993558
10.1109/TRO.2012.2197158
10.1109/IM.2001.924423
10.1109/IVS.2010.5548059
10.1109/JSEN.2018.2815956
10.1109/TITS.2022.3175656
10.1109/IROS40897.2019.8967704
10.1109/JSEN.2019.2935387
10.1109/ICRA48506.2021.9562105
10.1109/IROS45743.2020.9341010
10.1109/LRA.2019.2893887
10.1177/0278364913491297
10.1109/ROBOT.2009.5152473
10.1109/TRO.2015.2496823
10.1109/IROS.2018.8593953
10.1109/TRO.2017.2705103
10.1109/MRA.2006.1638022
10.1109/ICIP.2011.6116679
10.1609/aaai.v28i1.9057
10.3390/s19245430
10.1109/ICCV.2011.6126544
10.1109/CVPR.2016.572
10.1109/JSEN.2021.3113304
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2022.3221979
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2022_3221979
9955556
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Shaanxi Province
  grantid: 2022JQ-663
  funderid: 10.13039/501100007128
– fundername: Key Research and Development Program of Shaanxi Province
  grantid: 2021GY-290
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 300102242103
– fundername: National Natural Science Foundation of China
  grantid: No.20200106
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
ZY4
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-66f935ce1e523e0e720aab7e481ed0e66818269f4facf24bb63e4e5d0c2d92593
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 08:28:52 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
Wed Oct 01 05:05:54 EDT 2025
Wed Aug 27 02:29:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-66f935ce1e523e0e720aab7e481ed0e66818269f4facf24bb63e4e5d0c2d92593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0116-5988
0000-0002-6164-5940
0000-0002-3609-3574
0000-0002-5459-0419
0000-0001-9027-5806
PQID 2821069039
PQPubID 75733
PageCount 1
ParticipantIDs proquest_journals_2821069039
crossref_primary_10_1109_JSEN_2022_3221979
ieee_primary_9955556
crossref_citationtrail_10_1109_JSEN_2022_3221979
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
chen (ref34) 2021
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref2
  doi: 10.1109/TRO.2016.2624754
– ident: ref16
  doi: 10.1109/IROS.2008.4650967
– ident: ref13
  doi: 10.1109/ICRA.2013.6630945
– ident: ref20
  doi: 10.1142/S0219691318400027
– ident: ref10
  doi: 10.1016/j.cviu.2014.04.011
– ident: ref38
  doi: 10.15607/RSS.2014.X.007
– ident: ref30
  doi: 10.1109/JSEN.2019.2937740
– ident: ref41
  doi: 10.1109/TRO.2021.3116424
– ident: ref39
  doi: 10.1109/IROS.2018.8594299
– ident: ref9
  doi: 10.1117/12.57955
– ident: ref23
  doi: 10.1109/CVPR.2007.383150
– ident: ref29
  doi: 10.1109/ICRA.2012.6224623
– ident: ref5
  doi: 10.15607/RSS.2010.VI.010
– ident: ref36
  doi: 10.1109/ICRA48506.2021.9560915
– ident: ref21
  doi: 10.1016/j.laa.2008.05.020
– ident: ref27
  doi: 10.1109/IROS.2018.8593376
– ident: ref18
  doi: 10.1109/ICRA40945.2020.9196764
– ident: ref14
  doi: 10.1109/34.993558
– ident: ref24
  doi: 10.1109/TRO.2012.2197158
– ident: ref8
  doi: 10.1109/IM.2001.924423
– ident: ref40
  doi: 10.1109/IVS.2010.5548059
– ident: ref32
  doi: 10.1109/JSEN.2018.2815956
– ident: ref7
  doi: 10.1109/TITS.2022.3175656
– ident: ref35
  doi: 10.1109/IROS40897.2019.8967704
– ident: ref3
  doi: 10.1109/JSEN.2019.2935387
– ident: ref33
  doi: 10.1109/ICRA48506.2021.9562105
– ident: ref19
  doi: 10.1109/IROS45743.2020.9341010
– ident: ref12
  doi: 10.1109/LRA.2019.2893887
– ident: ref37
  doi: 10.1177/0278364913491297
– ident: ref11
  doi: 10.1109/ROBOT.2009.5152473
– ident: ref6
  doi: 10.1109/TRO.2015.2496823
– ident: ref17
  doi: 10.1109/IROS.2018.8593953
– ident: ref26
  doi: 10.1109/TRO.2017.2705103
– ident: ref1
  doi: 10.1109/MRA.2006.1638022
– ident: ref15
  doi: 10.1109/ICIP.2011.6116679
– ident: ref25
  doi: 10.1609/aaai.v28i1.9057
– ident: ref4
  doi: 10.3390/s19245430
– ident: ref22
  doi: 10.1109/ICCV.2011.6126544
– ident: ref28
  doi: 10.1109/CVPR.2016.572
– year: 2021
  ident: ref34
  article-title: OverlapNet: Loop closing for LiDAR-based SLAM
  publication-title: arXiv 2105 11344
– ident: ref31
  doi: 10.1109/JSEN.2021.3113304
SSID ssj0019757
Score 2.4319751
Snippet Simultaneous Localization and Mapping (SLAM) is used in solving the problems of localization, navigation, and map construction for autonomous vehicles moving...
Simultaneous localization and mapping (SLAM) is used in solving the problems of localization, navigation, and map construction for autonomous vehicles moving...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms autonomous vehicles
Datasets
Lidar
Localization
loop closure detection
Place recognition
Recognition
Robustness
Simultaneous localization and mapping
SLAM
Three dimensional models
Unknown environments
Title High Accuracy and Low Complexity LiDAR Place Recognition using Unitary Invariant Frobenius Norm
URI https://ieeexplore.ieee.org/document/9955556
https://www.proquest.com/docview/2821069039
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB11ewEOy9KC6FKQD5wQaZ3EceJjBa1K1VaoUKm3KHHGu6tF6apNFpVfjydJKxYQ4paDJ7L0_DHPM_MG4C2KjFTSjKOECh2hdeCkQRA4XBp7WyfCNYZqhxdLOV2L2SbYtOD9qRYGEavkMxzQZxXLz7a6pKeyoVL2N4E8g7MwknWt1ilioMJK1dNuYO4IP9w0EUyXq-Hsy3hpmaDnDezqtQPVgzuoaqryx0lcXS-Tp7A4TqzOKrkdlEU60D9-02z835lfwHnjZ7JRvTCeQQvzDjz5RX2wA4-aBujXhy7ElO_BRlqXu0QfWJJnbL79zui0IMXM4sDmNx9HK_aZXt3Z6ph1tM0ZJc5fMXJdk92BfcrvLfm2aLEJ1RnlN-WeLa1b_BzWk_HXD1On6b3gaOsAFI6URvmBRhctU0WOoceTJA1RRC5mHKWMiJgoI0yijSfSVPooMMi49jJlKZX_Atr5NseXwMIUTWqNfVJLk8JEnrBuR5JJ0rXJTNQDfkQj1o0wOfXH-BZXBIWrmACMCcC4AbAH704md7Uqx78GdwmQ08AGix70j5DHzb7dx5aAuqTd7KvLv1u9gsfUcL5OFutDu9iV-Nq6JUX6plqPPwGu4N3U
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xeGB7GAw20Y2BH_Y0LcVJbKd-rAZVYW01MZD6ZiXOeSBQOpVkU_fXz5ek1QZo4i0PvsjS5x_3-e6-A_iAIieVNBdooZNAWCuDTEoZcOX8bZ2K0DmqHR5P1PBSnE3ldA0-rWphELFOPsMufdax_HxmK3oqO9La_0aqZ7AhhRCyqdZaxQx0Uut6-i3MAxEn0zaGGXJ9dPbtZOK5YBR1_fr1A_U_t1DdVuXBWVxfMIMtGC-n1uSV3HSrMuva3_dUG58692142XqarN8sjVewhsUOvPhLf3AHNtsW6FeLXTCU8cH61lbz1C5YWuRsNPvF6LwgzcxywUbXx_1z9pXe3dn5Mu9oVjBKnf_OyHlN5wt2Wvz09NvjxQZUaVRcV3ds4h3j13A5OLn4PAza7guB9S5AGSjldCwthui5KnJMIp6mWYKiF2LOUakeURPthEuti0SWqRgFypzbKNeeVMVvYL2YFbgHLMnQZd44Jr00JVwvEt7xSHNFyja563WAL9EwtpUmpw4Zt6amKFwbAtAQgKYFsAMfVyY_Gl2O_w3eJUBWA1ssOrC_hNy0O_fOeAoaknpzrN8-bnUIm8OL8ciMTidf3sFzaj_fpI7tw3o5r_C9d1LK7KBem38AdLvhIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Accuracy+and+Low+Complexity+LiDAR+Place+Recognition+using+Unitary+Invariant+Frobenius+Norm&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Wuqi&rft.au=Min%2C+Haigen&rft.au=Wu%2C+Xia&rft.au=Hou%2C+Xinmeng&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1530-437X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2022.3221979&rft.externalDocID=9955556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon