Adaptive Robot Path Planning Using a Spiking Neuron Algorithm With Axonal Delays
A path planning algorithm for outdoor robots, which is based on neuronal spike timing, is introduced. The algorithm is inspired by recent experimental evidence for experience-dependent plasticity of axonal conductance. Based on this evidence, we developed a novel learning rule that altered axonal de...
Saved in:
| Published in | IEEE transactions on cognitive and developmental systems Vol. 10; no. 2; pp. 126 - 137 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2379-8920 2379-8939 |
| DOI | 10.1109/TCDS.2017.2655539 |
Cover
| Abstract | A path planning algorithm for outdoor robots, which is based on neuronal spike timing, is introduced. The algorithm is inspired by recent experimental evidence for experience-dependent plasticity of axonal conductance. Based on this evidence, we developed a novel learning rule that altered axonal delays corresponding to cost traversals and demonstrated its effectiveness on real-world environmental maps. We implemented the spiking neuron path planning algorithm on an autonomous robot that can adjust its routes depending on the context of the environment. The robot demonstrates the ability to plan different trajectories that exploit smooth roads when energy conservation is advantageous, or plan the shortest path across a grass field when reducing distance traveled is beneficial. Because the algorithm is suitable for spike-based neuromorphic hardware, it has the potential of realizing orders of magnitude gains in power efficiency and computational gains through parallelization. |
|---|---|
| AbstractList | A path planning algorithm for outdoor robots, which is based on neuronal spike timing, is introduced. The algorithm is inspired by recent experimental evidence for experience-dependent plasticity of axonal conductance. Based on this evidence, we developed a novel learning rule that altered axonal delays corresponding to cost traversals and demonstrated its effectiveness on real-world environmental maps. We implemented the spiking neuron path planning algorithm on an autonomous robot that can adjust its routes depending on the context of the environment. The robot demonstrates the ability to plan different trajectories that exploit smooth roads when energy conservation is advantageous, or plan the shortest path across a grass field when reducing distance traveled is beneficial. Because the algorithm is suitable for spike-based neuromorphic hardware, it has the potential of realizing orders of magnitude gains in power efficiency and computational gains through parallelization. |
| Author | Oros, Nicolas Hwu, Tiffany Krichmar, Jeffrey L. Wang, Alexander Y. |
| Author_xml | – sequence: 1 givenname: Tiffany surname: Hwu fullname: Hwu, Tiffany organization: Dept. of Cognitive Sci., Univ. of California at Irvine, Irvine, CA, USA – sequence: 2 givenname: Alexander Y. surname: Wang fullname: Wang, Alexander Y. organization: Dept. of Mech. & Aerosp. Eng., Univ. of California at Irvine, Irvine, CA, USA – sequence: 3 givenname: Nicolas surname: Oros fullname: Oros, Nicolas organization: BrainChip Inc., Aliso Viejo, CA, USA – sequence: 4 givenname: Jeffrey L. surname: Krichmar fullname: Krichmar, Jeffrey L. email: jkrichma@uci.edu organization: Dept. of Cognitive Sci., Univ. of California at Irvine, Irvine, CA, USA |
| BookMark | eNp9kEtPAjEUhRujiYj8AOOmiWuwz2m7nICvhCgRiMtJZ6ZAcZhiW4z8e2cCYeHCzbknuefc3HxX4Lx2tQHgBqMBxkjdz4aj6YAgLAYk4ZxTdQY6hArVl4qq85Mn6BL0QlgjhHBChWSiAyZpqbfRfhv47nIX4UTHFZxUuq5tvYTz0KqG0639bN2r2XlXw7RaOm_jagM_GoXpj6t1BUem0vtwDS4Wugqmd5xdMH98mA2f--O3p5dhOu4XRNHYT1hZyIKQgiksS8HzUgrGSV5iKnnOEOYCNUtNEsU1xUgLSXHCZZEXLEk0pl1wd7i79e5rZ0LM1m7nmz9CRohSmEnEWJMSh1ThXQjeLLLCRh2tq6PXtsowylqCWUswawlmR4JNE_9pbr3daL__t3N76FhjzCkvJBGISvoLsTJ7uw |
| CODEN | ITCDA4 |
| CitedBy_id | crossref_primary_10_1007_s10015_020_00630_6 crossref_primary_10_1177_1729881419891661 crossref_primary_10_1109_ACCESS_2020_2985295 crossref_primary_10_1016_j_measurement_2023_113335 crossref_primary_10_1109_TCDS_2018_2875309 crossref_primary_10_3390_s19153318 crossref_primary_10_1109_TCDS_2023_3317330 crossref_primary_10_1109_TCDS_2017_2711013 crossref_primary_10_1088_2634_4386_adad0f crossref_primary_10_1109_TITS_2021_3131473 crossref_primary_10_1016_j_egyr_2022_03_204 crossref_primary_10_1016_j_micpro_2024_105040 crossref_primary_10_1016_j_robot_2019_103362 crossref_primary_10_1109_TCYB_2022_3164750 crossref_primary_10_3389_fnins_2021_582608 crossref_primary_10_1016_j_isatra_2021_03_041 crossref_primary_10_1109_TCSI_2018_2882818 crossref_primary_10_1016_j_engappai_2023_106838 crossref_primary_10_1016_j_aei_2022_101710 crossref_primary_10_1016_j_cie_2019_05_013 crossref_primary_10_1002_aisy_202400282 crossref_primary_10_1109_TCDS_2017_2776965 crossref_primary_10_1109_LRA_2024_3457371 crossref_primary_10_1155_2022_9590367 crossref_primary_10_3390_app10238607 crossref_primary_10_3389_fnins_2018_00780 crossref_primary_10_1142_S1793962320500506 crossref_primary_10_1002_aisy_202300132 crossref_primary_10_1007_s13198_021_01213_9 |
| Cites_doi | 10.1109/TBCAS.2011.2174152 10.1016/S0921-8890(02)00164-1 10.1109/ICRA.2012.6225303 10.1146/annurev.neuro.28.061604.135709 10.1038/nn.4151 10.1109/ICRA.2014.6907109 10.3389/fnins.2015.00180 10.1090/qam/102435 10.3389/fnbot.2015.00006 10.1109/MRA.2009.933628 10.1126/science.275.5306.1593 10.1007/s004220100269 10.1155/2016/3810903 10.1177/1059712308095775 10.1109/TAMD.2014.2377093 10.1073/pnas.0511281103 10.1109/TNN.2011.2169808 10.1038/nn1802 10.1016/S0893-6080(01)00083-1 10.1177/02783640122067453 10.3389/fncom.2014.00079 10.1016/j.neunet.2013.07.012 10.1109/TRO.2010.2085790 10.3389/fnins.2014.00051 10.1126/science.aaa9633 10.1073/pnas.0712231105 10.1016/j.neuron.2014.12.043 10.1016/j.tins.2008.04.001 10.1038/nature09633 10.3389/fncom.2013.00098 10.1101/lm.85205 10.1109/CEC.2016.7743926 10.1145/2629509 10.1177/1073858408317066 10.3389/fnins.2013.00014 10.1162/089976606775093882 10.1016/j.neuron.2007.06.017 10.1109/TSSC.1968.300136 10.3389/fnins.2011.00073 10.1109/MRA.2011.940276 10.1038/nrn4023 10.1038/nature08010 10.1016/j.neuron.2012.06.029 10.1109/21.148426 10.1073/pnas.1306031110 10.1109/GlobalSIP.2013.6736978 10.1038/nature12112 10.1109/BioCAS.2015.7348409 10.1109/TVLSI.2013.2297056 10.1016/j.tins.2004.10.010 10.1109/MPUL.2011.2175639 10.1093/cercor/bhh053 10.1037/h0061626 10.1016/j.neuron.2008.08.026 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCDS.2017.2655539 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present Institute of Electrical and Electronics Engineers Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2379-8939 |
| EndPage | 137 |
| ExternalDocumentID | 10_1109_TCDS_2017_2655539 7827038 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Northrop Grumman Aerospace Systems funderid: 10.13039/100005014 – fundername: DoD funderid: 10.13039/100000005 – fundername: Industrial Sponsors – fundername: Telluride Neuromorphic Cognition Engineering Workshop, Institute of Neuromorphic Engineering – fundername: National Science Foundation grantid: 1302125 funderid: 10.13039/100000001 – fundername: National Science Foundation funderid: 10.13039/100000001 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-64dc8c22c4918d75bd87452bd1385b4015702c4a2695a310a7831658cbc466a13 |
| IEDL.DBID | RIE |
| ISSN | 2379-8920 |
| IngestDate | Mon Jun 30 11:28:10 EDT 2025 Wed Oct 01 01:52:34 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Wed Aug 27 02:40:12 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-64dc8c22c4918d75bd87452bd1385b4015702c4a2695a310a7831658cbc466a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5129-8589 |
| PQID | 2299148044 |
| PQPubID | 85513 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TCDS_2017_2655539 crossref_citationtrail_10_1109_TCDS_2017_2655539 ieee_primary_7827038 proquest_journals_2299148044 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cognitive and developmental systems |
| PublicationTitleAbbrev | TCDS |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref10 ref16 ref19 ref18 ref51 ref50 oros (ref23) 2013 ref45 ref48 ref47 ref42 eiter (ref24) 1994 ref41 ref43 ref49 ref8 zhou (ref44) 2015 ref7 ref9 ref4 ref3 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 fischl (ref17) 2016 ref39 ref38 ni (ref54) 2011; 22 ref26 gallistel (ref2) 1993 ref25 ref20 ref22 ref21 o’keefe (ref1) 1978 ref28 ref27 stentz (ref6) 1995; 10 ref29 hwu (ref46) 2016 ref60 ref62 ref61 |
| References_xml | – ident: ref49 doi: 10.1109/TBCAS.2011.2174152 – ident: ref21 doi: 10.1016/S0921-8890(02)00164-1 – ident: ref18 doi: 10.1109/ICRA.2012.6225303 – ident: ref60 doi: 10.1146/annurev.neuro.28.061604.135709 – start-page: 1 year: 2013 ident: ref23 article-title: Smartphone based robotics: Powerful, flexible and inexpensive robots for hobbyists, educators, students and researchers publication-title: Center for Embedded Computer Systems – ident: ref43 doi: 10.1038/nn.4151 – ident: ref61 doi: 10.1109/ICRA.2014.6907109 – ident: ref50 doi: 10.3389/fnins.2015.00180 – ident: ref12 doi: 10.1090/qam/102435 – year: 2016 ident: ref17 article-title: Large-scale path planning on spiking neuromorphic hardware publication-title: Proc IEEE Int Symp Circuits Syst – ident: ref38 doi: 10.3389/fnbot.2015.00006 – ident: ref58 doi: 10.1109/MRA.2009.933628 – year: 1978 ident: ref1 publication-title: The Hippocampus as a Cognitive Map – ident: ref57 doi: 10.1126/science.275.5306.1593 – ident: ref19 doi: 10.1007/s004220100269 – ident: ref53 doi: 10.1155/2016/3810903 – ident: ref59 doi: 10.1177/1059712308095775 – ident: ref56 doi: 10.1109/TAMD.2014.2377093 – volume: 10 start-page: 89 year: 1995 ident: ref6 article-title: Optimal and efficient path planning for unknown and dynamic environments publication-title: Int J Robot Automat Syst – ident: ref55 doi: 10.1073/pnas.0511281103 – volume: 22 start-page: 2062 year: 2011 ident: ref54 article-title: Bioinspired neural network for real-time cooperative hunting by multirobots in unknown environments publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2169808 – ident: ref30 doi: 10.1038/nn1802 – ident: ref51 doi: 10.1016/S0893-6080(01)00083-1 – ident: ref7 doi: 10.1177/02783640122067453 – ident: ref37 doi: 10.3389/fncom.2014.00079 – ident: ref62 doi: 10.1016/j.neunet.2013.07.012 – ident: ref11 doi: 10.1109/TRO.2010.2085790 – ident: ref28 doi: 10.3389/fnins.2014.00051 – ident: ref42 doi: 10.1126/science.aaa9633 – ident: ref47 doi: 10.1073/pnas.0712231105 – ident: ref36 doi: 10.1016/j.neuron.2014.12.043 – ident: ref25 doi: 10.1016/j.tins.2008.04.001 – ident: ref39 doi: 10.1038/nature09633 – ident: ref20 doi: 10.3389/fncom.2013.00098 – ident: ref22 doi: 10.1101/lm.85205 – ident: ref13 doi: 10.1109/CEC.2016.7743926 – ident: ref9 doi: 10.1145/2629509 – year: 1994 ident: ref24 article-title: Computing discrete Fréchet distance publication-title: Christian Doppler Laboratory for Expert Systems – ident: ref33 doi: 10.1177/1073858408317066 – start-page: 1248 year: 2015 ident: ref44 article-title: Massively parallel A* search on a GPU publication-title: 29th AAAI Conf on AI – ident: ref27 doi: 10.3389/fnins.2013.00014 – ident: ref29 doi: 10.1162/089976606775093882 – ident: ref31 doi: 10.1016/j.neuron.2007.06.017 – ident: ref5 doi: 10.1109/TSSC.1968.300136 – ident: ref8 doi: 10.3389/fnins.2011.00073 – ident: ref4 doi: 10.1109/MRA.2011.940276 – ident: ref26 doi: 10.1038/nrn4023 – year: 2016 ident: ref46 article-title: A self-driving robot using deep convolutional neural networks on neuromorphic hardware publication-title: arXiv preprint arXiv 1611 01235v1 – ident: ref34 doi: 10.1038/nature08010 – ident: ref35 doi: 10.1016/j.neuron.2012.06.029 – ident: ref10 doi: 10.1109/21.148426 – ident: ref40 doi: 10.1073/pnas.1306031110 – ident: ref15 doi: 10.1109/GlobalSIP.2013.6736978 – ident: ref41 doi: 10.1038/nature12112 – ident: ref14 doi: 10.1109/BioCAS.2015.7348409 – ident: ref16 doi: 10.1109/TVLSI.2013.2297056 – year: 1993 ident: ref2 publication-title: The Organization of Learning – ident: ref52 doi: 10.1016/j.tins.2004.10.010 – ident: ref45 doi: 10.1109/MPUL.2011.2175639 – ident: ref48 doi: 10.1093/cercor/bhh053 – ident: ref3 doi: 10.1037/h0061626 – ident: ref32 doi: 10.1016/j.neuron.2008.08.026 |
| SSID | ssj0001637847 |
| Score | 2.3606157 |
| Snippet | A path planning algorithm for outdoor robots, which is based on neuronal spike timing, is introduced. The algorithm is inspired by recent experimental evidence... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 126 |
| SubjectTerms | Algorithm design and analysis Algorithms Delays Energy conservation Heuristic algorithms Neuromorphic chips Neurons Parallel processing Path planning Planning plasticity Power efficiency Resistance Roads robotics Robots Shortest path planning Spikes Spiking spiking neurons Trajectory planning |
| Title | Adaptive Robot Path Planning Using a Spiking Neuron Algorithm With Axonal Delays |
| URI | https://ieeexplore.ieee.org/document/7827038 https://www.proquest.com/docview/2299148044 |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2379-8939 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001637847 issn: 2379-8920 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS-wwEB7UJ1886h5xvZEH8UFO1zZtLn0sXhBBES_oW0nS7Dni2i7aBfXXO0nbVVQOvpRAkzZkksw3ky8zANuUWe3iwAVWhUWQWIFrDtVOIFE3DociTrGhY1uc8ePr5OSW3c7An-ldGGutJ5_ZgSv6s_yiMhPnKttDbYYTVM7CrJC8uav17k_hsZA-nxiNRYo_pN0hZhSme1f7B5eOxyUGlDPGXGrwD2rI51X5shl7DXP0C067vjXEkvvBpNYD8_opbONPO78ICy3UJFkzN5ZgxpbL0MtKNLMfXsgO8eRP71XvwXlWqLHb-chFpauanCMwJF1CI-J5BUSRy_Gd86wTH9GjJNnob_V4V_97IDf4JNmzQ_XkwI7Uy9NvuD46vNo_DtpkC4FBjV8HPCmMNJSaJI1kIZguXCB8qosolkyjFcZEiC8V5SlTiAmVkHGE8MVok3CuongF5sqqtKtAEIRqPVQCbVydCBdDLE2p4JyZaCiMLfoQdmOfmzYSuUuIMcq9RRKmuRNX7sSVt-Lqw-60ybgJw_G_yj03_NOK7cj3YaMTcN4u1KecojpGizBMkrXvW63DPH5bNuywDZirHyd2E3FIrbf8BHwDXm7WHg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ReqAX-lhQl9LWB8QBkSVx_EiOERRteQnBIrhFtuNtV12SFWSl0l_fsZNsqxYhLpGl2LLlsf3NjD_PAGxRbrWLAxdYFRYBsxL3HMJOkCA2jscyTrGhY1ucieEVO7rhN0uwu3gLY6315DM7cEV_l19UZu5cZXuIZrhAkxfwkjPGePNa649HRcQy8RnFaCxT7JJ215hRmO6N9g8uHZNLDqjgnLvk4H8Bkc-s8t9x7DHm8DWcdqNrqCU_BvNaD8yvfwI3Pnf4b2C1VTZJ1qyOt7Bky3fQy0o0tG8fyDbx9E_vV-_BeVaomTv7yEWlq5qco2pIupRGxDMLiCKXs4nzrRMf06Mk2fRbdTepv9-Sa_yS7KfT68mBnaqH-zW4Ovwy2h8GbbqFwCDm14FghUkMpYalUVJIrgsXCp_qIooTrtEO4zLEn4qKlCvUCpVM4ggVGKMNE0JF8Tosl1Vp3wNBNVTrsZJo5WomXRSxNKVSCG6isTS26EPYzX1u2ljkLiXGNPc2SZjmTly5E1feiqsPO4smsyYQx1OVe276FxXbme_DZifgvN2q9zlFQEabMGRs4_FWn2FlODo9yU--nh1_gFfYT9JwxTZhub6b24-oldT6k1-MvwHBk9lr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Robot+Path+Planning+Using+a+Spiking+Neuron+Algorithm+With+Axonal+Delays&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Hwu%2C+Tiffany&rft.au=Wang%2C+Alexander+Y.&rft.au=Oros%2C+Nicolas&rft.au=Krichmar%2C+Jeffrey+L.&rft.date=2018-06-01&rft.issn=2379-8920&rft.eissn=2379-8939&rft.volume=10&rft.issue=2&rft.spage=126&rft.epage=137&rft_id=info:doi/10.1109%2FTCDS.2017.2655539&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCDS_2017_2655539 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon |