Target Detection in Passive Radar Under Noisy Reference Channel: A New Threshold-Setting Strategy
In the detection theory framework, it is customary to assign a bound to the false alarm probability and to attempt to maximize the detection probability subject to this constraint. In the problem of moving target detection in passive radar with a noisy reference channel, we formulate a detection pro...
Saved in:
Published in | IEEE transactions on aerospace and electronic systems Vol. 56; no. 6; pp. 4711 - 4722 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9251 1557-9603 |
DOI | 10.1109/TAES.2020.2999998 |
Cover
Abstract | In the detection theory framework, it is customary to assign a bound to the false alarm probability and to attempt to maximize the detection probability subject to this constraint. In the problem of moving target detection in passive radar with a noisy reference channel, we formulate a detection problem as a composite hypothesis-testing problem and solve it with the likelihood ratio test (LRT) principle, which is known as generalized LRT in the electrical engineering works of literature. In such a problem, we show that any uncertainty in the value of the direct signal-to-noise ratio of the reference channel, abbreviated as <inline-formula><tex-math notation="LaTeX">\text{DNR}_r</tex-math></inline-formula>, can result in excessive false alarm probability of the proposed noisy-reference-channel-based detector in the low-<inline-formula><tex-math notation="LaTeX">\text{DNR}_r</tex-math></inline-formula> regime. To facilitate efficient operation under uncertainty in <inline-formula><tex-math notation="LaTeX">\text{DNR}_r</tex-math></inline-formula>, we propose a new threshold-setting strategy to adjust the level of the proposed detector. Through extensive Monte-Carlo simulations, we examine the above problem and investigate the efficiency of the proposed threshold-setting strategy. Besides, we apply the framework of the kernel theory to the target detection problem of a noisy and ideal reference channel passive radar to propose two new detectors. As such, we replace the inner products of the proposed tests with appropriate polynomial kernel functions allowing for richer feature space to be deployed in the detection, achieving better detection performance. In this case, our detection performance results show that the kernelized detectors offer more that 1-dB signal-to-noise ratio gain as compared to their conventional counterparts. |
---|---|
AbstractList | In the detection theory framework, it is customary to assign a bound to the false alarm probability and to attempt to maximize the detection probability subject to this constraint. In the problem of moving target detection in passive radar with a noisy reference channel, we formulate a detection problem as a composite hypothesis-testing problem and solve it with the likelihood ratio test (LRT) principle, which is known as generalized LRT in the electrical engineering works of literature. In such a problem, we show that any uncertainty in the value of the direct signal-to-noise ratio of the reference channel, abbreviated as [Formula Omitted], can result in excessive false alarm probability of the proposed noisy-reference-channel-based detector in the low-[Formula Omitted] regime. To facilitate efficient operation under uncertainty in [Formula Omitted], we propose a new threshold-setting strategy to adjust the level of the proposed detector. Through extensive Monte–Carlo simulations, we examine the above problem and investigate the efficiency of the proposed threshold-setting strategy. Besides, we apply the framework of the kernel theory to the target detection problem of a noisy and ideal reference channel passive radar to propose two new detectors. As such, we replace the inner products of the proposed tests with appropriate polynomial kernel functions allowing for richer feature space to be deployed in the detection, achieving better detection performance. In this case, our detection performance results show that the kernelized detectors offer more that 1-dB signal-to-noise ratio gain as compared to their conventional counterparts. In the detection theory framework, it is customary to assign a bound to the false alarm probability and to attempt to maximize the detection probability subject to this constraint. In the problem of moving target detection in passive radar with a noisy reference channel, we formulate a detection problem as a composite hypothesis-testing problem and solve it with the likelihood ratio test (LRT) principle, which is known as generalized LRT in the electrical engineering works of literature. In such a problem, we show that any uncertainty in the value of the direct signal-to-noise ratio of the reference channel, abbreviated as <inline-formula><tex-math notation="LaTeX">\text{DNR}_r</tex-math></inline-formula>, can result in excessive false alarm probability of the proposed noisy-reference-channel-based detector in the low-<inline-formula><tex-math notation="LaTeX">\text{DNR}_r</tex-math></inline-formula> regime. To facilitate efficient operation under uncertainty in <inline-formula><tex-math notation="LaTeX">\text{DNR}_r</tex-math></inline-formula>, we propose a new threshold-setting strategy to adjust the level of the proposed detector. Through extensive Monte-Carlo simulations, we examine the above problem and investigate the efficiency of the proposed threshold-setting strategy. Besides, we apply the framework of the kernel theory to the target detection problem of a noisy and ideal reference channel passive radar to propose two new detectors. As such, we replace the inner products of the proposed tests with appropriate polynomial kernel functions allowing for richer feature space to be deployed in the detection, achieving better detection performance. In this case, our detection performance results show that the kernelized detectors offer more that 1-dB signal-to-noise ratio gain as compared to their conventional counterparts. |
Author | Zaimbashi, Amir Javidan, Mohammad Hassan Liu, Jun |
Author_xml | – sequence: 1 givenname: Mohammad Hassan surname: Javidan fullname: Javidan, Mohammad Hassan email: m.h.javidan@eng.uk.ac.ir organization: Shahid Bahonar University of Kerman, Kerman, Iran – sequence: 2 givenname: Amir orcidid: 0000-0003-3788-3110 surname: Zaimbashi fullname: Zaimbashi, Amir email: a.zaimbashi@uk.ac.ir organization: Shahid Bahonar University of Kerman, Kerman, Iran – sequence: 3 givenname: Jun orcidid: 0000-0002-7193-0622 surname: Liu fullname: Liu, Jun email: junliu@ustc.edu.cn organization: University of Science and Technology of China, Hefei, China |
BookMark | eNp9kEtPAjEQxxuDiYB-AOOliefFPrbbrjeC-EgMGh7nTenOQgl2sS0avr27gXjw4FwmM_n_5vHvoY6rHSB0TcmAUpLfzYfj2YARRgYsb0OdoS4VQiZ5RngHdQmhKsmZoBeoF8KmKVOV8i7Sc-1XEPEDRDDR1g5bh991CPYL8FSX2uOFK8HjSW3DAU-hAg_OAB6ttXOwvcdDPIFvPF97COt6WyYziNG6FZ5FryOsDpfovNLbAFen3EeLx_F89Jy8vj29jIaviWE5j4kotQLCmVlWSvJsCZRXlTYcFGv6BmTKhIYyE2WaEi2ZFJnKs0pDZjiRzPA-uj3O3fn6cw8hFpt6712zsmBppqQQuUwblTyqjK9D8FAVxkbdPt6ca7cFJUXrZ9H6WbR-Fic_G5L-IXfefmh_-Je5OTIWAH71OSUqo4z_AMKfguM |
CODEN | IEARAX |
CitedBy_id | crossref_primary_10_1109_TAES_2022_3171532 crossref_primary_10_1109_TCCN_2024_3391327 crossref_primary_10_1109_TAES_2024_3362318 crossref_primary_10_1109_TVT_2024_3366757 crossref_primary_10_1109_TSP_2024_3403753 crossref_primary_10_1109_TRS_2024_3402498 crossref_primary_10_1109_TSP_2020_3048800 |
Cites_doi | 10.1109/TSP.2014.2319776 10.1109/JSEN.2017.2725822 10.1049/ip-rsn:20045067 10.1109/JSEN.2018.2875664 10.1109/TSP.2015.2457400 10.1109/TSP.2014.2359637 10.1049/ip-f-1.1986.0104 10.1109/TCCN.2020.3028768 10.1016/j.sigpro.2017.06.003 10.1049/ip-rsn:20055038 10.1109/TNB.2018.2873243 10.1049/iet-rsn.2016.0432 10.1109/TSP.2020.2975371 10.1109/RADAR.2008.4653957 10.1109/JSYST.2018.2850960 10.1109/TSP.2017.2666778 10.1049/ip-rsn:20045026 10.1049/iet-rsn.2015.0109 10.1049/ip-rsn:19990322 10.1109/TVT.2018.2824023 10.1109/TAES.2017.2730998 10.1109/JSYST.2019.2899629 10.1049/iet-rsn.2015.0608 10.1016/j.sigpro.2014.09.034 10.1109/TAES.2013.120248 10.1109/TAES.2013.6404095 10.1109/RADAR.2006.1631830 10.1109/TSP.2014.2320462 10.1109/TAES.2017.2667223 10.1109/JSEN.2018.2837096 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
DOI | 10.1109/TAES.2020.2999998 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9603 |
EndPage | 4722 |
ExternalDocumentID | 10_1109_TAES_2020_2999998 9108612 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61871469 funderid: 10.13039/501100001809 – fundername: Youth Innovation Promotion Association funderid: 10.13039/501100012492 – fundername: Chinese Academy of Sciences grantid: CX2100060053 funderid: 10.13039/501100002367 |
GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 H8D L7M |
ID | FETCH-LOGICAL-c293t-5da8e032cbf8736be13ffac3e828e0ce7425aed65d440a72756896fae6c3072c3 |
IEDL.DBID | RIE |
ISSN | 0018-9251 |
IngestDate | Mon Jun 30 10:20:44 EDT 2025 Thu Apr 24 23:02:33 EDT 2025 Tue Jul 01 00:48:31 EDT 2025 Wed Aug 27 02:33:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-5da8e032cbf8736be13ffac3e828e0ce7425aed65d440a72756896fae6c3072c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3788-3110 0000-0002-7193-0622 |
PQID | 2468755974 |
PQPubID | 85477 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9108612 crossref_citationtrail_10_1109_TAES_2020_2999998 crossref_primary_10_1109_TAES_2020_2999998 proquest_journals_2468755974 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on aerospace and electronic systems |
PublicationTitleAbbrev | T-AES |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 casella (ref24) 2002; 2 ref23 ref26 ref25 ref20 ref22 ref21 schlkopf (ref30) 2002 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref16 doi: 10.1109/TSP.2014.2319776 – ident: ref14 doi: 10.1109/JSEN.2017.2725822 – ident: ref3 doi: 10.1049/ip-rsn:20045067 – ident: ref21 doi: 10.1109/JSEN.2018.2875664 – ident: ref26 doi: 10.1109/TSP.2015.2457400 – ident: ref18 doi: 10.1109/TSP.2014.2359637 – ident: ref2 doi: 10.1049/ip-f-1.1986.0104 – ident: ref25 doi: 10.1109/TCCN.2020.3028768 – ident: ref22 doi: 10.1016/j.sigpro.2017.06.003 – ident: ref5 doi: 10.1049/ip-rsn:20055038 – ident: ref28 doi: 10.1109/TNB.2018.2873243 – ident: ref8 doi: 10.1049/iet-rsn.2016.0432 – ident: ref29 doi: 10.1109/TSP.2020.2975371 – ident: ref7 doi: 10.1109/RADAR.2008.4653957 – volume: 2 year: 2002 ident: ref24 publication-title: Statistical Inference – ident: ref31 doi: 10.1109/JSYST.2018.2850960 – ident: ref13 doi: 10.1109/TSP.2017.2666778 – ident: ref4 doi: 10.1049/ip-rsn:20045026 – ident: ref11 doi: 10.1049/iet-rsn.2015.0109 – ident: ref1 doi: 10.1049/ip-rsn:19990322 – ident: ref27 doi: 10.1109/TVT.2018.2824023 – ident: ref20 doi: 10.1109/TAES.2017.2730998 – ident: ref32 doi: 10.1109/JSYST.2019.2899629 – ident: ref12 doi: 10.1049/iet-rsn.2015.0608 – ident: ref17 doi: 10.1016/j.sigpro.2014.09.034 – year: 2002 ident: ref30 publication-title: Learning with kernels – ident: ref10 doi: 10.1109/TAES.2013.120248 – ident: ref9 doi: 10.1109/TAES.2013.6404095 – ident: ref6 doi: 10.1109/RADAR.2006.1631830 – ident: ref19 doi: 10.1109/TSP.2014.2320462 – ident: ref23 doi: 10.1109/TAES.2017.2667223 – ident: ref15 doi: 10.1109/JSEN.2018.2837096 |
SSID | ssj0014843 |
Score | 2.3829486 |
Snippet | In the detection theory framework, it is customary to assign a bound to the false alarm probability and to attempt to maximize the detection probability... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4711 |
SubjectTerms | Detectors False alarms Fixed level of test Kernel Kernel functions kernel theory Light rail systems Likelihood ratio likelihood ratio test (LRT) Mathematical analysis Moving targets Noise levels Noise measurement Object detection Passive radar passive radar (PR) polynomial kernel function target detection Polynomials Radar detection Signal to noise ratio Strategy Target detection Uncertainty |
Title | Target Detection in Passive Radar Under Noisy Reference Channel: A New Threshold-Setting Strategy |
URI | https://ieeexplore.ieee.org/document/9108612 https://www.proquest.com/docview/2468755974 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014843 issn: 0018-9251 databaseCode: RIE dateStart: 19650101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3rwVcVqlT14EpPmud14K9pSBIvYFnoLm80EiiWVNj3UX-_sZht8IeaUw25YmN2Z-TLffkPINeO-73sckapIHCsIRGjxlCFUyThLEK-4DDTbYsgGk-BxGk5r5La6CwMAmnwGtnrVtfx0IdfqV1k7Um2BVEvhnU4nKu9qVRWDgBuGnIsHGIO2qWC6TtQed3sjRIKeY6PvxYd_iUG6qcoPT6zDS_-APG0XVrJKXu11kdjy_Ztm439Xfkj2TZ5Ju-XGOCI1yI_J3if1wQYRY80Cpw9QaD5WTmc5fcZkGh0gfRGpWFLdFYkOF7PVhlaStFTdSMhhfke7FH0kHeN2WKkqljUCzaKmRvJ2c0Im_d74fmCZjguWxLBfWGEqODi-J5OMd3yWgOtnmZA-IC4DRwLi6FBAysI0CBzRUdLxPGKZACbRV3jSPyX1fJHDGaFK2kyV6BLMtxByYiKRQRAJnM8Y5oy8SZytDWJp5MhVV4x5rGGJE8XKbLEyW2zM1iQ31ZS3Uovjr8ENZYZqoLFAk7S2ho7NaV3FXsAQtilodf77rAuyq75d0lhapF4s13CJyUiRXOld-AHGOdhY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0hOAAHdkShgA-cEClpFtfhVrGobBWCIHGLHGciVaAU0fRQvp6x40ZsQuSUg61YGntmXub5DcABF77ve4KQqkxdJwhk6IiME1TJBU8Jr7Q5GrZFn_ceg6un8GkGjuq7MIhoyGfY0q-mlp8N1Vj_KjuOdFsg3VJ4LiRU0alua9U1g0BYjlybjjCFbVvDbLvRcdw9fyAs6Lkt8r70iC9RyLRV-eGLTYC5WIbb6dIqXslza1ymLfX-TbXxv2tfgSWbabJutTVWYQaLNVj8pD-4DjI2PHB2hqVhZBVsULA7SqfJBbJ7mck3Zvoisf5wMJqwWpSW6TsJBb6csC4jL8li2hAjXcdyHtDwqJkVvZ1swOPFeXzac2zPBUdR4C-dMJMCXd9TaS46Pk-x7ee5VD4SMkNXISHpUGLGwywIXNnR4vEi4rlErshbeMrfhNliWOAWMC1upot0KWVcBDoplcgxiCTN55yyRtEAd2qDRFlBct0X4yUxwMSNEm22RJstsWZrwGE95bVS4_hr8Lo2Qz3QWqABzamhE3teR4kXcAJuGlxt_z5rH-Z78e1NcnPZv96BBf2ditTShNnybYy7lJqU6Z7ZkR9PNdup |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Target+Detection+in+Passive+Radar+Under+Noisy+Reference+Channel%3A+A+New+Threshold-Setting+Strategy&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Javidan%2C+Mohammad+Hassan&rft.au=Zaimbashi%2C+Amir&rft.au=Liu%2C+Jun&rft.date=2020-12-01&rft.pub=IEEE&rft.issn=0018-9251&rft.volume=56&rft.issue=6&rft.spage=4711&rft.epage=4722&rft_id=info:doi/10.1109%2FTAES.2020.2999998&rft.externalDocID=9108612 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |