Target Detection in Passive Radar Under Noisy Reference Channel: A New Threshold-Setting Strategy

In the detection theory framework, it is customary to assign a bound to the false alarm probability and to attempt to maximize the detection probability subject to this constraint. In the problem of moving target detection in passive radar with a noisy reference channel, we formulate a detection pro...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on aerospace and electronic systems Vol. 56; no. 6; pp. 4711 - 4722
Main Authors Javidan, Mohammad Hassan, Zaimbashi, Amir, Liu, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9251
1557-9603
DOI10.1109/TAES.2020.2999998

Cover

Abstract In the detection theory framework, it is customary to assign a bound to the false alarm probability and to attempt to maximize the detection probability subject to this constraint. In the problem of moving target detection in passive radar with a noisy reference channel, we formulate a detection problem as a composite hypothesis-testing problem and solve it with the likelihood ratio test (LRT) principle, which is known as generalized LRT in the electrical engineering works of literature. In such a problem, we show that any uncertainty in the value of the direct signal-to-noise ratio of the reference channel, abbreviated as <inline-formula><tex-math notation="LaTeX">\text{DNR}_r</tex-math></inline-formula>, can result in excessive false alarm probability of the proposed noisy-reference-channel-based detector in the low-<inline-formula><tex-math notation="LaTeX">\text{DNR}_r</tex-math></inline-formula> regime. To facilitate efficient operation under uncertainty in <inline-formula><tex-math notation="LaTeX">\text{DNR}_r</tex-math></inline-formula>, we propose a new threshold-setting strategy to adjust the level of the proposed detector. Through extensive Monte-Carlo simulations, we examine the above problem and investigate the efficiency of the proposed threshold-setting strategy. Besides, we apply the framework of the kernel theory to the target detection problem of a noisy and ideal reference channel passive radar to propose two new detectors. As such, we replace the inner products of the proposed tests with appropriate polynomial kernel functions allowing for richer feature space to be deployed in the detection, achieving better detection performance. In this case, our detection performance results show that the kernelized detectors offer more that 1-dB signal-to-noise ratio gain as compared to their conventional counterparts.
AbstractList In the detection theory framework, it is customary to assign a bound to the false alarm probability and to attempt to maximize the detection probability subject to this constraint. In the problem of moving target detection in passive radar with a noisy reference channel, we formulate a detection problem as a composite hypothesis-testing problem and solve it with the likelihood ratio test (LRT) principle, which is known as generalized LRT in the electrical engineering works of literature. In such a problem, we show that any uncertainty in the value of the direct signal-to-noise ratio of the reference channel, abbreviated as [Formula Omitted], can result in excessive false alarm probability of the proposed noisy-reference-channel-based detector in the low-[Formula Omitted] regime. To facilitate efficient operation under uncertainty in [Formula Omitted], we propose a new threshold-setting strategy to adjust the level of the proposed detector. Through extensive Monte–Carlo simulations, we examine the above problem and investigate the efficiency of the proposed threshold-setting strategy. Besides, we apply the framework of the kernel theory to the target detection problem of a noisy and ideal reference channel passive radar to propose two new detectors. As such, we replace the inner products of the proposed tests with appropriate polynomial kernel functions allowing for richer feature space to be deployed in the detection, achieving better detection performance. In this case, our detection performance results show that the kernelized detectors offer more that 1-dB signal-to-noise ratio gain as compared to their conventional counterparts.
In the detection theory framework, it is customary to assign a bound to the false alarm probability and to attempt to maximize the detection probability subject to this constraint. In the problem of moving target detection in passive radar with a noisy reference channel, we formulate a detection problem as a composite hypothesis-testing problem and solve it with the likelihood ratio test (LRT) principle, which is known as generalized LRT in the electrical engineering works of literature. In such a problem, we show that any uncertainty in the value of the direct signal-to-noise ratio of the reference channel, abbreviated as <inline-formula><tex-math notation="LaTeX">\text{DNR}_r</tex-math></inline-formula>, can result in excessive false alarm probability of the proposed noisy-reference-channel-based detector in the low-<inline-formula><tex-math notation="LaTeX">\text{DNR}_r</tex-math></inline-formula> regime. To facilitate efficient operation under uncertainty in <inline-formula><tex-math notation="LaTeX">\text{DNR}_r</tex-math></inline-formula>, we propose a new threshold-setting strategy to adjust the level of the proposed detector. Through extensive Monte-Carlo simulations, we examine the above problem and investigate the efficiency of the proposed threshold-setting strategy. Besides, we apply the framework of the kernel theory to the target detection problem of a noisy and ideal reference channel passive radar to propose two new detectors. As such, we replace the inner products of the proposed tests with appropriate polynomial kernel functions allowing for richer feature space to be deployed in the detection, achieving better detection performance. In this case, our detection performance results show that the kernelized detectors offer more that 1-dB signal-to-noise ratio gain as compared to their conventional counterparts.
Author Zaimbashi, Amir
Javidan, Mohammad Hassan
Liu, Jun
Author_xml – sequence: 1
  givenname: Mohammad Hassan
  surname: Javidan
  fullname: Javidan, Mohammad Hassan
  email: m.h.javidan@eng.uk.ac.ir
  organization: Shahid Bahonar University of Kerman, Kerman, Iran
– sequence: 2
  givenname: Amir
  orcidid: 0000-0003-3788-3110
  surname: Zaimbashi
  fullname: Zaimbashi, Amir
  email: a.zaimbashi@uk.ac.ir
  organization: Shahid Bahonar University of Kerman, Kerman, Iran
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-7193-0622
  surname: Liu
  fullname: Liu, Jun
  email: junliu@ustc.edu.cn
  organization: University of Science and Technology of China, Hefei, China
BookMark eNp9kEtPAjEQxxuDiYB-AOOliefFPrbbrjeC-EgMGh7nTenOQgl2sS0avr27gXjw4FwmM_n_5vHvoY6rHSB0TcmAUpLfzYfj2YARRgYsb0OdoS4VQiZ5RngHdQmhKsmZoBeoF8KmKVOV8i7Sc-1XEPEDRDDR1g5bh991CPYL8FSX2uOFK8HjSW3DAU-hAg_OAB6ttXOwvcdDPIFvPF97COt6WyYziNG6FZ5FryOsDpfovNLbAFen3EeLx_F89Jy8vj29jIaviWE5j4kotQLCmVlWSvJsCZRXlTYcFGv6BmTKhIYyE2WaEi2ZFJnKs0pDZjiRzPA-uj3O3fn6cw8hFpt6712zsmBppqQQuUwblTyqjK9D8FAVxkbdPt6ca7cFJUXrZ9H6WbR-Fic_G5L-IXfefmh_-Je5OTIWAH71OSUqo4z_AMKfguM
CODEN IEARAX
CitedBy_id crossref_primary_10_1109_TAES_2022_3171532
crossref_primary_10_1109_TCCN_2024_3391327
crossref_primary_10_1109_TAES_2024_3362318
crossref_primary_10_1109_TVT_2024_3366757
crossref_primary_10_1109_TSP_2024_3403753
crossref_primary_10_1109_TRS_2024_3402498
crossref_primary_10_1109_TSP_2020_3048800
Cites_doi 10.1109/TSP.2014.2319776
10.1109/JSEN.2017.2725822
10.1049/ip-rsn:20045067
10.1109/JSEN.2018.2875664
10.1109/TSP.2015.2457400
10.1109/TSP.2014.2359637
10.1049/ip-f-1.1986.0104
10.1109/TCCN.2020.3028768
10.1016/j.sigpro.2017.06.003
10.1049/ip-rsn:20055038
10.1109/TNB.2018.2873243
10.1049/iet-rsn.2016.0432
10.1109/TSP.2020.2975371
10.1109/RADAR.2008.4653957
10.1109/JSYST.2018.2850960
10.1109/TSP.2017.2666778
10.1049/ip-rsn:20045026
10.1049/iet-rsn.2015.0109
10.1049/ip-rsn:19990322
10.1109/TVT.2018.2824023
10.1109/TAES.2017.2730998
10.1109/JSYST.2019.2899629
10.1049/iet-rsn.2015.0608
10.1016/j.sigpro.2014.09.034
10.1109/TAES.2013.120248
10.1109/TAES.2013.6404095
10.1109/RADAR.2006.1631830
10.1109/TSP.2014.2320462
10.1109/TAES.2017.2667223
10.1109/JSEN.2018.2837096
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2020.2999998
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 4722
ExternalDocumentID 10_1109_TAES_2020_2999998
9108612
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61871469
  funderid: 10.13039/501100001809
– fundername: Youth Innovation Promotion Association
  funderid: 10.13039/501100012492
– fundername: Chinese Academy of Sciences
  grantid: CX2100060053
  funderid: 10.13039/501100002367
GroupedDBID -~X
0R~
29I
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c293t-5da8e032cbf8736be13ffac3e828e0ce7425aed65d440a72756896fae6c3072c3
IEDL.DBID RIE
ISSN 0018-9251
IngestDate Mon Jun 30 10:20:44 EDT 2025
Thu Apr 24 23:02:33 EDT 2025
Tue Jul 01 00:48:31 EDT 2025
Wed Aug 27 02:33:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-5da8e032cbf8736be13ffac3e828e0ce7425aed65d440a72756896fae6c3072c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3788-3110
0000-0002-7193-0622
PQID 2468755974
PQPubID 85477
PageCount 12
ParticipantIDs ieee_primary_9108612
crossref_citationtrail_10_1109_TAES_2020_2999998
crossref_primary_10_1109_TAES_2020_2999998
proquest_journals_2468755974
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
casella (ref24) 2002; 2
ref23
ref26
ref25
ref20
ref22
ref21
schlkopf (ref30) 2002
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1109/TSP.2014.2319776
– ident: ref14
  doi: 10.1109/JSEN.2017.2725822
– ident: ref3
  doi: 10.1049/ip-rsn:20045067
– ident: ref21
  doi: 10.1109/JSEN.2018.2875664
– ident: ref26
  doi: 10.1109/TSP.2015.2457400
– ident: ref18
  doi: 10.1109/TSP.2014.2359637
– ident: ref2
  doi: 10.1049/ip-f-1.1986.0104
– ident: ref25
  doi: 10.1109/TCCN.2020.3028768
– ident: ref22
  doi: 10.1016/j.sigpro.2017.06.003
– ident: ref5
  doi: 10.1049/ip-rsn:20055038
– ident: ref28
  doi: 10.1109/TNB.2018.2873243
– ident: ref8
  doi: 10.1049/iet-rsn.2016.0432
– ident: ref29
  doi: 10.1109/TSP.2020.2975371
– ident: ref7
  doi: 10.1109/RADAR.2008.4653957
– volume: 2
  year: 2002
  ident: ref24
  publication-title: Statistical Inference
– ident: ref31
  doi: 10.1109/JSYST.2018.2850960
– ident: ref13
  doi: 10.1109/TSP.2017.2666778
– ident: ref4
  doi: 10.1049/ip-rsn:20045026
– ident: ref11
  doi: 10.1049/iet-rsn.2015.0109
– ident: ref1
  doi: 10.1049/ip-rsn:19990322
– ident: ref27
  doi: 10.1109/TVT.2018.2824023
– ident: ref20
  doi: 10.1109/TAES.2017.2730998
– ident: ref32
  doi: 10.1109/JSYST.2019.2899629
– ident: ref12
  doi: 10.1049/iet-rsn.2015.0608
– ident: ref17
  doi: 10.1016/j.sigpro.2014.09.034
– year: 2002
  ident: ref30
  publication-title: Learning with kernels
– ident: ref10
  doi: 10.1109/TAES.2013.120248
– ident: ref9
  doi: 10.1109/TAES.2013.6404095
– ident: ref6
  doi: 10.1109/RADAR.2006.1631830
– ident: ref19
  doi: 10.1109/TSP.2014.2320462
– ident: ref23
  doi: 10.1109/TAES.2017.2667223
– ident: ref15
  doi: 10.1109/JSEN.2018.2837096
SSID ssj0014843
Score 2.3829486
Snippet In the detection theory framework, it is customary to assign a bound to the false alarm probability and to attempt to maximize the detection probability...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4711
SubjectTerms Detectors
False alarms
Fixed level of test
Kernel
Kernel functions
kernel theory
Light rail systems
Likelihood ratio
likelihood ratio test (LRT)
Mathematical analysis
Moving targets
Noise levels
Noise measurement
Object detection
Passive radar
passive radar (PR)
polynomial kernel function target detection
Polynomials
Radar detection
Signal to noise ratio
Strategy
Target detection
Uncertainty
Title Target Detection in Passive Radar Under Noisy Reference Channel: A New Threshold-Setting Strategy
URI https://ieeexplore.ieee.org/document/9108612
https://www.proquest.com/docview/2468755974
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014843
  issn: 0018-9251
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3rwVcVqlT14EpPmud14K9pSBIvYFnoLm80EiiWVNj3UX-_sZht8IeaUw25YmN2Z-TLffkPINeO-73sckapIHCsIRGjxlCFUyThLEK-4DDTbYsgGk-BxGk5r5La6CwMAmnwGtnrVtfx0IdfqV1k7Um2BVEvhnU4nKu9qVRWDgBuGnIsHGIO2qWC6TtQed3sjRIKeY6PvxYd_iUG6qcoPT6zDS_-APG0XVrJKXu11kdjy_Ztm439Xfkj2TZ5Ju-XGOCI1yI_J3if1wQYRY80Cpw9QaD5WTmc5fcZkGh0gfRGpWFLdFYkOF7PVhlaStFTdSMhhfke7FH0kHeN2WKkqljUCzaKmRvJ2c0Im_d74fmCZjguWxLBfWGEqODi-J5OMd3yWgOtnmZA-IC4DRwLi6FBAysI0CBzRUdLxPGKZACbRV3jSPyX1fJHDGaFK2kyV6BLMtxByYiKRQRAJnM8Y5oy8SZytDWJp5MhVV4x5rGGJE8XKbLEyW2zM1iQ31ZS3Uovjr8ENZYZqoLFAk7S2ho7NaV3FXsAQtilodf77rAuyq75d0lhapF4s13CJyUiRXOld-AHGOdhY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0hOAAHdkShgA-cEClpFtfhVrGobBWCIHGLHGciVaAU0fRQvp6x40ZsQuSUg61YGntmXub5DcABF77ve4KQqkxdJwhk6IiME1TJBU8Jr7Q5GrZFn_ceg6un8GkGjuq7MIhoyGfY0q-mlp8N1Vj_KjuOdFsg3VJ4LiRU0alua9U1g0BYjlybjjCFbVvDbLvRcdw9fyAs6Lkt8r70iC9RyLRV-eGLTYC5WIbb6dIqXslza1ymLfX-TbXxv2tfgSWbabJutTVWYQaLNVj8pD-4DjI2PHB2hqVhZBVsULA7SqfJBbJ7mck3Zvoisf5wMJqwWpSW6TsJBb6csC4jL8li2hAjXcdyHtDwqJkVvZ1swOPFeXzac2zPBUdR4C-dMJMCXd9TaS46Pk-x7ee5VD4SMkNXISHpUGLGwywIXNnR4vEi4rlErshbeMrfhNliWOAWMC1upot0KWVcBDoplcgxiCTN55yyRtEAd2qDRFlBct0X4yUxwMSNEm22RJstsWZrwGE95bVS4_hr8Lo2Qz3QWqABzamhE3teR4kXcAJuGlxt_z5rH-Z78e1NcnPZv96BBf2ditTShNnybYy7lJqU6Z7ZkR9PNdup
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Target+Detection+in+Passive+Radar+Under+Noisy+Reference+Channel%3A+A+New+Threshold-Setting+Strategy&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Javidan%2C+Mohammad+Hassan&rft.au=Zaimbashi%2C+Amir&rft.au=Liu%2C+Jun&rft.date=2020-12-01&rft.pub=IEEE&rft.issn=0018-9251&rft.volume=56&rft.issue=6&rft.spage=4711&rft.epage=4722&rft_id=info:doi/10.1109%2FTAES.2020.2999998&rft.externalDocID=9108612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon