Cost-Aware Feature Selection for IoT Device Classification

The classification of Internet-of-Things (IoT) devices into different types is of paramount importance, from multiple perspectives, including security and privacy aspects. Recent works have explored machine learning techniques for fingerprinting (or classifying) IoT devices, with promising results....

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 8; no. 14; pp. 11052 - 11064
Main Authors Chakraborty, Biswadeep, Divakaran, Dinil Mon, Nevat, Ido, Peters, Gareth W., Gurusamy, Mohan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2021.3051480

Cover

Abstract The classification of Internet-of-Things (IoT) devices into different types is of paramount importance, from multiple perspectives, including security and privacy aspects. Recent works have explored machine learning techniques for fingerprinting (or classifying) IoT devices, with promising results. However, the existing works have assumed that the features used for building the machine learning models are readily available or can be easily extracted from the network traffic; in other words, they do not consider the costs associated with feature extraction. In this work, we take a more realistic approach, and argue that feature extraction has a cost, and the costs are different for different features. We also take a step forward from the current practice of considering the misclassification loss as a binary value, and make a case for different losses based on the misclassification performance. Thereby, and more importantly, we introduce the notion of risk for IoT device classification. We define and formulate the problem of cost-aware IoT device classification. This being a combinatorial optimization problem, we develop a novel algorithm to solve it in a fast and effective way using the cross-entropy (CE)-based stochastic optimization technique. Using traffic of real devices, we demonstrate the capability of the CE-based algorithm in selecting features with minimal risk of misclassification while keeping the cost for feature extraction within a specified limit.
AbstractList The classification of Internet-of-Things (IoT) devices into different types is of paramount importance, from multiple perspectives, including security and privacy aspects. Recent works have explored machine learning techniques for fingerprinting (or classifying) IoT devices, with promising results. However, the existing works have assumed that the features used for building the machine learning models are readily available or can be easily extracted from the network traffic; in other words, they do not consider the costs associated with feature extraction. In this work, we take a more realistic approach, and argue that feature extraction has a cost, and the costs are different for different features. We also take a step forward from the current practice of considering the misclassification loss as a binary value, and make a case for different losses based on the misclassification performance. Thereby, and more importantly, we introduce the notion of risk for IoT device classification. We define and formulate the problem of cost-aware IoT device classification. This being a combinatorial optimization problem, we develop a novel algorithm to solve it in a fast and effective way using the cross-entropy (CE)-based stochastic optimization technique. Using traffic of real devices, we demonstrate the capability of the CE-based algorithm in selecting features with minimal risk of misclassification while keeping the cost for feature extraction within a specified limit.
Author Nevat, Ido
Peters, Gareth W.
Gurusamy, Mohan
Chakraborty, Biswadeep
Divakaran, Dinil Mon
Author_xml – sequence: 1
  givenname: Biswadeep
  orcidid: 0000-0003-2351-4605
  surname: Chakraborty
  fullname: Chakraborty, Biswadeep
  email: bchakraborty6@gatech.edu
  organization: Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 2
  givenname: Dinil Mon
  orcidid: 0000-0001-8706-432X
  surname: Divakaran
  fullname: Divakaran, Dinil Mon
  email: dinil.divakaran@trustwave.com
  organization: Cyber Security R&D Division, CTO Office, Trustwave, Singapore
– sequence: 3
  givenname: Ido
  orcidid: 0000-0003-1567-3446
  surname: Nevat
  fullname: Nevat, Ido
  email: ido.nevat@tum-create.edu.sg
  organization: Cooling Singapore, TUMCREATE, Singapore
– sequence: 4
  givenname: Gareth W.
  surname: Peters
  fullname: Peters, Gareth W.
  email: g.peters@hw.ac.uk
  organization: Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh, U.K
– sequence: 5
  givenname: Mohan
  orcidid: 0000-0001-6764-268X
  surname: Gurusamy
  fullname: Gurusamy, Mohan
  email: gmohan@ieee.org
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
BookMark eNp9kE1LAzEQhoMoWGt_gHhZ8Lw137vxVlarlUIP7j0k6SykrE1Ntor_3l1bRDx4moF5n5nhuUCn27AFhK4InhKC1e3zYlVPKaZkyrAgvMQnaEQZLXIuJT391Z-jSUobjHGPCaLkCN1VIXX57MNEyOZgun1fX6AF1_mwzZoQs0Wos3t49w6yqjUp-cY7M0wv0Vlj2gSTYx2jev5QV0_5cvW4qGbL3FHFulxSXnJLMC2EKpm0bG2FLJQVSmBiS1U6I5rGYbtmUJBSNYaKtWPMcWMlWDZGN4e1uxje9pA6vQn7uO0vaip4z6uS0z5VHFIuhpQiNNr57vvNLhrfaoL1oEoPqvSgSh9V9ST5Q-6ifzXx81_m-sB4APjJK0YJl5x9AYNJdFw
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_TDSC_2024_3383159
crossref_primary_10_1016_j_asoc_2024_111455
crossref_primary_10_1016_j_patcog_2025_111375
crossref_primary_10_1109_JIOT_2023_3339492
crossref_primary_10_1109_TMLCN_2024_3475968
crossref_primary_10_1109_OJCOMS_2024_3351706
crossref_primary_10_1016_j_pmcj_2024_101976
crossref_primary_10_1109_JIOT_2023_3237032
crossref_primary_10_1016_j_cose_2024_103818
crossref_primary_10_1109_ACCESS_2022_3205023
crossref_primary_10_1109_JIOT_2022_3221967
Cites_doi 10.1093/bib/bbn027
10.1016/j.patcog.2014.01.008
10.17487/rfc7011
10.14722/ndss.2019.23488
10.1016/j.ijar.2013.04.003
10.1007/s10479-005-5724-z
10.1145/363958.363994
10.1109/TNET.2017.2765719
10.14722/diss.2020.23006
10.1016/j.ejor.2017.02.037
10.14722/ndss.2020.24301
10.1007/978-3-319-66399-9_14
10.1016/j.comnet.2017.03.004
10.1007/978-3-319-46128-1_40
10.1016/j.comnet.2015.08.021
10.1109/ICDCS.2017.284
10.1109/CNS.2019.8802833
10.1145/3019612.3019878
10.1109/TMC.2018.2866249
10.1109/COMSNETS.2019.8711210
10.1109/JSAC.2019.2904364
10.1016/j.comnet.2018.11.013
10.1145/2591971.2591972
10.1109/JIOT.2018.2865604
10.1081/STM-200046472
10.1109/TCBB.2015.2476796
10.1145/2420950.2420969
10.1145/3050220.3063772
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2021.3051480
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL) - 2025 collection
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 11064
ExternalDocumentID 10_1109_JIOT_2021_3051480
9321464
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation, Prime Minister’s Office, Singapore, under its Corporate Laboratory@University Scheme, National University of Singapore, and Singapore Telecommunications Ltd
  funderid: 10.13039/501100001381
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-62484b102759836b3db5679b59501b898ca5ffc0bd3e7189fa25dc33c4ab6eb3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Mon Jun 30 04:42:20 EDT 2025
Wed Oct 01 04:45:34 EDT 2025
Thu Apr 24 22:50:37 EDT 2025
Wed Aug 27 02:26:39 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 14
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-62484b102759836b3db5679b59501b898ca5ffc0bd3e7189fa25dc33c4ab6eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6764-268X
0000-0003-1567-3446
0000-0001-8706-432X
0000-0003-2351-4605
PQID 2548989842
PQPubID 2040421
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_JIOT_2021_3051480
proquest_journals_2548989842
crossref_primary_10_1109_JIOT_2021_3051480
ieee_primary_9321464
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref12
ref37
ref15
ref31
ref30
ref33
ref11
ref32
ref10
divakaran (ref4) 2020
nguyen (ref20) 2019
lundberg (ref39) 2017
dong (ref7) 2019
ref17
ref38
ref16
ref19
ref18
apthorpe (ref13) 2016
ref23
ref26
ref25
weaver (ref14) 2011
ref21
(ref1) 2019
antonakakis (ref2) 2017
ref28
ref27
ref29
ref8
ref9
gao (ref22) 2010
apthorpe (ref24) 2017
(ref36) 2020
collins (ref35) 2002
ref3
ref6
ref5
References_xml – ident: ref27
  doi: 10.1093/bib/bbn027
– ident: ref31
  doi: 10.1016/j.patcog.2014.01.008
– year: 2020
  ident: ref36
  publication-title: Dataset of IoT Network Traffic
– ident: ref12
  doi: 10.17487/rfc7011
– ident: ref3
  doi: 10.14722/ndss.2019.23488
– start-page: 617
  year: 2002
  ident: ref35
  article-title: A generalization of principal components analysis to the exponential family
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2017
  ident: ref24
  publication-title: Spying on the Smart Home Privacy Attacks and Defenses on Encrypted IoT Traffic
– year: 2019
  ident: ref1
  publication-title: ISTR 2019 Internet of Things Cyber Attacks Grow More Diverse
– ident: ref30
  doi: 10.1016/j.ijar.2013.04.003
– ident: ref34
  doi: 10.1007/s10479-005-5724-z
– ident: ref26
  doi: 10.1145/363958.363994
– start-page: 756
  year: 2019
  ident: ref20
  article-title: DÏot: A federated self-learning anomaly detection system for IoT
  publication-title: Proc IEEE ICDCS
– ident: ref18
  doi: 10.1109/TNET.2017.2765719
– year: 2019
  ident: ref7
  publication-title: Your smart home can't keep a secret Towards automated fingerprinting of IoT traffic with neural networks
– year: 2020
  ident: ref4
  article-title: ADROIT: Detecting spatio-temporal correlated attack-stages in IoT networks
  publication-title: Proc NDSS DISS (Decentralized IoT Syst Secur )
  doi: 10.14722/diss.2020.23006
– ident: ref32
  doi: 10.1016/j.ejor.2017.02.037
– ident: ref15
  doi: 10.14722/ndss.2020.24301
– ident: ref23
  doi: 10.1007/978-3-319-66399-9_14
– ident: ref37
  doi: 10.1016/j.comnet.2017.03.004
– year: 2016
  ident: ref13
  article-title: A smart home is no castle: Privacy vulnerabilities Of encrypted IoT traffic
  publication-title: Proc Workshop Data Algorithmic Transparency (DAT)
– ident: ref28
  doi: 10.1007/978-3-319-46128-1_40
– ident: ref16
  doi: 10.1016/j.comnet.2015.08.021
– ident: ref6
  doi: 10.1109/ICDCS.2017.284
– ident: ref19
  doi: 10.1109/CNS.2019.8802833
– start-page: 383
  year: 2010
  ident: ref22
  article-title: A passive approach to wireless device fingerprinting
  publication-title: Proc IEEE/IFIP Int Conf Depend Syst Netw (DSN)
– start-page: 4765
  year: 2017
  ident: ref39
  article-title: A unified approach to interpreting model predictions
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref5
  doi: 10.1145/3019612.3019878
– ident: ref9
  doi: 10.1109/TMC.2018.2866249
– ident: ref38
  doi: 10.1109/COMSNETS.2019.8711210
– ident: ref8
  doi: 10.1109/JSAC.2019.2904364
– ident: ref25
  doi: 10.1016/j.comnet.2018.11.013
– ident: ref21
  doi: 10.1145/2591971.2591972
– ident: ref10
  doi: 10.1109/JIOT.2018.2865604
– ident: ref33
  doi: 10.1081/STM-200046472
– ident: ref29
  doi: 10.1109/TCBB.2015.2476796
– year: 2011
  ident: ref14
  article-title: Redirecting DNS for ads and profit
  publication-title: Proc USENIX Workshop Free Open Commun Internet (FOCI)
– ident: ref17
  doi: 10.1145/2420950.2420969
– start-page: 1093
  year: 2017
  ident: ref2
  article-title: Understanding the mirai botnet
  publication-title: Proc 26th USENIX Secur Symp
– ident: ref11
  doi: 10.1145/3050220.3063772
SSID ssj0001105196
Score 2.3443692
Snippet The classification of Internet-of-Things (IoT) devices into different types is of paramount importance, from multiple perspectives, including security and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11052
SubjectTerms Algorithms
Cameras
Classification
Combinatorial analysis
Communications traffic
Entropy (Information theory)
Feature extraction
Fingerprinting
Identification
Internet of Things
Internet-of-Things (IoT)
Machine learning
network
Object recognition
Optimization
Optimization techniques
Privacy
Title Cost-Aware Feature Selection for IoT Device Classification
URI https://ieeexplore.ieee.org/document/9321464
https://www.proquest.com/docview/2548989842
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BTl5ERSOKZgdPxsG2ftB6IygBEvQgJtyWtusuGjAwYuJfb18ZaNQYT92hXZr-2r7Pvh_AZW4Y0UTJMEfbhAouQ0kyHkolYmMTSRPv7xjf88ETHU3ZtALX27cw1lqffGZb-Olj-dncrNBV1pbIqsPpDux0BF-_1fr0p8SojPAycBlHsj0aPkycAZjELYJFvrHw4xfR47lUflzAXqr0azDezGedTPLcWhW6Zd6_lWr874T3Ya9UL4Puej8cQMXODqG2oW4IypNch5vefFmE3Te1sAFqgSvXPnpKHIdT4BTZYDifBLcW75HAE2diSpFH8Qgm_btJbxCWNAqhcbK8CHlCBdUxxielIFyTTDPekZpJFsVaSGEUy3MT6YxYJ6lkrhKWGUIMVZo7W_sYqrP5zJ5AYDMec0GlUsQpMla5tsM0YVxYobjQDYg2C5yassQ4Ml28pN7UiGSKmKSISVpi0oCr7ZDXdX2NvzrXcY23HcvlbUBzg2JansBl6gxfZMYUNDn9fdQZ7OK_0U8bsyZUi8XKnjsFo9AXfmd9AK3ny48
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH6CMsBCgYIoZwYmREoSH7XZEIdaoGUgSGyR7TgLqEVtKiR-PX5uWhAgxOQMtmL5s_1Ovw_gqDCMaKJkWKBtQgWXoSQ5D6USsbGJpIn3d_T6vPNIb57Y0wKczN_CWGt98plt4aeP5edDM0FX2alEVh1OF2GJUUrZ9LXWp0clRnWEV6HLOJKnN9371JmASdwiWOYbSz9-ET6eTeXHFezlynUderMZTdNJnluTUrfM-7dijf-d8hqsVgpmcD7dEeuwYAcbUJ-RNwTVWW7A2cVwXIbnb2pkA9QDJ6598KQ4DqnAqbJBd5gGlxZvksBTZ2JSkcdxE9Lrq_SiE1ZECqFx0rwMeUIF1TFGKKUgXJNcM96WmkkWxVpIYRQrChPpnFgnq2ShEpYbQgxVmjtrewtqg-HAbkNgcx5zQaVSxKkyVrm2zTRhXFihuNBNiGYLnJmqyDhyXbxk3tiIZIaYZIhJVmHShOP5kNdphY2_Ojdwjecdq-Vtwt4Mxaw6g-PMmb7IjSlosvP7qENY7qS9u-yu27_dhRX8D3ptY7YHtXI0sftO3Sj1gd9lH4Jxztw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-Aware+Feature+Selection+for+IoT+Device+Classification&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Chakraborty%2C+Biswadeep&rft.au=Divakaran%2C+Dinil+Mon&rft.au=Nevat%2C+Ido&rft.au=Peters%2C+Gareth+W.&rft.date=2021-07-15&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=8&rft.issue=14&rft.spage=11052&rft.epage=11064&rft_id=info:doi/10.1109%2FJIOT.2021.3051480&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2021_3051480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon