Utilizing Deep Learning and Object-Based Image Analysis to Search for Low-Head Dams in Indiana, USA

Although low-head dams in the USA provide water supply, irrigation, and recreation opportunities, many are unknown by regulators. Unfortunately, hundreds of drownings occur each decade at these dams from an entrapment current that can form immediately downstream. To explore the ability of deep learn...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 17; no. 6; p. 876
Main Authors Crookston, Brian M., Arnold, Caitlin R.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 18.03.2025
Subjects
Online AccessGet full text
ISSN2073-4441
2073-4441
DOI10.3390/w17060876

Cover

Abstract Although low-head dams in the USA provide water supply, irrigation, and recreation opportunities, many are unknown by regulators. Unfortunately, hundreds of drownings occur each decade at these dams from an entrapment current that can form immediately downstream. To explore the ability of deep learning to scan large areas of terrain to identify the locations of low-head dams, ArcGIS Pro and embedded deep learning models for object-based image analysis were investigated. The State of Indiana low-head dam dataset was selected for model training and validation. Aerial imagery (leaf-off conditions) captured from 2016 to 2018 for the nearly 94,000 km2 area had a minimum resolution of 304.8 mm. A new Python code was developed that automated the generation of training images and searching was limited to 100 m wide river corridors. Due to bank vegetation, all low-head dams were assigned a visibility score to aid in training and performance analysis. A total of 19 backbone models were considered with single shot detection and options for RetinaNet, Faster R-CNN, and batch normalization. Additional identification classes were incorporated to overcome identification of visually similar objects. After four training iterations, the final trained model was a ResNet RetinaNet backbone model featuring 101 layers with an 83% recall rate for dams with high visibility and a 17% recall rate for those with moderate visibility.
AbstractList Although low-head dams in the USA provide water supply, irrigation, and recreation opportunities, many are unknown by regulators. Unfortunately, hundreds of drownings occur each decade at these dams from an entrapment current that can form immediately downstream. To explore the ability of deep learning to scan large areas of terrain to identify the locations of low-head dams, ArcGIS Pro and embedded deep learning models for object-based image analysis were investigated. The State of Indiana low-head dam dataset was selected for model training and validation. Aerial imagery (leaf-off conditions) captured from 2016 to 2018 for the nearly 94,000 km[sup.2] area had a minimum resolution of 304.8 mm. A new Python code was developed that automated the generation of training images and searching was limited to 100 m wide river corridors. Due to bank vegetation, all low-head dams were assigned a visibility score to aid in training and performance analysis. A total of 19 backbone models were considered with single shot detection and options for RetinaNet, Faster R-CNN, and batch normalization. Additional identification classes were incorporated to overcome identification of visually similar objects. After four training iterations, the final trained model was a ResNet RetinaNet backbone model featuring 101 layers with an 83% recall rate for dams with high visibility and a 17% recall rate for those with moderate visibility.
Although low-head dams in the USA provide water supply, irrigation, and recreation opportunities, many are unknown by regulators. Unfortunately, hundreds of drownings occur each decade at these dams from an entrapment current that can form immediately downstream. To explore the ability of deep learning to scan large areas of terrain to identify the locations of low-head dams, ArcGIS Pro and embedded deep learning models for object-based image analysis were investigated. The State of Indiana low-head dam dataset was selected for model training and validation. Aerial imagery (leaf-off conditions) captured from 2016 to 2018 for the nearly 94,000 km2 area had a minimum resolution of 304.8 mm. A new Python code was developed that automated the generation of training images and searching was limited to 100 m wide river corridors. Due to bank vegetation, all low-head dams were assigned a visibility score to aid in training and performance analysis. A total of 19 backbone models were considered with single shot detection and options for RetinaNet, Faster R-CNN, and batch normalization. Additional identification classes were incorporated to overcome identification of visually similar objects. After four training iterations, the final trained model was a ResNet RetinaNet backbone model featuring 101 layers with an 83% recall rate for dams with high visibility and a 17% recall rate for those with moderate visibility.
Audience Academic
Author Crookston, Brian M.
Arnold, Caitlin R.
Author_xml – sequence: 1
  givenname: Brian M.
  orcidid: 0000-0003-1259-8540
  surname: Crookston
  fullname: Crookston, Brian M.
– sequence: 2
  givenname: Caitlin R.
  surname: Arnold
  fullname: Arnold, Caitlin R.
BookMark eNp9kE1PAjEQhhuDiYgc_AdNPGlc7G67X0cEFRISDsh5M7RTLFm62C4h-OstwRhPdg6dzjxvM_Nek45tLBJyG7MB5yV7OsQ5y1iRZxekm7CcR0KIuPMnvyJ97zcsHFEWRcq6RC5bU5svY9d0jLijMwRnTy-wis5XG5Rt9AweFZ1uYY10aKE-euNp29BFYOUH1Y2js-YQTRAUHcPWU2Pp1CoDFh7pcjG8IZcaao_9n7tHlq8v76NJNJu_TUfDWSSTkrdRClmWsJiLkqU6BYWZZKBTwRO1QkxXK41JIHMRmkxrJWJIMNGMC41SlQnvkYfzv3u7g-MB6rraObMFd6xiVp0cqn4dCvDdGd655nOPvq02zd6F7XzF4yIuwhhpGqjBmVpDjZWxumkdyBAKt0YG97UJ9WHBiywTZZkHwf1ZIF3jvUP9zwjfk3CCTQ
Cites_doi 10.1109/TNNLS.2016.2545298
10.1109/CVPR.2016.90
10.1007/s42979-021-00592-x
10.1109/TNNLS.2018.2815435
10.1109/TNNLS.2018.2876865
10.1007/978-981-15-6048-4
10.3390/rs13020319
10.14358/PERS.89.10.581
10.1016/j.isprsjprs.2009.06.004
10.3390/s25010214
10.1109/AIPR.2018.8707415
10.1109/CVPR.2009.5206848
10.1016/j.rse.2017.06.031
10.1126/science.aaa8415
10.1109/TNNLS.2012.2183645
10.1007/s11042-023-14857-5
10.1109/34.655648
10.1080/01431161.2012.747018
10.1016/S0926-5805(99)00007-2
10.1109/CVPR.2017.143
10.1109/AIPR.2017.8457969
10.3390/w16131889
10.1016/j.ejmp.2021.02.007
10.1109/TPAMI.2009.167
10.1109/TMM.2019.2903628
10.1111/mice.12674
10.1007/978-3-319-46448-0_2
10.1109/ICCV.2015.169
10.1109/TPAMI.2016.2577031
10.1016/j.isprsjprs.2017.06.001
10.1109/IGARSS47720.2021.9554617
10.1109/ICCV.2015.312
10.1109/CVPR.2016.91
10.1109/CVPR.2014.81
10.3390/s20236936
10.1145/2647868.2654889
10.3390/sci6030040
10.1016/j.isprsjprs.2021.09.014
10.3390/rs13122299
10.1061/(ASCE)CP.1943-5487.0000866
10.5194/isprs-archives-XLIII-B5-2020-185-2020
10.1080/01431160701258062
10.1109/LGRS.2016.2645710
10.1145/3065386
10.1016/j.envsoft.2012.09.011
10.1007/s13349-019-00345-8
10.1109/CVPR.2017.691
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/w17060876
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID 10.3390/w17060876
A838664997
10_3390_w17060876
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
ESTFP
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c293t-5a6620134905f5ade6c0af5432dbee5bbfe2c2974f5a0ffd41a2e2f034fecd923
IEDL.DBID UNPAY
ISSN 2073-4441
IngestDate Sun Sep 07 10:45:33 EDT 2025
Mon Jun 30 12:04:28 EDT 2025
Mon Oct 20 16:55:08 EDT 2025
Thu Oct 16 04:40:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-5a6620134905f5ade6c0af5432dbee5bbfe2c2974f5a0ffd41a2e2f034fecd923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1259-8540
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/w17060876
PQID 3181834955
PQPubID 2032318
ParticipantIDs unpaywall_primary_10_3390_w17060876
proquest_journals_3181834955
gale_infotracacademiconefile_A838664997
crossref_primary_10_3390_w17060876
PublicationCentury 2000
PublicationDate 2025-03-18
PublicationDateYYYYMMDD 2025-03-18
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-18
  day: 18
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Diaz (ref_49) 2021; 83
ref_58
ref_12
ref_11
ref_55
ref_10
ref_54
ref_53
ref_51
Dundar (ref_14) 2016; 28
Li (ref_31) 2021; 36
ref_19
ref_17
Felzenszwalb (ref_6) 2009; 32
Tschantz (ref_2) 2014; 12
ref_61
ref_25
Ma (ref_46) 2017; 130
ref_69
ref_24
ref_68
ref_22
ref_66
ref_65
Stuhlsatz (ref_16) 2012; 23
ref_64
ref_63
Ghannadi (ref_52) 2019; 9
ref_62
Murray (ref_42) 2020; 43
Ren (ref_18) 2016; 39
ref_29
Zhang (ref_57) 2019; 21
ref_28
Zhao (ref_13) 2019; 30
ref_27
ref_26
Ma (ref_47) 2017; 14
ref_71
ref_70
Kumar (ref_34) 2020; 34
Sung (ref_5) 1998; 20
ref_36
Gorelick (ref_39) 2017; 202
Sarker (ref_21) 2021; 2
ref_32
Abdullah (ref_67) 2023; 89
ref_30
ref_73
Jordan (ref_20) 2015; 349
Jamil (ref_60) 2019; 28
Krizhevsky (ref_7) 2012; 60
Cintra (ref_15) 2018; 29
Tschantz (ref_3) 2011; 9
Lv (ref_23) 2014; 51
ref_38
Pan (ref_37) 2021; 181
Aguilar (ref_59) 2013; 34
ref_45
ref_44
ref_43
ref_40
ref_1
Moselhi (ref_33) 1999; 8
Blaschke (ref_35) 2010; 65
Aplin (ref_41) 2008; 37
ref_9
ref_8
Benfield (ref_48) 2007; 28
Domadia (ref_56) 2023; 82
ref_4
Bennett (ref_72) 2013; 40
References_xml – volume: 28
  start-page: 1572
  year: 2016
  ident: ref_14
  article-title: Embedded streaming deep neural networks accelerator with applications
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2545298
– ident: ref_32
– ident: ref_55
– ident: ref_29
  doi: 10.1109/CVPR.2016.90
– volume: 2
  start-page: 160
  year: 2021
  ident: ref_21
  article-title: Machine learning: Algorithms, real-world applications and research directions
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00592-x
– ident: ref_68
– ident: ref_65
– volume: 29
  start-page: 5981
  year: 2018
  ident: ref_15
  article-title: Low-complexity approximate convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2815435
– volume: 30
  start-page: 3212
  year: 2019
  ident: ref_13
  article-title: Object detection with deep learning: A review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– ident: ref_22
  doi: 10.1007/978-981-15-6048-4
– ident: ref_71
– ident: ref_63
  doi: 10.3390/rs13020319
– volume: 89
  start-page: 581
  year: 2023
  ident: ref_67
  article-title: The ASPRS Positional Accuracy Standards, Edition 2: The Geospatial Mapping Industry Guide to Best Practices
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.89.10.581
– volume: 65
  start-page: 2
  year: 2010
  ident: ref_35
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.06.004
– ident: ref_4
– ident: ref_26
  doi: 10.3390/s25010214
– volume: 9
  start-page: 7
  year: 2011
  ident: ref_3
  article-title: Hidden dangers and public safety at low-head dams
  publication-title: J. Dam Saf.
– ident: ref_25
  doi: 10.1109/AIPR.2018.8707415
– ident: ref_44
  doi: 10.1109/CVPR.2009.5206848
– ident: ref_69
– ident: ref_10
– volume: 202
  start-page: 18
  year: 2017
  ident: ref_39
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 349
  start-page: 255
  year: 2015
  ident: ref_20
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 23
  start-page: 596
  year: 2012
  ident: ref_16
  article-title: Feature extraction with deep neural networks by a generalized discriminant analysis
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2183645
– volume: 82
  start-page: 34809
  year: 2023
  ident: ref_56
  article-title: Recent advancement in learning methodology for segmenting brain tumor from magnetic resonance imaging-a review
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-14857-5
– ident: ref_66
– ident: ref_62
– volume: 20
  start-page: 39
  year: 1998
  ident: ref_5
  article-title: Example-based learning for view-based human face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.655648
– ident: ref_45
– volume: 34
  start-page: 2583
  year: 2013
  ident: ref_59
  article-title: GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.747018
– volume: 8
  start-page: 581
  year: 1999
  ident: ref_33
  article-title: Automated detection of surface defects in water and sewer pipes
  publication-title: Autom. Constr.
  doi: 10.1016/S0926-5805(99)00007-2
– volume: 37
  start-page: 725
  year: 2008
  ident: ref_41
  article-title: Advances in object-based image classification
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– ident: ref_11
  doi: 10.1109/CVPR.2017.143
– ident: ref_40
  doi: 10.1109/AIPR.2017.8457969
– ident: ref_1
  doi: 10.3390/w16131889
– volume: 83
  start-page: 25
  year: 2021
  ident: ref_49
  article-title: Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools
  publication-title: Phys. Medica
  doi: 10.1016/j.ejmp.2021.02.007
– volume: 51
  start-page: 1911
  year: 2014
  ident: ref_23
  article-title: Remote sensing image classification based on DBN model
  publication-title: J. Comput. Res. Dev.
– ident: ref_28
– ident: ref_53
– ident: ref_30
– volume: 32
  start-page: 1627
  year: 2009
  ident: ref_6
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.167
– volume: 21
  start-page: 2482
  year: 2019
  ident: ref_57
  article-title: Unsupervised and semi-supervised image classification with weak semantic consistency
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2903628
– ident: ref_24
– volume: 36
  start-page: 1398
  year: 2021
  ident: ref_31
  article-title: Cross-scene pavement distress detection by a novel transfer learning framework
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12674
– ident: ref_51
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_27
  doi: 10.1109/ICCV.2015.169
– volume: 39
  start-page: 1137
  year: 2016
  ident: ref_18
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 130
  start-page: 277
  year: 2017
  ident: ref_46
  article-title: A review of supervised object-based land-cover image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.06.001
– ident: ref_36
  doi: 10.1109/IGARSS47720.2021.9554617
– ident: ref_9
  doi: 10.1109/ICCV.2015.312
– ident: ref_19
  doi: 10.1109/CVPR.2016.91
– ident: ref_17
  doi: 10.1109/CVPR.2014.81
– ident: ref_58
  doi: 10.3390/s20236936
– ident: ref_73
– ident: ref_8
  doi: 10.1145/2647868.2654889
– volume: 28
  start-page: 561
  year: 2019
  ident: ref_60
  article-title: Mapping Hazelnut Trees from High Resolution Digital Orthophoto Maps: A Quantitative Comparison of an Object and a Pizel Based Approach
  publication-title: FEB-Fresenius Environ. Bull.
– ident: ref_61
  doi: 10.3390/sci6030040
– ident: ref_50
– volume: 181
  start-page: 218
  year: 2021
  ident: ref_37
  article-title: Simplified object-based deep neural network for very high resolution remote sensing image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.09.014
– ident: ref_38
  doi: 10.3390/rs13122299
– ident: ref_54
– volume: 12
  start-page: 37
  year: 2014
  ident: ref_2
  article-title: What we know (and don’t know) about low-head dams
  publication-title: J. Dam Saf.
– volume: 34
  start-page: 04019047
  year: 2020
  ident: ref_34
  article-title: Deep learning–based automated detection of sewer defects in CCTV videos
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000866
– ident: ref_64
– volume: 43
  start-page: 185
  year: 2020
  ident: ref_42
  article-title: Opportunities for machine learning and artificial intelligence in national mapping agencies: Enhancing ordnance survey workflow
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLIII-B5-2020-185-2020
– volume: 28
  start-page: 5047
  year: 2007
  ident: ref_48
  article-title: Mapping the distribution of coral reefs and associated sublittoral habitats in Pacific Panama: A comparison of optical satellite sensors and classification methodologies
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701258062
– volume: 14
  start-page: 409
  year: 2017
  ident: ref_47
  article-title: A novel wrapper approach for feature selection in object-based image classification using polygon-based cross-validation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2645710
– ident: ref_70
– ident: ref_43
– volume: 60
  start-page: 84
  year: 2012
  ident: ref_7
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM.
  doi: 10.1145/3065386
– volume: 40
  start-page: 1
  year: 2013
  ident: ref_72
  article-title: Characterising performance of environmental models
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2012.09.011
– volume: 9
  start-page: 459
  year: 2019
  ident: ref_52
  article-title: Data driven method of damage detection using sparse sensors installation by SEREPa
  publication-title: J. Civ. Struct Health Monit.
  doi: 10.1007/s13349-019-00345-8
– ident: ref_12
  doi: 10.1109/CVPR.2017.691
SSID ssj0000498850
Score 2.3289378
Snippet Although low-head dams in the USA provide water supply, irrigation, and recreation opportunities, many are unknown by regulators. Unfortunately, hundreds of...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 876
SubjectTerms Algorithms
Artificial intelligence
Automation
Classification
Dams
Deep learning
Environmental aspects
Fatalities
Geographic information systems
Hydraulics
Image processing
Labeling
Landsat satellites
Machine learning
Rivers
Software
Technology application
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxNBEB9q-qB9EOsHjdayaMEXl173djebB5H0i1TaVNRA3479LIH0EtsrQf_6ziR3aRDs28EduzA7O_ObuZnfAOyqXEUZguRGisSltgHtYFA8ZUF74r_qdqhR-Hyg-0P57VJdrsGg6YWhssrGJs4NdZh4ypHvoe6h9iGcV1-nvzlNjaK_q80IDVuPVghf5hRjT2BdEDNWC9YPjgfffyyzLoiHjVHZgmIox3h_bzbnjzHEObLimP41zxvw9K6c2j8zOx6v-J-TF_C8Bo6stzjpTViL5UvYWKETfAV-WI3Go7_4zI5inLKaO_WK2TKwC0cZF36AXiuw02s0I6whJGHVhC3KjhlCWHY2mfE-Hj07ste3bFSy05KUyH5mw5-91zA8Of512Of1EAXu0ZNXXFmt0cmj5DKVlA1R-8wmJXMRXIzKuRQFftmR-DJLKch9K6JIWS5T9AHh3xtolZMybgELIiO2NO-SEdIZ103Sd7TuGutybaVrw4dGgsV0wZVRYIxBYi6WYm7DJ5JtQfenurHe1m0AuAUxURU9kxutMQ7rtGG7EX9RX6zb4kEN2vBxeST_3-7t44u8g2eCBvpSgZ7ZhlZ1cxffI8qo3E6tOvcfJtC-
  priority: 102
  providerName: ProQuest
Title Utilizing Deep Learning and Object-Based Image Analysis to Search for Low-Head Dams in Indiana, USA
URI https://www.proquest.com/docview/3181834955
https://doi.org/10.3390/w17060876
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: A8Z
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: ADMLS
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5BcgAOtDyqhke0BaReumDs3Y1zDAUaEARUaimcrH2iiOBE4CiCX99Z7NCAVMTNkkfa1c7jm7FnvgXY4RG3zBhGYxY6yoQ0GAcNpy4wQnv-q2bDDwqfd0Q7Yadd3p2Bb5NZmKn_9xGW43vjZ3oXdNlZqAqO6XYFqknnsnXtL41D86QM8bxgDHot_wpn3kbbBZgbZUP5OJb9_hScHH_6N5RTdJHc7o5ytauf3nA0vrvTz7BYJpOkVWh_CWZstgwLUxSDK6CTvNfvPeEzObR2SEo-1RsiM0MulP8KQw8QyQw5ucPQQiYkJSQfkKIVmWBaS84GY9pGcyCH8u6B9DJyknnDkj9IctVaheT46M_PNi0vVqAa0T2nXAqBwB-xZsAdl8YKHUjHWRQaZS1XytkQJRsMXwbOGbYvQxu6IGLOaoMp4ReoZIPMfgViwsAzqGnl4pCpWDUd0w0hmrFUkZBM1WBrooZ0WPBnpFh3-BNLX06sBt-9glLvU_m91LIcDcAlPDtV2oqjWAiszRo12JjoMC2d7SHFsISBCSs9XoPtF73-f7m1D0mtw3zo7_r1vXvxBlTy-5HdxAQkV3WoHhx1Ln_XYfZXd79eGuRfwpvXmg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEB5CckhzCH1S59GKPuilIlutJGsPoTh1gt04bmljyG2rZzA4azfeYJIf19_Wkb3rmkJ7y21hFwlGn-ab0Wq-AXgjUuG5c5wqzgLlUjv0g07QkDhpo_5V1oyFwmd92RnwzxfiYg1-1bUw8Vpl7RPnjtqNbTwjP0DsIfownBcfJz9p7BoV_67WLTR01VrBHc4lxqrCjlN_O8MUbnrYbeN6v2Xs5Pj8U4dWXQaoRaorqdBSIgvi0IkIQjsvbaKD4ClzxnthTPAMv2xyfJmE4PgHzTwLScqDty6LwgdIARscB8Dkb-PouP_12_KUB-NvpUSykDRK0yw5mM31alTUOFkhwr_pYAs2b4qJvp3p0WiF704ewnYVqJLWAlmPYM0Xj2FrRb7wCdhBORwN7_CZtL2fkEqr9ZLowpEvJp7w0CNkSUe6V-i2SC2AQsoxWVxzJhgyk954RjsINdLWV1MyLEi3iKDV78nge-spDO7FnM9gvRgX_jkQx5KozmZNUIwbZbLAbVPKTGmTSs1NA17VFswnC22OHHOaaOZ8aeYGvIu2zeN-La-11VXZAU4Rla_ylkqVlJj3NRuwV5s_rzbyNP8Duwa8Xi7Jv6fb-f8gL2Gzc37Wy3vd_ukuPGCxmXC8HKj2YL28vvH7GOGU5kUFIwI_7hu5vwHDmQ9H
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VrVToAVEeIlCoxUNcWGXx2o73UKG0aZTQEiogUm9bP1GkdBOaraLyE_lVjBNviJDg1ttKu1pL48_zje2ZbwBe84w7Zi1LJKM-YUJZ9IOWJz61wgT9q7wVCoU_DURvyD6e8_MN-FXXwoS0ytonLhy1nZhwRt5E7CH6MJznTR_TIs463Q_TH0noIBVuWut2Giq2WbAHC7mxWORx4m7muJ2bHfQ7OPdvKO0efzvqJbHjQGKQ9qqEKyGQEXGYlHuurBMmVZ6zjFrtHNfaO4pfthi-TL237L2ijvo0Y94ZmwcRBKSDrXD5hU5i6_B4cPZldeKDsbiUPF3KG2VZnjbnC-0aGfRO1kjxb2rYgTvX5VTdzNV4vMZ93ftwLwatpL1E2S5suPIB7KxJGT4EM6xG49FPfCYd56Yk6rZ-J6q05LMOpz3JITKmJf1LdGGkFkMh1YQsU54Jhs_kdDJPegg70lGXMzIqSb8MAFbvyPBr-xEMb8Wcj2GznJTuCRBL06DUZrSXlGmpc89MS4hcKp0JxXQDXtYWLKZLnY4C9zfBzMXKzA14G2xbhLVbXSmjYgkCDhFUsIq2zKQQuAdsNWCvNn8RF_Ws-APBBrxaTcm_h3v6_5_swzYiuDjtD06ewV0a-gqHPEG5B5vV1bV7jsFOpV9EFBG4uG3g_gYPrxN2
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-NAEB-0fVAf9NQ7rHqyfoAvbi-X7G7Tx56eVNEqaMB7Cvt5FGtaNKXoX-_sJfXaguJbIAO77Hz8ZpKZ3wIc8IhbZgyjMQsdZUIajIOGUxcYoT3_VbPhB4UvO6KdsPM7fjcHu-NZmIn_9xGW4z9G_-hd0GXnoSo4ptsVqCad69Yff2kcmidliOcFY9C0_BTOzEbbJVgYZgP5PJK93gScnK78H8opukju68Nc1fXLDEfjhzv9AstlMklahfZXYc5ma7A0QTG4DjrJu73uCz6TE2sHpORT_UtkZsiV8l9h6C9EMkPOHjC0kDFJCcn7pGhFJpjWkov-iLbRHMiJfHgi3YycZd6w5BFJblpfITn9fXvcpuXFClQjuueUSyEQ-CPWDLjj0lihA-k4i0KjrOVKORuiZIPhy8A5w37K0IYuiJiz2mBK-A0qWT-zG0BMGHgGNa1cHDIVq6ZjuiFEM5YqEpKpGuyN1ZAOCv6MFOsOf2Lp24nV4NArKPU-lT9KLcvRAFzCs1OlrTiKhcDarFGD7bEO09LZnlIMSxiYsNLjNdh_0-v7y21-SmoLFkN_16_v3Yu3oZI_Du13TEBytVOa4CsNEtUP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+Deep+Learning+and+Object-Based+Image+Analysis+to+Search+for+Low-Head+Dams+in+Indiana%2C+USA&rft.jtitle=Water+%28Basel%29&rft.au=Crookston%2C+Brian+M&rft.au=Arnold%2C+Caitlin+R&rft.date=2025-03-18&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=17&rft.issue=6&rft.spage=876&rft_id=info:doi/10.3390%2Fw17060876&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon