Cost-Aware Feature Selection for IoT Device Classification
The classification of Internet-of-Things (IoT) devices into different types is of paramount importance, from multiple perspectives, including security and privacy aspects. Recent works have explored machine learning techniques for fingerprinting (or classifying) IoT devices, with promising results....
Saved in:
| Published in | IEEE internet of things journal Vol. 8; no. 14; pp. 11052 - 11064 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
15.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2327-4662 2327-4662 |
| DOI | 10.1109/JIOT.2021.3051480 |
Cover
| Abstract | The classification of Internet-of-Things (IoT) devices into different types is of paramount importance, from multiple perspectives, including security and privacy aspects. Recent works have explored machine learning techniques for fingerprinting (or classifying) IoT devices, with promising results. However, the existing works have assumed that the features used for building the machine learning models are readily available or can be easily extracted from the network traffic; in other words, they do not consider the costs associated with feature extraction. In this work, we take a more realistic approach, and argue that feature extraction has a cost, and the costs are different for different features. We also take a step forward from the current practice of considering the misclassification loss as a binary value, and make a case for different losses based on the misclassification performance. Thereby, and more importantly, we introduce the notion of risk for IoT device classification. We define and formulate the problem of cost-aware IoT device classification. This being a combinatorial optimization problem, we develop a novel algorithm to solve it in a fast and effective way using the cross-entropy (CE)-based stochastic optimization technique. Using traffic of real devices, we demonstrate the capability of the CE-based algorithm in selecting features with minimal risk of misclassification while keeping the cost for feature extraction within a specified limit. |
|---|---|
| AbstractList | The classification of Internet-of-Things (IoT) devices into different types is of paramount importance, from multiple perspectives, including security and privacy aspects. Recent works have explored machine learning techniques for fingerprinting (or classifying) IoT devices, with promising results. However, the existing works have assumed that the features used for building the machine learning models are readily available or can be easily extracted from the network traffic; in other words, they do not consider the costs associated with feature extraction. In this work, we take a more realistic approach, and argue that feature extraction has a cost, and the costs are different for different features. We also take a step forward from the current practice of considering the misclassification loss as a binary value, and make a case for different losses based on the misclassification performance. Thereby, and more importantly, we introduce the notion of risk for IoT device classification. We define and formulate the problem of cost-aware IoT device classification. This being a combinatorial optimization problem, we develop a novel algorithm to solve it in a fast and effective way using the cross-entropy (CE)-based stochastic optimization technique. Using traffic of real devices, we demonstrate the capability of the CE-based algorithm in selecting features with minimal risk of misclassification while keeping the cost for feature extraction within a specified limit. |
| Author | Nevat, Ido Peters, Gareth W. Gurusamy, Mohan Chakraborty, Biswadeep Divakaran, Dinil Mon |
| Author_xml | – sequence: 1 givenname: Biswadeep orcidid: 0000-0003-2351-4605 surname: Chakraborty fullname: Chakraborty, Biswadeep email: bchakraborty6@gatech.edu organization: Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 2 givenname: Dinil Mon orcidid: 0000-0001-8706-432X surname: Divakaran fullname: Divakaran, Dinil Mon email: dinil.divakaran@trustwave.com organization: Cyber Security R&D Division, CTO Office, Trustwave, Singapore – sequence: 3 givenname: Ido orcidid: 0000-0003-1567-3446 surname: Nevat fullname: Nevat, Ido email: ido.nevat@tum-create.edu.sg organization: Cooling Singapore, TUMCREATE, Singapore – sequence: 4 givenname: Gareth W. surname: Peters fullname: Peters, Gareth W. email: g.peters@hw.ac.uk organization: Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh, U.K – sequence: 5 givenname: Mohan orcidid: 0000-0001-6764-268X surname: Gurusamy fullname: Gurusamy, Mohan email: gmohan@ieee.org organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore |
| BookMark | eNp9kE1LAzEQhoMoWGt_gHhZ8Lw137vxVlarlUIP7j0k6SykrE1Ntor_3l1bRDx4moF5n5nhuUCn27AFhK4InhKC1e3zYlVPKaZkyrAgvMQnaEQZLXIuJT391Z-jSUobjHGPCaLkCN1VIXX57MNEyOZgun1fX6AF1_mwzZoQs0Wos3t49w6yqjUp-cY7M0wv0Vlj2gSTYx2jev5QV0_5cvW4qGbL3FHFulxSXnJLMC2EKpm0bG2FLJQVSmBiS1U6I5rGYbtmUJBSNYaKtWPMcWMlWDZGN4e1uxje9pA6vQn7uO0vaip4z6uS0z5VHFIuhpQiNNr57vvNLhrfaoL1oEoPqvSgSh9V9ST5Q-6ifzXx81_m-sB4APjJK0YJl5x9AYNJdFw |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1109_TDSC_2024_3383159 crossref_primary_10_1016_j_asoc_2024_111455 crossref_primary_10_1016_j_patcog_2025_111375 crossref_primary_10_1109_JIOT_2023_3339492 crossref_primary_10_1109_TMLCN_2024_3475968 crossref_primary_10_1109_OJCOMS_2024_3351706 crossref_primary_10_1016_j_pmcj_2024_101976 crossref_primary_10_1109_JIOT_2023_3237032 crossref_primary_10_1016_j_cose_2024_103818 crossref_primary_10_1109_ACCESS_2022_3205023 crossref_primary_10_1109_JIOT_2022_3221967 |
| Cites_doi | 10.1093/bib/bbn027 10.1016/j.patcog.2014.01.008 10.17487/rfc7011 10.14722/ndss.2019.23488 10.1016/j.ijar.2013.04.003 10.1007/s10479-005-5724-z 10.1145/363958.363994 10.1109/TNET.2017.2765719 10.14722/diss.2020.23006 10.1016/j.ejor.2017.02.037 10.14722/ndss.2020.24301 10.1007/978-3-319-66399-9_14 10.1016/j.comnet.2017.03.004 10.1007/978-3-319-46128-1_40 10.1016/j.comnet.2015.08.021 10.1109/ICDCS.2017.284 10.1109/CNS.2019.8802833 10.1145/3019612.3019878 10.1109/TMC.2018.2866249 10.1109/COMSNETS.2019.8711210 10.1109/JSAC.2019.2904364 10.1016/j.comnet.2018.11.013 10.1145/2591971.2591972 10.1109/JIOT.2018.2865604 10.1081/STM-200046472 10.1109/TCBB.2015.2476796 10.1145/2420950.2420969 10.1145/3050220.3063772 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2021.3051480 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) - 2025 collection CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 11064 |
| ExternalDocumentID | 10_1109_JIOT_2021_3051480 9321464 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation, Prime Minister’s Office, Singapore, under its Corporate Laboratory@University Scheme, National University of Singapore, and Singapore Telecommunications Ltd funderid: 10.13039/501100001381 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-62484b102759836b3db5679b59501b898ca5ffc0bd3e7189fa25dc33c4ab6eb3 |
| IEDL.DBID | RIE |
| ISSN | 2327-4662 |
| IngestDate | Mon Jun 30 04:42:20 EDT 2025 Wed Oct 01 04:45:34 EDT 2025 Thu Apr 24 22:50:37 EDT 2025 Wed Aug 27 02:26:39 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-62484b102759836b3db5679b59501b898ca5ffc0bd3e7189fa25dc33c4ab6eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6764-268X 0000-0003-1567-3446 0000-0001-8706-432X 0000-0003-2351-4605 |
| PQID | 2548989842 |
| PQPubID | 2040421 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_JIOT_2021_3051480 proquest_journals_2548989842 crossref_primary_10_1109_JIOT_2021_3051480 ieee_primary_9321464 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-15 |
| PublicationDateYYYYMMDD | 2021-07-15 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref34 ref12 ref37 ref15 ref31 ref30 ref33 ref11 ref32 ref10 divakaran (ref4) 2020 nguyen (ref20) 2019 lundberg (ref39) 2017 dong (ref7) 2019 ref17 ref38 ref16 ref19 ref18 apthorpe (ref13) 2016 ref23 ref26 ref25 weaver (ref14) 2011 ref21 (ref1) 2019 antonakakis (ref2) 2017 ref28 ref27 ref29 ref8 ref9 gao (ref22) 2010 apthorpe (ref24) 2017 (ref36) 2020 collins (ref35) 2002 ref3 ref6 ref5 |
| References_xml | – ident: ref27 doi: 10.1093/bib/bbn027 – ident: ref31 doi: 10.1016/j.patcog.2014.01.008 – year: 2020 ident: ref36 publication-title: Dataset of IoT Network Traffic – ident: ref12 doi: 10.17487/rfc7011 – ident: ref3 doi: 10.14722/ndss.2019.23488 – start-page: 617 year: 2002 ident: ref35 article-title: A generalization of principal components analysis to the exponential family publication-title: Proc Adv Neural Inf Process Syst – year: 2017 ident: ref24 publication-title: Spying on the Smart Home Privacy Attacks and Defenses on Encrypted IoT Traffic – year: 2019 ident: ref1 publication-title: ISTR 2019 Internet of Things Cyber Attacks Grow More Diverse – ident: ref30 doi: 10.1016/j.ijar.2013.04.003 – ident: ref34 doi: 10.1007/s10479-005-5724-z – ident: ref26 doi: 10.1145/363958.363994 – start-page: 756 year: 2019 ident: ref20 article-title: DÏot: A federated self-learning anomaly detection system for IoT publication-title: Proc IEEE ICDCS – ident: ref18 doi: 10.1109/TNET.2017.2765719 – year: 2019 ident: ref7 publication-title: Your smart home can't keep a secret Towards automated fingerprinting of IoT traffic with neural networks – year: 2020 ident: ref4 article-title: ADROIT: Detecting spatio-temporal correlated attack-stages in IoT networks publication-title: Proc NDSS DISS (Decentralized IoT Syst Secur ) doi: 10.14722/diss.2020.23006 – ident: ref32 doi: 10.1016/j.ejor.2017.02.037 – ident: ref15 doi: 10.14722/ndss.2020.24301 – ident: ref23 doi: 10.1007/978-3-319-66399-9_14 – ident: ref37 doi: 10.1016/j.comnet.2017.03.004 – year: 2016 ident: ref13 article-title: A smart home is no castle: Privacy vulnerabilities Of encrypted IoT traffic publication-title: Proc Workshop Data Algorithmic Transparency (DAT) – ident: ref28 doi: 10.1007/978-3-319-46128-1_40 – ident: ref16 doi: 10.1016/j.comnet.2015.08.021 – ident: ref6 doi: 10.1109/ICDCS.2017.284 – ident: ref19 doi: 10.1109/CNS.2019.8802833 – start-page: 383 year: 2010 ident: ref22 article-title: A passive approach to wireless device fingerprinting publication-title: Proc IEEE/IFIP Int Conf Depend Syst Netw (DSN) – start-page: 4765 year: 2017 ident: ref39 article-title: A unified approach to interpreting model predictions publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref5 doi: 10.1145/3019612.3019878 – ident: ref9 doi: 10.1109/TMC.2018.2866249 – ident: ref38 doi: 10.1109/COMSNETS.2019.8711210 – ident: ref8 doi: 10.1109/JSAC.2019.2904364 – ident: ref25 doi: 10.1016/j.comnet.2018.11.013 – ident: ref21 doi: 10.1145/2591971.2591972 – ident: ref10 doi: 10.1109/JIOT.2018.2865604 – ident: ref33 doi: 10.1081/STM-200046472 – ident: ref29 doi: 10.1109/TCBB.2015.2476796 – year: 2011 ident: ref14 article-title: Redirecting DNS for ads and profit publication-title: Proc USENIX Workshop Free Open Commun Internet (FOCI) – ident: ref17 doi: 10.1145/2420950.2420969 – start-page: 1093 year: 2017 ident: ref2 article-title: Understanding the mirai botnet publication-title: Proc 26th USENIX Secur Symp – ident: ref11 doi: 10.1145/3050220.3063772 |
| SSID | ssj0001105196 |
| Score | 2.3443692 |
| Snippet | The classification of Internet-of-Things (IoT) devices into different types is of paramount importance, from multiple perspectives, including security and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11052 |
| SubjectTerms | Algorithms Cameras Classification Combinatorial analysis Communications traffic Entropy (Information theory) Feature extraction Fingerprinting Identification Internet of Things Internet-of-Things (IoT) Machine learning network Object recognition Optimization Optimization techniques Privacy |
| Title | Cost-Aware Feature Selection for IoT Device Classification |
| URI | https://ieeexplore.ieee.org/document/9321464 https://www.proquest.com/docview/2548989842 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BTl5ERSOKZgdPxsG2ftB6IygBEvQgJtyWtusuGjAwYuJfb18ZaNQYT92hXZr-2r7Pvh_AZW4Y0UTJMEfbhAouQ0kyHkolYmMTSRPv7xjf88ETHU3ZtALX27cw1lqffGZb-Olj-dncrNBV1pbIqsPpDux0BF-_1fr0p8SojPAycBlHsj0aPkycAZjELYJFvrHw4xfR47lUflzAXqr0azDezGedTPLcWhW6Zd6_lWr874T3Ya9UL4Puej8cQMXODqG2oW4IypNch5vefFmE3Te1sAFqgSvXPnpKHIdT4BTZYDifBLcW75HAE2diSpFH8Qgm_btJbxCWNAqhcbK8CHlCBdUxxielIFyTTDPekZpJFsVaSGEUy3MT6YxYJ6lkrhKWGUIMVZo7W_sYqrP5zJ5AYDMec0GlUsQpMla5tsM0YVxYobjQDYg2C5yassQ4Ml28pN7UiGSKmKSISVpi0oCr7ZDXdX2NvzrXcY23HcvlbUBzg2JansBl6gxfZMYUNDn9fdQZ7OK_0U8bsyZUi8XKnjsFo9AXfmd9AK3ny48 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH6CMsBCgYIoZwYmREoSH7XZEIdaoGUgSGyR7TgLqEVtKiR-PX5uWhAgxOQMtmL5s_1Ovw_gqDCMaKJkWKBtQgWXoSQ5D6USsbGJpIn3d_T6vPNIb57Y0wKczN_CWGt98plt4aeP5edDM0FX2alEVh1OF2GJUUrZ9LXWp0clRnWEV6HLOJKnN9371JmASdwiWOYbSz9-ET6eTeXHFezlynUderMZTdNJnluTUrfM-7dijf-d8hqsVgpmcD7dEeuwYAcbUJ-RNwTVWW7A2cVwXIbnb2pkA9QDJ6598KQ4DqnAqbJBd5gGlxZvksBTZ2JSkcdxE9Lrq_SiE1ZECqFx0rwMeUIF1TFGKKUgXJNcM96WmkkWxVpIYRQrChPpnFgnq2ShEpYbQgxVmjtrewtqg-HAbkNgcx5zQaVSxKkyVrm2zTRhXFihuNBNiGYLnJmqyDhyXbxk3tiIZIaYZIhJVmHShOP5kNdphY2_Ojdwjecdq-Vtwt4Mxaw6g-PMmb7IjSlosvP7qENY7qS9u-yu27_dhRX8D3ptY7YHtXI0sftO3Sj1gd9lH4Jxztw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-Aware+Feature+Selection+for+IoT+Device+Classification&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Chakraborty%2C+Biswadeep&rft.au=Divakaran%2C+Dinil+Mon&rft.au=Nevat%2C+Ido&rft.au=Peters%2C+Gareth+W.&rft.date=2021-07-15&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=8&rft.issue=14&rft.spage=11052&rft.epage=11064&rft_id=info:doi/10.1109%2FJIOT.2021.3051480&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2021_3051480 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |