Adaptive Robot Path Planning Using a Spiking Neuron Algorithm With Axonal Delays

A path planning algorithm for outdoor robots, which is based on neuronal spike timing, is introduced. The algorithm is inspired by recent experimental evidence for experience-dependent plasticity of axonal conductance. Based on this evidence, we developed a novel learning rule that altered axonal de...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive and developmental systems Vol. 10; no. 2; pp. 126 - 137
Main Authors Hwu, Tiffany, Wang, Alexander Y., Oros, Nicolas, Krichmar, Jeffrey L.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2379-8920
2379-8939
DOI10.1109/TCDS.2017.2655539

Cover

Abstract A path planning algorithm for outdoor robots, which is based on neuronal spike timing, is introduced. The algorithm is inspired by recent experimental evidence for experience-dependent plasticity of axonal conductance. Based on this evidence, we developed a novel learning rule that altered axonal delays corresponding to cost traversals and demonstrated its effectiveness on real-world environmental maps. We implemented the spiking neuron path planning algorithm on an autonomous robot that can adjust its routes depending on the context of the environment. The robot demonstrates the ability to plan different trajectories that exploit smooth roads when energy conservation is advantageous, or plan the shortest path across a grass field when reducing distance traveled is beneficial. Because the algorithm is suitable for spike-based neuromorphic hardware, it has the potential of realizing orders of magnitude gains in power efficiency and computational gains through parallelization.
AbstractList A path planning algorithm for outdoor robots, which is based on neuronal spike timing, is introduced. The algorithm is inspired by recent experimental evidence for experience-dependent plasticity of axonal conductance. Based on this evidence, we developed a novel learning rule that altered axonal delays corresponding to cost traversals and demonstrated its effectiveness on real-world environmental maps. We implemented the spiking neuron path planning algorithm on an autonomous robot that can adjust its routes depending on the context of the environment. The robot demonstrates the ability to plan different trajectories that exploit smooth roads when energy conservation is advantageous, or plan the shortest path across a grass field when reducing distance traveled is beneficial. Because the algorithm is suitable for spike-based neuromorphic hardware, it has the potential of realizing orders of magnitude gains in power efficiency and computational gains through parallelization.
Author Oros, Nicolas
Hwu, Tiffany
Krichmar, Jeffrey L.
Wang, Alexander Y.
Author_xml – sequence: 1
  givenname: Tiffany
  surname: Hwu
  fullname: Hwu, Tiffany
  organization: Dept. of Cognitive Sci., Univ. of California at Irvine, Irvine, CA, USA
– sequence: 2
  givenname: Alexander Y.
  surname: Wang
  fullname: Wang, Alexander Y.
  organization: Dept. of Mech. & Aerosp. Eng., Univ. of California at Irvine, Irvine, CA, USA
– sequence: 3
  givenname: Nicolas
  surname: Oros
  fullname: Oros, Nicolas
  organization: BrainChip Inc., Aliso Viejo, CA, USA
– sequence: 4
  givenname: Jeffrey L.
  surname: Krichmar
  fullname: Krichmar, Jeffrey L.
  email: jkrichma@uci.edu
  organization: Dept. of Cognitive Sci., Univ. of California at Irvine, Irvine, CA, USA
BookMark eNp9kEtPAjEUhRujiYj8AOOmiWuwz2m7nICvhCgRiMtJZ6ZAcZhiW4z8e2cCYeHCzbknuefc3HxX4Lx2tQHgBqMBxkjdz4aj6YAgLAYk4ZxTdQY6hArVl4qq85Mn6BL0QlgjhHBChWSiAyZpqbfRfhv47nIX4UTHFZxUuq5tvYTz0KqG0639bN2r2XlXw7RaOm_jagM_GoXpj6t1BUem0vtwDS4Wugqmd5xdMH98mA2f--O3p5dhOu4XRNHYT1hZyIKQgiksS8HzUgrGSV5iKnnOEOYCNUtNEsU1xUgLSXHCZZEXLEk0pl1wd7i79e5rZ0LM1m7nmz9CRohSmEnEWJMSh1ThXQjeLLLCRh2tq6PXtsowylqCWUswawlmR4JNE_9pbr3daL__t3N76FhjzCkvJBGISvoLsTJ7uw
CODEN ITCDA4
CitedBy_id crossref_primary_10_1007_s10015_020_00630_6
crossref_primary_10_1177_1729881419891661
crossref_primary_10_1109_ACCESS_2020_2985295
crossref_primary_10_1016_j_measurement_2023_113335
crossref_primary_10_1109_TCDS_2018_2875309
crossref_primary_10_3390_s19153318
crossref_primary_10_1109_TCDS_2023_3317330
crossref_primary_10_1109_TCDS_2017_2711013
crossref_primary_10_1088_2634_4386_adad0f
crossref_primary_10_1109_TITS_2021_3131473
crossref_primary_10_1016_j_egyr_2022_03_204
crossref_primary_10_1016_j_micpro_2024_105040
crossref_primary_10_1016_j_robot_2019_103362
crossref_primary_10_1109_TCYB_2022_3164750
crossref_primary_10_3389_fnins_2021_582608
crossref_primary_10_1016_j_isatra_2021_03_041
crossref_primary_10_1109_TCSI_2018_2882818
crossref_primary_10_1016_j_engappai_2023_106838
crossref_primary_10_1016_j_aei_2022_101710
crossref_primary_10_1016_j_cie_2019_05_013
crossref_primary_10_1002_aisy_202400282
crossref_primary_10_1109_TCDS_2017_2776965
crossref_primary_10_1109_LRA_2024_3457371
crossref_primary_10_1155_2022_9590367
crossref_primary_10_3390_app10238607
crossref_primary_10_3389_fnins_2018_00780
crossref_primary_10_1142_S1793962320500506
crossref_primary_10_1002_aisy_202300132
crossref_primary_10_1007_s13198_021_01213_9
Cites_doi 10.1109/TBCAS.2011.2174152
10.1016/S0921-8890(02)00164-1
10.1109/ICRA.2012.6225303
10.1146/annurev.neuro.28.061604.135709
10.1038/nn.4151
10.1109/ICRA.2014.6907109
10.3389/fnins.2015.00180
10.1090/qam/102435
10.3389/fnbot.2015.00006
10.1109/MRA.2009.933628
10.1126/science.275.5306.1593
10.1007/s004220100269
10.1155/2016/3810903
10.1177/1059712308095775
10.1109/TAMD.2014.2377093
10.1073/pnas.0511281103
10.1109/TNN.2011.2169808
10.1038/nn1802
10.1016/S0893-6080(01)00083-1
10.1177/02783640122067453
10.3389/fncom.2014.00079
10.1016/j.neunet.2013.07.012
10.1109/TRO.2010.2085790
10.3389/fnins.2014.00051
10.1126/science.aaa9633
10.1073/pnas.0712231105
10.1016/j.neuron.2014.12.043
10.1016/j.tins.2008.04.001
10.1038/nature09633
10.3389/fncom.2013.00098
10.1101/lm.85205
10.1109/CEC.2016.7743926
10.1145/2629509
10.1177/1073858408317066
10.3389/fnins.2013.00014
10.1162/089976606775093882
10.1016/j.neuron.2007.06.017
10.1109/TSSC.1968.300136
10.3389/fnins.2011.00073
10.1109/MRA.2011.940276
10.1038/nrn4023
10.1038/nature08010
10.1016/j.neuron.2012.06.029
10.1109/21.148426
10.1073/pnas.1306031110
10.1109/GlobalSIP.2013.6736978
10.1038/nature12112
10.1109/BioCAS.2015.7348409
10.1109/TVLSI.2013.2297056
10.1016/j.tins.2004.10.010
10.1109/MPUL.2011.2175639
10.1093/cercor/bhh053
10.1037/h0061626
10.1016/j.neuron.2008.08.026
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCDS.2017.2655539
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
Institute of Electrical and Electronics Engineers Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 137
ExternalDocumentID 10_1109_TCDS_2017_2655539
7827038
Genre orig-research
GrantInformation_xml – fundername: Northrop Grumman Aerospace Systems
  funderid: 10.13039/100005014
– fundername: DoD
  funderid: 10.13039/100000005
– fundername: Industrial Sponsors
– fundername: Telluride Neuromorphic Cognition Engineering Workshop, Institute of Neuromorphic Engineering
– fundername: National Science Foundation
  grantid: 1302125
  funderid: 10.13039/100000001
– fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-64dc8c22c4918d75bd87452bd1385b4015702c4a2695a310a7831658cbc466a13
IEDL.DBID RIE
ISSN 2379-8920
IngestDate Mon Jun 30 11:28:10 EDT 2025
Wed Oct 01 01:52:34 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Wed Aug 27 02:40:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-64dc8c22c4918d75bd87452bd1385b4015702c4a2695a310a7831658cbc466a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5129-8589
PQID 2299148044
PQPubID 85513
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCDS_2017_2655539
crossref_citationtrail_10_1109_TCDS_2017_2655539
ieee_primary_7827038
proquest_journals_2299148044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref10
ref16
ref19
ref18
ref51
ref50
oros (ref23) 2013
ref45
ref48
ref47
ref42
eiter (ref24) 1994
ref41
ref43
ref49
ref8
zhou (ref44) 2015
ref7
ref9
ref4
ref3
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
fischl (ref17) 2016
ref39
ref38
ni (ref54) 2011; 22
ref26
gallistel (ref2) 1993
ref25
ref20
ref22
ref21
o’keefe (ref1) 1978
ref28
ref27
stentz (ref6) 1995; 10
ref29
hwu (ref46) 2016
ref60
ref62
ref61
References_xml – ident: ref49
  doi: 10.1109/TBCAS.2011.2174152
– ident: ref21
  doi: 10.1016/S0921-8890(02)00164-1
– ident: ref18
  doi: 10.1109/ICRA.2012.6225303
– ident: ref60
  doi: 10.1146/annurev.neuro.28.061604.135709
– start-page: 1
  year: 2013
  ident: ref23
  article-title: Smartphone based robotics: Powerful, flexible and inexpensive robots for hobbyists, educators, students and researchers
  publication-title: Center for Embedded Computer Systems
– ident: ref43
  doi: 10.1038/nn.4151
– ident: ref61
  doi: 10.1109/ICRA.2014.6907109
– ident: ref50
  doi: 10.3389/fnins.2015.00180
– ident: ref12
  doi: 10.1090/qam/102435
– year: 2016
  ident: ref17
  article-title: Large-scale path planning on spiking neuromorphic hardware
  publication-title: Proc IEEE Int Symp Circuits Syst
– ident: ref38
  doi: 10.3389/fnbot.2015.00006
– ident: ref58
  doi: 10.1109/MRA.2009.933628
– year: 1978
  ident: ref1
  publication-title: The Hippocampus as a Cognitive Map
– ident: ref57
  doi: 10.1126/science.275.5306.1593
– ident: ref19
  doi: 10.1007/s004220100269
– ident: ref53
  doi: 10.1155/2016/3810903
– ident: ref59
  doi: 10.1177/1059712308095775
– ident: ref56
  doi: 10.1109/TAMD.2014.2377093
– volume: 10
  start-page: 89
  year: 1995
  ident: ref6
  article-title: Optimal and efficient path planning for unknown and dynamic environments
  publication-title: Int J Robot Automat Syst
– ident: ref55
  doi: 10.1073/pnas.0511281103
– volume: 22
  start-page: 2062
  year: 2011
  ident: ref54
  article-title: Bioinspired neural network for real-time cooperative hunting by multirobots in unknown environments
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2169808
– ident: ref30
  doi: 10.1038/nn1802
– ident: ref51
  doi: 10.1016/S0893-6080(01)00083-1
– ident: ref7
  doi: 10.1177/02783640122067453
– ident: ref37
  doi: 10.3389/fncom.2014.00079
– ident: ref62
  doi: 10.1016/j.neunet.2013.07.012
– ident: ref11
  doi: 10.1109/TRO.2010.2085790
– ident: ref28
  doi: 10.3389/fnins.2014.00051
– ident: ref42
  doi: 10.1126/science.aaa9633
– ident: ref47
  doi: 10.1073/pnas.0712231105
– ident: ref36
  doi: 10.1016/j.neuron.2014.12.043
– ident: ref25
  doi: 10.1016/j.tins.2008.04.001
– ident: ref39
  doi: 10.1038/nature09633
– ident: ref20
  doi: 10.3389/fncom.2013.00098
– ident: ref22
  doi: 10.1101/lm.85205
– ident: ref13
  doi: 10.1109/CEC.2016.7743926
– ident: ref9
  doi: 10.1145/2629509
– year: 1994
  ident: ref24
  article-title: Computing discrete Fréchet distance
  publication-title: Christian Doppler Laboratory for Expert Systems
– ident: ref33
  doi: 10.1177/1073858408317066
– start-page: 1248
  year: 2015
  ident: ref44
  article-title: Massively parallel A* search on a GPU
  publication-title: 29th AAAI Conf on AI
– ident: ref27
  doi: 10.3389/fnins.2013.00014
– ident: ref29
  doi: 10.1162/089976606775093882
– ident: ref31
  doi: 10.1016/j.neuron.2007.06.017
– ident: ref5
  doi: 10.1109/TSSC.1968.300136
– ident: ref8
  doi: 10.3389/fnins.2011.00073
– ident: ref4
  doi: 10.1109/MRA.2011.940276
– ident: ref26
  doi: 10.1038/nrn4023
– year: 2016
  ident: ref46
  article-title: A self-driving robot using deep convolutional neural networks on neuromorphic hardware
  publication-title: arXiv preprint arXiv 1611 01235v1
– ident: ref34
  doi: 10.1038/nature08010
– ident: ref35
  doi: 10.1016/j.neuron.2012.06.029
– ident: ref10
  doi: 10.1109/21.148426
– ident: ref40
  doi: 10.1073/pnas.1306031110
– ident: ref15
  doi: 10.1109/GlobalSIP.2013.6736978
– ident: ref41
  doi: 10.1038/nature12112
– ident: ref14
  doi: 10.1109/BioCAS.2015.7348409
– ident: ref16
  doi: 10.1109/TVLSI.2013.2297056
– year: 1993
  ident: ref2
  publication-title: The Organization of Learning
– ident: ref52
  doi: 10.1016/j.tins.2004.10.010
– ident: ref45
  doi: 10.1109/MPUL.2011.2175639
– ident: ref48
  doi: 10.1093/cercor/bhh053
– ident: ref3
  doi: 10.1037/h0061626
– ident: ref32
  doi: 10.1016/j.neuron.2008.08.026
SSID ssj0001637847
Score 2.3606157
Snippet A path planning algorithm for outdoor robots, which is based on neuronal spike timing, is introduced. The algorithm is inspired by recent experimental evidence...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126
SubjectTerms Algorithm design and analysis
Algorithms
Delays
Energy conservation
Heuristic algorithms
Neuromorphic chips
Neurons
Parallel processing
Path planning
Planning
plasticity
Power efficiency
Resistance
Roads
robotics
Robots
Shortest path planning
Spikes
Spiking
spiking neurons
Trajectory planning
Title Adaptive Robot Path Planning Using a Spiking Neuron Algorithm With Axonal Delays
URI https://ieeexplore.ieee.org/document/7827038
https://www.proquest.com/docview/2299148044
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2379-8939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001637847
  issn: 2379-8920
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS-wwEB7UJ1886h5xvZEH8UFO1zZtLn0sXhBBES_oW0nS7Dni2i7aBfXXO0nbVVQOvpRAkzZkksw3ky8zANuUWe3iwAVWhUWQWIFrDtVOIFE3DociTrGhY1uc8ePr5OSW3c7An-ldGGutJ5_ZgSv6s_yiMhPnKttDbYYTVM7CrJC8uav17k_hsZA-nxiNRYo_pN0hZhSme1f7B5eOxyUGlDPGXGrwD2rI51X5shl7DXP0C067vjXEkvvBpNYD8_opbONPO78ICy3UJFkzN5ZgxpbL0MtKNLMfXsgO8eRP71XvwXlWqLHb-chFpauanCMwJF1CI-J5BUSRy_Gd86wTH9GjJNnob_V4V_97IDf4JNmzQ_XkwI7Uy9NvuD46vNo_DtpkC4FBjV8HPCmMNJSaJI1kIZguXCB8qosolkyjFcZEiC8V5SlTiAmVkHGE8MVok3CuongF5sqqtKtAEIRqPVQCbVydCBdDLE2p4JyZaCiMLfoQdmOfmzYSuUuIMcq9RRKmuRNX7sSVt-Lqw-60ybgJw_G_yj03_NOK7cj3YaMTcN4u1KecojpGizBMkrXvW63DPH5bNuywDZirHyd2E3FIrbf8BHwDXm7WHg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ReqAX-lhQl9LWB8QBkSVx_EiOERRteQnBIrhFtuNtV12SFWSl0l_fsZNsqxYhLpGl2LLlsf3NjD_PAGxRbrWLAxdYFRYBsxL3HMJOkCA2jscyTrGhY1ucieEVO7rhN0uwu3gLY6315DM7cEV_l19UZu5cZXuIZrhAkxfwkjPGePNa649HRcQy8RnFaCxT7JJ215hRmO6N9g8uHZNLDqjgnLvk4H8Bkc-s8t9x7DHm8DWcdqNrqCU_BvNaD8yvfwI3Pnf4b2C1VTZJ1qyOt7Bky3fQy0o0tG8fyDbx9E_vV-_BeVaomTv7yEWlq5qco2pIupRGxDMLiCKXs4nzrRMf06Mk2fRbdTepv9-Sa_yS7KfT68mBnaqH-zW4Ovwy2h8GbbqFwCDm14FghUkMpYalUVJIrgsXCp_qIooTrtEO4zLEn4qKlCvUCpVM4ggVGKMNE0JF8Tosl1Vp3wNBNVTrsZJo5WomXRSxNKVSCG6isTS26EPYzX1u2ljkLiXGNPc2SZjmTly5E1feiqsPO4smsyYQx1OVe276FxXbme_DZifgvN2q9zlFQEabMGRs4_FWn2FlODo9yU--nh1_gFfYT9JwxTZhub6b24-oldT6k1-MvwHBk9lr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Robot+Path+Planning+Using+a+Spiking+Neuron+Algorithm+With+Axonal+Delays&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Hwu%2C+Tiffany&rft.au=Wang%2C+Alexander+Y.&rft.au=Oros%2C+Nicolas&rft.au=Krichmar%2C+Jeffrey+L.&rft.date=2018-06-01&rft.issn=2379-8920&rft.eissn=2379-8939&rft.volume=10&rft.issue=2&rft.spage=126&rft.epage=137&rft_id=info:doi/10.1109%2FTCDS.2017.2655539&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCDS_2017_2655539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon