High Accuracy and Low Complexity LiDAR Place Recognition using Unitary Invariant Frobenius Norm
Simultaneous Localization and Mapping (SLAM) is used in solving the problems of localization, navigation, and map construction for autonomous vehicles moving in unknown environments. Place recognition is an inevitable subject in SLAM, and the current lidar-based methods have been popularized for the...
Saved in:
| Published in | IEEE sensors journal Vol. 23; no. 11; p. 1 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2022.3221979 |
Cover
| Abstract | Simultaneous Localization and Mapping (SLAM) is used in solving the problems of localization, navigation, and map construction for autonomous vehicles moving in unknown environments. Place recognition is an inevitable subject in SLAM, and the current lidar-based methods have been popularized for their rising environmental robustness. Currently, the place recognition method with lidar has attracted much attention due to its high environmental robustness. However, many 3D laser point cloud methods for place recognition descriptors construction with the local or global point-cloud data omitting some intrinsic properties of the point clouds. In this article, we propose a place recognition method based on the unitary invariance of the Frobenius norm for utilizing different attributes of ground points and non-ground points. Specifically, the interpretable filtering framework and a dynamic threshold adjustment strategy are raised according to different environments and sensors with intensity and geometric information. As commissioning, the comparative experiments are conducted with CHDloop datasets and public KITTI datasets of different scales and access types. Compared to the original Scan Context (SC) and Intensity Scan Context (ISC) methods, our proposed method achieves higher efficiency while maintaining a improved recall rate and precision. This novel method has been integrated into the existing LiDAR SLAM and formed a new framework FSC_ALOAM that reduces drifts in point-cloud mapping. The entire process improves the accordance of maps at the identical position in auto-driving. |
|---|---|
| AbstractList | Simultaneous localization and mapping (SLAM) is used in solving the problems of localization, navigation, and map construction for autonomous vehicles moving in unknown environments. Place recognition is an inevitable subject in SLAM, and the current lidar-based methods have been popularized for their rising environmental robustness. Currently, the place recognition method with lidar has attracted much attention due to its high environmental robustness. However, many 3-D laser point cloud methods for place recognition descriptors construction with the local or global point-cloud data omit some intrinsic properties of the point clouds. In this article, we propose a place recognition method based on the unitary invariance of the Frobenius norm for utilizing different attributes of ground points and non-ground points. Specifically, the interpretable filtering framework and a dynamic threshold adjustment strategy are raised according to different environments and sensors with intensity and geometric information. As commissioning, the comparative experiments are conducted with CHDloop datasets and public KITTI datasets of different scales and access types. Compared to the original scan context (SC) and intensity SC (ISC) methods, our proposed method achieves higher efficiency while maintaining an improved recall rate and precision. This novel method has been integrated into the existing lidar SLAM and formed a new framework FSC_ALOAM that reduces drifts in point-cloud mapping. The entire process improves the accordance of maps at the identical position in auto-driving. Simultaneous Localization and Mapping (SLAM) is used in solving the problems of localization, navigation, and map construction for autonomous vehicles moving in unknown environments. Place recognition is an inevitable subject in SLAM, and the current lidar-based methods have been popularized for their rising environmental robustness. Currently, the place recognition method with lidar has attracted much attention due to its high environmental robustness. However, many 3D laser point cloud methods for place recognition descriptors construction with the local or global point-cloud data omitting some intrinsic properties of the point clouds. In this article, we propose a place recognition method based on the unitary invariance of the Frobenius norm for utilizing different attributes of ground points and non-ground points. Specifically, the interpretable filtering framework and a dynamic threshold adjustment strategy are raised according to different environments and sensors with intensity and geometric information. As commissioning, the comparative experiments are conducted with CHDloop datasets and public KITTI datasets of different scales and access types. Compared to the original Scan Context (SC) and Intensity Scan Context (ISC) methods, our proposed method achieves higher efficiency while maintaining a improved recall rate and precision. This novel method has been integrated into the existing LiDAR SLAM and formed a new framework FSC_ALOAM that reduces drifts in point-cloud mapping. The entire process improves the accordance of maps at the identical position in auto-driving. |
| Author | Li, Yao Zhao, Xiangmo Wang, Wuqi Min, Haigen Hou, Xinmeng Wu, Xia |
| Author_xml | – sequence: 1 givenname: Wuqi orcidid: 0000-0002-6164-5940 surname: Wang fullname: Wang, Wuqi organization: School of Information Engineering, Chang'an University and the Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Xi'an, China – sequence: 2 givenname: Haigen orcidid: 0000-0002-3609-3574 surname: Min fullname: Min, Haigen organization: School of Information Engineering, Chang'an University and the Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Xi'an, China – sequence: 3 givenname: Xia orcidid: 0000-0002-5459-0419 surname: Wu fullname: Wu, Xia organization: School of Information Engineering, Chang'an University and the Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Xi'an, China – sequence: 4 givenname: Xinmeng surname: Hou fullname: Hou, Xinmeng organization: School of Information Engineering, Chang'an University and the Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Xi'an, China – sequence: 5 givenname: Yao surname: Li fullname: Li, Yao organization: School of Information Engineering, Chang'an University and the Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Xi'an, China – sequence: 6 givenname: Xiangmo orcidid: 0000-0002-0116-5988 surname: Zhao fullname: Zhao, Xiangmo organization: School of Information Engineering, Chang'an University and the Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Xi'an, China |
| BookMark | eNp9kE1PAjEQhhuDiYD-AOOliefFfuxXjwRBMAQNSuKt6XZnsQRa7O6q_Ht3A_HgwbnMTPK-8_H0UMc6CwhdUzKglIi7x5fxYsAIYwPOGBWJOENdGkVpQJMw7bQ1J0HIk7cL1CvLDSGNJkq6SE7N-h0Pta690gesbI7n7guP3G6_hW9THfDc3A-X-HmrNOAlaLe2pjLO4ro0do1XTaf8Ac_sp_JG2QpPvMvAmrrEC-d3l-i8UNsSrk65j1aT8etoGsyfHmaj4TzQTPAqiONC8EgDhYhxIJAwolSWQJhSyAnEcUpTFosiLJQuWJhlMYcQopxolgsWCd5Ht8e5e-8-aigruXG1t81KyVJGSSwIb1XJUaW9K0sPhdTN-e07lVdmKymRLU3Z0pQtTXmi2TjpH-fem13z-b-em6PHAMCvXoioiZj_AL5Kgj4 |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_JSEN_2023_3306377 crossref_primary_10_1109_JSEN_2024_3363894 crossref_primary_10_1145_3707446 crossref_primary_10_3390_electronics14030421 crossref_primary_10_1109_JSEN_2024_3388965 crossref_primary_10_3390_s24041228 |
| Cites_doi | 10.1109/TRO.2016.2624754 10.1109/IROS.2008.4650967 10.1109/ICRA.2013.6630945 10.1142/S0219691318400027 10.1016/j.cviu.2014.04.011 10.15607/RSS.2014.X.007 10.1109/JSEN.2019.2937740 10.1109/TRO.2021.3116424 10.1109/IROS.2018.8594299 10.1117/12.57955 10.1109/CVPR.2007.383150 10.1109/ICRA.2012.6224623 10.15607/RSS.2010.VI.010 10.1109/ICRA48506.2021.9560915 10.1016/j.laa.2008.05.020 10.1109/IROS.2018.8593376 10.1109/ICRA40945.2020.9196764 10.1109/34.993558 10.1109/TRO.2012.2197158 10.1109/IM.2001.924423 10.1109/IVS.2010.5548059 10.1109/JSEN.2018.2815956 10.1109/TITS.2022.3175656 10.1109/IROS40897.2019.8967704 10.1109/JSEN.2019.2935387 10.1109/ICRA48506.2021.9562105 10.1109/IROS45743.2020.9341010 10.1109/LRA.2019.2893887 10.1177/0278364913491297 10.1109/ROBOT.2009.5152473 10.1109/TRO.2015.2496823 10.1109/IROS.2018.8593953 10.1109/TRO.2017.2705103 10.1109/MRA.2006.1638022 10.1109/ICIP.2011.6116679 10.1609/aaai.v28i1.9057 10.3390/s19245430 10.1109/ICCV.2011.6126544 10.1109/CVPR.2016.572 10.1109/JSEN.2021.3113304 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2022.3221979 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JSEN_2022_3221979 9955556 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Shaanxi Province grantid: 2022JQ-663 funderid: 10.13039/501100007128 – fundername: Key Research and Development Program of Shaanxi Province grantid: 2021GY-290 – fundername: Fundamental Research Funds for the Central Universities grantid: 300102242103 – fundername: National Natural Science Foundation of China grantid: No.20200106 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ ZY4 AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-66f935ce1e523e0e720aab7e481ed0e66818269f4facf24bb63e4e5d0c2d92593 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 08:28:52 EDT 2025 Thu Apr 24 23:12:45 EDT 2025 Wed Oct 01 05:05:54 EDT 2025 Wed Aug 27 02:29:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-66f935ce1e523e0e720aab7e481ed0e66818269f4facf24bb63e4e5d0c2d92593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0116-5988 0000-0002-6164-5940 0000-0002-3609-3574 0000-0002-5459-0419 0000-0001-9027-5806 |
| PQID | 2821069039 |
| PQPubID | 75733 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2821069039 crossref_primary_10_1109_JSEN_2022_3221979 ieee_primary_9955556 crossref_citationtrail_10_1109_JSEN_2022_3221979 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 chen (ref34) 2021 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref2 doi: 10.1109/TRO.2016.2624754 – ident: ref16 doi: 10.1109/IROS.2008.4650967 – ident: ref13 doi: 10.1109/ICRA.2013.6630945 – ident: ref20 doi: 10.1142/S0219691318400027 – ident: ref10 doi: 10.1016/j.cviu.2014.04.011 – ident: ref38 doi: 10.15607/RSS.2014.X.007 – ident: ref30 doi: 10.1109/JSEN.2019.2937740 – ident: ref41 doi: 10.1109/TRO.2021.3116424 – ident: ref39 doi: 10.1109/IROS.2018.8594299 – ident: ref9 doi: 10.1117/12.57955 – ident: ref23 doi: 10.1109/CVPR.2007.383150 – ident: ref29 doi: 10.1109/ICRA.2012.6224623 – ident: ref5 doi: 10.15607/RSS.2010.VI.010 – ident: ref36 doi: 10.1109/ICRA48506.2021.9560915 – ident: ref21 doi: 10.1016/j.laa.2008.05.020 – ident: ref27 doi: 10.1109/IROS.2018.8593376 – ident: ref18 doi: 10.1109/ICRA40945.2020.9196764 – ident: ref14 doi: 10.1109/34.993558 – ident: ref24 doi: 10.1109/TRO.2012.2197158 – ident: ref8 doi: 10.1109/IM.2001.924423 – ident: ref40 doi: 10.1109/IVS.2010.5548059 – ident: ref32 doi: 10.1109/JSEN.2018.2815956 – ident: ref7 doi: 10.1109/TITS.2022.3175656 – ident: ref35 doi: 10.1109/IROS40897.2019.8967704 – ident: ref3 doi: 10.1109/JSEN.2019.2935387 – ident: ref33 doi: 10.1109/ICRA48506.2021.9562105 – ident: ref19 doi: 10.1109/IROS45743.2020.9341010 – ident: ref12 doi: 10.1109/LRA.2019.2893887 – ident: ref37 doi: 10.1177/0278364913491297 – ident: ref11 doi: 10.1109/ROBOT.2009.5152473 – ident: ref6 doi: 10.1109/TRO.2015.2496823 – ident: ref17 doi: 10.1109/IROS.2018.8593953 – ident: ref26 doi: 10.1109/TRO.2017.2705103 – ident: ref1 doi: 10.1109/MRA.2006.1638022 – ident: ref15 doi: 10.1109/ICIP.2011.6116679 – ident: ref25 doi: 10.1609/aaai.v28i1.9057 – ident: ref4 doi: 10.3390/s19245430 – ident: ref22 doi: 10.1109/ICCV.2011.6126544 – ident: ref28 doi: 10.1109/CVPR.2016.572 – year: 2021 ident: ref34 article-title: OverlapNet: Loop closing for LiDAR-based SLAM publication-title: arXiv 2105 11344 – ident: ref31 doi: 10.1109/JSEN.2021.3113304 |
| SSID | ssj0019757 |
| Score | 2.4319751 |
| Snippet | Simultaneous Localization and Mapping (SLAM) is used in solving the problems of localization, navigation, and map construction for autonomous vehicles moving... Simultaneous localization and mapping (SLAM) is used in solving the problems of localization, navigation, and map construction for autonomous vehicles moving... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | autonomous vehicles Datasets Lidar Localization loop closure detection Place recognition Recognition Robustness Simultaneous localization and mapping SLAM Three dimensional models Unknown environments |
| Title | High Accuracy and Low Complexity LiDAR Place Recognition using Unitary Invariant Frobenius Norm |
| URI | https://ieeexplore.ieee.org/document/9955556 https://www.proquest.com/docview/2821069039 |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB11ewEOy9KC6FKQD5wQaZ3EceJjBa1K1VaoUKm3KHHGu6tF6apNFpVfjydJKxYQ4paDJ7L0_DHPM_MG4C2KjFTSjKOECh2hdeCkQRA4XBp7WyfCNYZqhxdLOV2L2SbYtOD9qRYGEavkMxzQZxXLz7a6pKeyoVL2N4E8g7MwknWt1ilioMJK1dNuYO4IP9w0EUyXq-Hsy3hpmaDnDezqtQPVgzuoaqryx0lcXS-Tp7A4TqzOKrkdlEU60D9-02z835lfwHnjZ7JRvTCeQQvzDjz5RX2wA4-aBujXhy7ElO_BRlqXu0QfWJJnbL79zui0IMXM4sDmNx9HK_aZXt3Z6ph1tM0ZJc5fMXJdk92BfcrvLfm2aLEJ1RnlN-WeLa1b_BzWk_HXD1On6b3gaOsAFI6URvmBRhctU0WOoceTJA1RRC5mHKWMiJgoI0yijSfSVPooMMi49jJlKZX_Atr5NseXwMIUTWqNfVJLk8JEnrBuR5JJ0rXJTNQDfkQj1o0wOfXH-BZXBIWrmACMCcC4AbAH704md7Uqx78GdwmQ08AGix70j5DHzb7dx5aAuqTd7KvLv1u9gsfUcL5OFutDu9iV-Nq6JUX6plqPPwGu4N3U |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xeGB7GAw20Y2BH_Y0LcVJbKd-rAZVYW01MZD6ZiXOeSBQOpVkU_fXz5ek1QZo4i0PvsjS5x_3-e6-A_iAIieVNBdooZNAWCuDTEoZcOX8bZ2K0DmqHR5P1PBSnE3ldA0-rWphELFOPsMufdax_HxmK3oqO9La_0aqZ7AhhRCyqdZaxQx0Uut6-i3MAxEn0zaGGXJ9dPbtZOK5YBR1_fr1A_U_t1DdVuXBWVxfMIMtGC-n1uSV3HSrMuva3_dUG58692142XqarN8sjVewhsUOvPhLf3AHNtsW6FeLXTCU8cH61lbz1C5YWuRsNPvF6LwgzcxywUbXx_1z9pXe3dn5Mu9oVjBKnf_OyHlN5wt2Wvz09NvjxQZUaVRcV3ds4h3j13A5OLn4PAza7guB9S5AGSjldCwthui5KnJMIp6mWYKiF2LOUakeURPthEuti0SWqRgFypzbKNeeVMVvYL2YFbgHLMnQZd44Jr00JVwvEt7xSHNFyja563WAL9EwtpUmpw4Zt6amKFwbAtAQgKYFsAMfVyY_Gl2O_w3eJUBWA1ssOrC_hNy0O_fOeAoaknpzrN8-bnUIm8OL8ciMTidf3sFzaj_fpI7tw3o5r_C9d1LK7KBem38AdLvhIQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Accuracy+and+Low+Complexity+LiDAR+Place+Recognition+using+Unitary+Invariant+Frobenius+Norm&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Wuqi&rft.au=Min%2C+Haigen&rft.au=Wu%2C+Xia&rft.au=Hou%2C+Xinmeng&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1530-437X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2022.3221979&rft.externalDocID=9955556 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |