Utilizing Deep Learning and Object-Based Image Analysis to Search for Low-Head Dams in Indiana, USA
Although low-head dams in the USA provide water supply, irrigation, and recreation opportunities, many are unknown by regulators. Unfortunately, hundreds of drownings occur each decade at these dams from an entrapment current that can form immediately downstream. To explore the ability of deep learn...
Saved in:
| Published in | Water (Basel) Vol. 17; no. 6; p. 876 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
18.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2073-4441 2073-4441 |
| DOI | 10.3390/w17060876 |
Cover
| Abstract | Although low-head dams in the USA provide water supply, irrigation, and recreation opportunities, many are unknown by regulators. Unfortunately, hundreds of drownings occur each decade at these dams from an entrapment current that can form immediately downstream. To explore the ability of deep learning to scan large areas of terrain to identify the locations of low-head dams, ArcGIS Pro and embedded deep learning models for object-based image analysis were investigated. The State of Indiana low-head dam dataset was selected for model training and validation. Aerial imagery (leaf-off conditions) captured from 2016 to 2018 for the nearly 94,000 km2 area had a minimum resolution of 304.8 mm. A new Python code was developed that automated the generation of training images and searching was limited to 100 m wide river corridors. Due to bank vegetation, all low-head dams were assigned a visibility score to aid in training and performance analysis. A total of 19 backbone models were considered with single shot detection and options for RetinaNet, Faster R-CNN, and batch normalization. Additional identification classes were incorporated to overcome identification of visually similar objects. After four training iterations, the final trained model was a ResNet RetinaNet backbone model featuring 101 layers with an 83% recall rate for dams with high visibility and a 17% recall rate for those with moderate visibility. |
|---|---|
| AbstractList | Although low-head dams in the USA provide water supply, irrigation, and recreation opportunities, many are unknown by regulators. Unfortunately, hundreds of drownings occur each decade at these dams from an entrapment current that can form immediately downstream. To explore the ability of deep learning to scan large areas of terrain to identify the locations of low-head dams, ArcGIS Pro and embedded deep learning models for object-based image analysis were investigated. The State of Indiana low-head dam dataset was selected for model training and validation. Aerial imagery (leaf-off conditions) captured from 2016 to 2018 for the nearly 94,000 km[sup.2] area had a minimum resolution of 304.8 mm. A new Python code was developed that automated the generation of training images and searching was limited to 100 m wide river corridors. Due to bank vegetation, all low-head dams were assigned a visibility score to aid in training and performance analysis. A total of 19 backbone models were considered with single shot detection and options for RetinaNet, Faster R-CNN, and batch normalization. Additional identification classes were incorporated to overcome identification of visually similar objects. After four training iterations, the final trained model was a ResNet RetinaNet backbone model featuring 101 layers with an 83% recall rate for dams with high visibility and a 17% recall rate for those with moderate visibility. Although low-head dams in the USA provide water supply, irrigation, and recreation opportunities, many are unknown by regulators. Unfortunately, hundreds of drownings occur each decade at these dams from an entrapment current that can form immediately downstream. To explore the ability of deep learning to scan large areas of terrain to identify the locations of low-head dams, ArcGIS Pro and embedded deep learning models for object-based image analysis were investigated. The State of Indiana low-head dam dataset was selected for model training and validation. Aerial imagery (leaf-off conditions) captured from 2016 to 2018 for the nearly 94,000 km2 area had a minimum resolution of 304.8 mm. A new Python code was developed that automated the generation of training images and searching was limited to 100 m wide river corridors. Due to bank vegetation, all low-head dams were assigned a visibility score to aid in training and performance analysis. A total of 19 backbone models were considered with single shot detection and options for RetinaNet, Faster R-CNN, and batch normalization. Additional identification classes were incorporated to overcome identification of visually similar objects. After four training iterations, the final trained model was a ResNet RetinaNet backbone model featuring 101 layers with an 83% recall rate for dams with high visibility and a 17% recall rate for those with moderate visibility. |
| Audience | Academic |
| Author | Crookston, Brian M. Arnold, Caitlin R. |
| Author_xml | – sequence: 1 givenname: Brian M. orcidid: 0000-0003-1259-8540 surname: Crookston fullname: Crookston, Brian M. – sequence: 2 givenname: Caitlin R. surname: Arnold fullname: Arnold, Caitlin R. |
| BookMark | eNp9kE1PAjEQhhuDiYgc_AdNPGlc7G67X0cEFRISDsh5M7RTLFm62C4h-OstwRhPdg6dzjxvM_Nek45tLBJyG7MB5yV7OsQ5y1iRZxekm7CcR0KIuPMnvyJ97zcsHFEWRcq6RC5bU5svY9d0jLijMwRnTy-wis5XG5Rt9AweFZ1uYY10aKE-euNp29BFYOUH1Y2js-YQTRAUHcPWU2Pp1CoDFh7pcjG8IZcaao_9n7tHlq8v76NJNJu_TUfDWSSTkrdRClmWsJiLkqU6BYWZZKBTwRO1QkxXK41JIHMRmkxrJWJIMNGMC41SlQnvkYfzv3u7g-MB6rraObMFd6xiVp0cqn4dCvDdGd655nOPvq02zd6F7XzF4yIuwhhpGqjBmVpDjZWxumkdyBAKt0YG97UJ9WHBiywTZZkHwf1ZIF3jvUP9zwjfk3CCTQ |
| Cites_doi | 10.1109/TNNLS.2016.2545298 10.1109/CVPR.2016.90 10.1007/s42979-021-00592-x 10.1109/TNNLS.2018.2815435 10.1109/TNNLS.2018.2876865 10.1007/978-981-15-6048-4 10.3390/rs13020319 10.14358/PERS.89.10.581 10.1016/j.isprsjprs.2009.06.004 10.3390/s25010214 10.1109/AIPR.2018.8707415 10.1109/CVPR.2009.5206848 10.1016/j.rse.2017.06.031 10.1126/science.aaa8415 10.1109/TNNLS.2012.2183645 10.1007/s11042-023-14857-5 10.1109/34.655648 10.1080/01431161.2012.747018 10.1016/S0926-5805(99)00007-2 10.1109/CVPR.2017.143 10.1109/AIPR.2017.8457969 10.3390/w16131889 10.1016/j.ejmp.2021.02.007 10.1109/TPAMI.2009.167 10.1109/TMM.2019.2903628 10.1111/mice.12674 10.1007/978-3-319-46448-0_2 10.1109/ICCV.2015.169 10.1109/TPAMI.2016.2577031 10.1016/j.isprsjprs.2017.06.001 10.1109/IGARSS47720.2021.9554617 10.1109/ICCV.2015.312 10.1109/CVPR.2016.91 10.1109/CVPR.2014.81 10.3390/s20236936 10.1145/2647868.2654889 10.3390/sci6030040 10.1016/j.isprsjprs.2021.09.014 10.3390/rs13122299 10.1061/(ASCE)CP.1943-5487.0000866 10.5194/isprs-archives-XLIII-B5-2020-185-2020 10.1080/01431160701258062 10.1109/LGRS.2016.2645710 10.1145/3065386 10.1016/j.envsoft.2012.09.011 10.1007/s13349-019-00345-8 10.1109/CVPR.2017.691 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/w17060876 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2073-4441 |
| ExternalDocumentID | 10.3390/w17060876 A838664997 10_3390_w17060876 |
| GeographicLocations | United States United States--US |
| GeographicLocations_xml | – name: United States – name: United States--US |
| GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH ESTFP GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c293t-5a6620134905f5ade6c0af5432dbee5bbfe2c2974f5a0ffd41a2e2f034fecd923 |
| IEDL.DBID | UNPAY |
| ISSN | 2073-4441 |
| IngestDate | Sun Sep 07 10:45:33 EDT 2025 Mon Jun 30 12:04:28 EDT 2025 Mon Oct 20 16:55:08 EDT 2025 Thu Oct 16 04:40:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-5a6620134905f5ade6c0af5432dbee5bbfe2c2974f5a0ffd41a2e2f034fecd923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1259-8540 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/w17060876 |
| PQID | 3181834955 |
| PQPubID | 2032318 |
| ParticipantIDs | unpaywall_primary_10_3390_w17060876 proquest_journals_3181834955 gale_infotracacademiconefile_A838664997 crossref_primary_10_3390_w17060876 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-18 |
| PublicationDateYYYYMMDD | 2025-03-18 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Water (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Diaz (ref_49) 2021; 83 ref_58 ref_12 ref_11 ref_55 ref_10 ref_54 ref_53 ref_51 Dundar (ref_14) 2016; 28 Li (ref_31) 2021; 36 ref_19 ref_17 Felzenszwalb (ref_6) 2009; 32 Tschantz (ref_2) 2014; 12 ref_61 ref_25 Ma (ref_46) 2017; 130 ref_69 ref_24 ref_68 ref_22 ref_66 ref_65 Stuhlsatz (ref_16) 2012; 23 ref_64 ref_63 Ghannadi (ref_52) 2019; 9 ref_62 Murray (ref_42) 2020; 43 Ren (ref_18) 2016; 39 ref_29 Zhang (ref_57) 2019; 21 ref_28 Zhao (ref_13) 2019; 30 ref_27 ref_26 Ma (ref_47) 2017; 14 ref_71 ref_70 Kumar (ref_34) 2020; 34 Sung (ref_5) 1998; 20 ref_36 Gorelick (ref_39) 2017; 202 Sarker (ref_21) 2021; 2 ref_32 Abdullah (ref_67) 2023; 89 ref_30 ref_73 Jordan (ref_20) 2015; 349 Jamil (ref_60) 2019; 28 Krizhevsky (ref_7) 2012; 60 Cintra (ref_15) 2018; 29 Tschantz (ref_3) 2011; 9 Lv (ref_23) 2014; 51 ref_38 Pan (ref_37) 2021; 181 Aguilar (ref_59) 2013; 34 ref_45 ref_44 ref_43 ref_40 ref_1 Moselhi (ref_33) 1999; 8 Blaschke (ref_35) 2010; 65 Aplin (ref_41) 2008; 37 ref_9 ref_8 Benfield (ref_48) 2007; 28 Domadia (ref_56) 2023; 82 ref_4 Bennett (ref_72) 2013; 40 |
| References_xml | – volume: 28 start-page: 1572 year: 2016 ident: ref_14 article-title: Embedded streaming deep neural networks accelerator with applications publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2545298 – ident: ref_32 – ident: ref_55 – ident: ref_29 doi: 10.1109/CVPR.2016.90 – volume: 2 start-page: 160 year: 2021 ident: ref_21 article-title: Machine learning: Algorithms, real-world applications and research directions publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00592-x – ident: ref_68 – ident: ref_65 – volume: 29 start-page: 5981 year: 2018 ident: ref_15 article-title: Low-complexity approximate convolutional neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2815435 – volume: 30 start-page: 3212 year: 2019 ident: ref_13 article-title: Object detection with deep learning: A review publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2876865 – ident: ref_22 doi: 10.1007/978-981-15-6048-4 – ident: ref_71 – ident: ref_63 doi: 10.3390/rs13020319 – volume: 89 start-page: 581 year: 2023 ident: ref_67 article-title: The ASPRS Positional Accuracy Standards, Edition 2: The Geospatial Mapping Industry Guide to Best Practices publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.89.10.581 – volume: 65 start-page: 2 year: 2010 ident: ref_35 article-title: Object based image analysis for remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.06.004 – ident: ref_4 – ident: ref_26 doi: 10.3390/s25010214 – volume: 9 start-page: 7 year: 2011 ident: ref_3 article-title: Hidden dangers and public safety at low-head dams publication-title: J. Dam Saf. – ident: ref_25 doi: 10.1109/AIPR.2018.8707415 – ident: ref_44 doi: 10.1109/CVPR.2009.5206848 – ident: ref_69 – ident: ref_10 – volume: 202 start-page: 18 year: 2017 ident: ref_39 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 349 start-page: 255 year: 2015 ident: ref_20 article-title: Machine learning: Trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 23 start-page: 596 year: 2012 ident: ref_16 article-title: Feature extraction with deep neural networks by a generalized discriminant analysis publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2183645 – volume: 82 start-page: 34809 year: 2023 ident: ref_56 article-title: Recent advancement in learning methodology for segmenting brain tumor from magnetic resonance imaging-a review publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-14857-5 – ident: ref_66 – ident: ref_62 – volume: 20 start-page: 39 year: 1998 ident: ref_5 article-title: Example-based learning for view-based human face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.655648 – ident: ref_45 – volume: 34 start-page: 2583 year: 2013 ident: ref_59 article-title: GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.747018 – volume: 8 start-page: 581 year: 1999 ident: ref_33 article-title: Automated detection of surface defects in water and sewer pipes publication-title: Autom. Constr. doi: 10.1016/S0926-5805(99)00007-2 – volume: 37 start-page: 725 year: 2008 ident: ref_41 article-title: Advances in object-based image classification publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – ident: ref_11 doi: 10.1109/CVPR.2017.143 – ident: ref_40 doi: 10.1109/AIPR.2017.8457969 – ident: ref_1 doi: 10.3390/w16131889 – volume: 83 start-page: 25 year: 2021 ident: ref_49 article-title: Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools publication-title: Phys. Medica doi: 10.1016/j.ejmp.2021.02.007 – volume: 51 start-page: 1911 year: 2014 ident: ref_23 article-title: Remote sensing image classification based on DBN model publication-title: J. Comput. Res. Dev. – ident: ref_28 – ident: ref_53 – ident: ref_30 – volume: 32 start-page: 1627 year: 2009 ident: ref_6 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.167 – volume: 21 start-page: 2482 year: 2019 ident: ref_57 article-title: Unsupervised and semi-supervised image classification with weak semantic consistency publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2019.2903628 – ident: ref_24 – volume: 36 start-page: 1398 year: 2021 ident: ref_31 article-title: Cross-scene pavement distress detection by a novel transfer learning framework publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12674 – ident: ref_51 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_27 doi: 10.1109/ICCV.2015.169 – volume: 39 start-page: 1137 year: 2016 ident: ref_18 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 130 start-page: 277 year: 2017 ident: ref_46 article-title: A review of supervised object-based land-cover image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.06.001 – ident: ref_36 doi: 10.1109/IGARSS47720.2021.9554617 – ident: ref_9 doi: 10.1109/ICCV.2015.312 – ident: ref_19 doi: 10.1109/CVPR.2016.91 – ident: ref_17 doi: 10.1109/CVPR.2014.81 – ident: ref_58 doi: 10.3390/s20236936 – ident: ref_73 – ident: ref_8 doi: 10.1145/2647868.2654889 – volume: 28 start-page: 561 year: 2019 ident: ref_60 article-title: Mapping Hazelnut Trees from High Resolution Digital Orthophoto Maps: A Quantitative Comparison of an Object and a Pizel Based Approach publication-title: FEB-Fresenius Environ. Bull. – ident: ref_61 doi: 10.3390/sci6030040 – ident: ref_50 – volume: 181 start-page: 218 year: 2021 ident: ref_37 article-title: Simplified object-based deep neural network for very high resolution remote sensing image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.09.014 – ident: ref_38 doi: 10.3390/rs13122299 – ident: ref_54 – volume: 12 start-page: 37 year: 2014 ident: ref_2 article-title: What we know (and don’t know) about low-head dams publication-title: J. Dam Saf. – volume: 34 start-page: 04019047 year: 2020 ident: ref_34 article-title: Deep learning–based automated detection of sewer defects in CCTV videos publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000866 – ident: ref_64 – volume: 43 start-page: 185 year: 2020 ident: ref_42 article-title: Opportunities for machine learning and artificial intelligence in national mapping agencies: Enhancing ordnance survey workflow publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLIII-B5-2020-185-2020 – volume: 28 start-page: 5047 year: 2007 ident: ref_48 article-title: Mapping the distribution of coral reefs and associated sublittoral habitats in Pacific Panama: A comparison of optical satellite sensors and classification methodologies publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701258062 – volume: 14 start-page: 409 year: 2017 ident: ref_47 article-title: A novel wrapper approach for feature selection in object-based image classification using polygon-based cross-validation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2645710 – ident: ref_70 – ident: ref_43 – volume: 60 start-page: 84 year: 2012 ident: ref_7 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM. doi: 10.1145/3065386 – volume: 40 start-page: 1 year: 2013 ident: ref_72 article-title: Characterising performance of environmental models publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2012.09.011 – volume: 9 start-page: 459 year: 2019 ident: ref_52 article-title: Data driven method of damage detection using sparse sensors installation by SEREPa publication-title: J. Civ. Struct Health Monit. doi: 10.1007/s13349-019-00345-8 – ident: ref_12 doi: 10.1109/CVPR.2017.691 |
| SSID | ssj0000498850 |
| Score | 2.3289378 |
| Snippet | Although low-head dams in the USA provide water supply, irrigation, and recreation opportunities, many are unknown by regulators. Unfortunately, hundreds of... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 876 |
| SubjectTerms | Algorithms Artificial intelligence Automation Classification Dams Deep learning Environmental aspects Fatalities Geographic information systems Hydraulics Image processing Labeling Landsat satellites Machine learning Rivers Software Technology application Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxNBEB9q-qB9EOsHjdayaMEXl173djebB5H0i1TaVNRA3479LIH0EtsrQf_6ziR3aRDs28EduzA7O_ObuZnfAOyqXEUZguRGisSltgHtYFA8ZUF74r_qdqhR-Hyg-0P57VJdrsGg6YWhssrGJs4NdZh4ypHvoe6h9iGcV1-nvzlNjaK_q80IDVuPVghf5hRjT2BdEDNWC9YPjgfffyyzLoiHjVHZgmIox3h_bzbnjzHEObLimP41zxvw9K6c2j8zOx6v-J-TF_C8Bo6stzjpTViL5UvYWKETfAV-WI3Go7_4zI5inLKaO_WK2TKwC0cZF36AXiuw02s0I6whJGHVhC3KjhlCWHY2mfE-Hj07ste3bFSy05KUyH5mw5-91zA8Of512Of1EAXu0ZNXXFmt0cmj5DKVlA1R-8wmJXMRXIzKuRQFftmR-DJLKch9K6JIWS5T9AHh3xtolZMybgELIiO2NO-SEdIZ103Sd7TuGutybaVrw4dGgsV0wZVRYIxBYi6WYm7DJ5JtQfenurHe1m0AuAUxURU9kxutMQ7rtGG7EX9RX6zb4kEN2vBxeST_3-7t44u8g2eCBvpSgZ7ZhlZ1cxffI8qo3E6tOvcfJtC- priority: 102 providerName: ProQuest |
| Title | Utilizing Deep Learning and Object-Based Image Analysis to Search for Low-Head Dams in Indiana, USA |
| URI | https://www.proquest.com/docview/3181834955 https://doi.org/10.3390/w17060876 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: A8Z dateStart: 20100901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: ADMLS dateStart: 20100901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5BcgAOtDyqhke0BaReumDs3Y1zDAUaEARUaimcrH2iiOBE4CiCX99Z7NCAVMTNkkfa1c7jm7FnvgXY4RG3zBhGYxY6yoQ0GAcNpy4wQnv-q2bDDwqfd0Q7Yadd3p2Bb5NZmKn_9xGW43vjZ3oXdNlZqAqO6XYFqknnsnXtL41D86QM8bxgDHot_wpn3kbbBZgbZUP5OJb9_hScHH_6N5RTdJHc7o5ytauf3nA0vrvTz7BYJpOkVWh_CWZstgwLUxSDK6CTvNfvPeEzObR2SEo-1RsiM0MulP8KQw8QyQw5ucPQQiYkJSQfkKIVmWBaS84GY9pGcyCH8u6B9DJyknnDkj9IctVaheT46M_PNi0vVqAa0T2nXAqBwB-xZsAdl8YKHUjHWRQaZS1XytkQJRsMXwbOGbYvQxu6IGLOaoMp4ReoZIPMfgViwsAzqGnl4pCpWDUd0w0hmrFUkZBM1WBrooZ0WPBnpFh3-BNLX06sBt-9glLvU_m91LIcDcAlPDtV2oqjWAiszRo12JjoMC2d7SHFsISBCSs9XoPtF73-f7m1D0mtw3zo7_r1vXvxBlTy-5HdxAQkV3WoHhx1Ln_XYfZXd79eGuRfwpvXmg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEB5CckhzCH1S59GKPuilIlutJGsPoTh1gt04bmljyG2rZzA4azfeYJIf19_Wkb3rmkJ7y21hFwlGn-ab0Wq-AXgjUuG5c5wqzgLlUjv0g07QkDhpo_5V1oyFwmd92RnwzxfiYg1-1bUw8Vpl7RPnjtqNbTwjP0DsIfownBcfJz9p7BoV_67WLTR01VrBHc4lxqrCjlN_O8MUbnrYbeN6v2Xs5Pj8U4dWXQaoRaorqdBSIgvi0IkIQjsvbaKD4ClzxnthTPAMv2xyfJmE4PgHzTwLScqDty6LwgdIARscB8Dkb-PouP_12_KUB-NvpUSykDRK0yw5mM31alTUOFkhwr_pYAs2b4qJvp3p0WiF704ewnYVqJLWAlmPYM0Xj2FrRb7wCdhBORwN7_CZtL2fkEqr9ZLowpEvJp7w0CNkSUe6V-i2SC2AQsoxWVxzJhgyk954RjsINdLWV1MyLEi3iKDV78nge-spDO7FnM9gvRgX_jkQx5KozmZNUIwbZbLAbVPKTGmTSs1NA17VFswnC22OHHOaaOZ8aeYGvIu2zeN-La-11VXZAU4Rla_ylkqVlJj3NRuwV5s_rzbyNP8Duwa8Xi7Jv6fb-f8gL2Gzc37Wy3vd_ukuPGCxmXC8HKj2YL28vvH7GOGU5kUFIwI_7hu5vwHDmQ9H |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VrVToAVEeIlCoxUNcWGXx2o73UKG0aZTQEiogUm9bP1GkdBOaraLyE_lVjBNviJDg1ttKu1pL48_zje2ZbwBe84w7Zi1LJKM-YUJZ9IOWJz61wgT9q7wVCoU_DURvyD6e8_MN-FXXwoS0ytonLhy1nZhwRt5E7CH6MJznTR_TIs463Q_TH0noIBVuWut2Giq2WbAHC7mxWORx4m7muJ2bHfQ7OPdvKO0efzvqJbHjQGKQ9qqEKyGQEXGYlHuurBMmVZ6zjFrtHNfaO4pfthi-TL237L2ijvo0Y94ZmwcRBKSDrXD5hU5i6_B4cPZldeKDsbiUPF3KG2VZnjbnC-0aGfRO1kjxb2rYgTvX5VTdzNV4vMZ93ftwLwatpL1E2S5suPIB7KxJGT4EM6xG49FPfCYd56Yk6rZ-J6q05LMOpz3JITKmJf1LdGGkFkMh1YQsU54Jhs_kdDJPegg70lGXMzIqSb8MAFbvyPBr-xEMb8Wcj2GznJTuCRBL06DUZrSXlGmpc89MS4hcKp0JxXQDXtYWLKZLnY4C9zfBzMXKzA14G2xbhLVbXSmjYgkCDhFUsIq2zKQQuAdsNWCvNn8RF_Ws-APBBrxaTcm_h3v6_5_swzYiuDjtD06ewV0a-gqHPEG5B5vV1bV7jsFOpV9EFBG4uG3g_gYPrxN2 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-NAEB-0fVAf9NQ7rHqyfoAvbi-X7G7Tx56eVNEqaMB7Cvt5FGtaNKXoX-_sJfXaguJbIAO77Hz8ZpKZ3wIc8IhbZgyjMQsdZUIajIOGUxcYoT3_VbPhB4UvO6KdsPM7fjcHu-NZmIn_9xGW4z9G_-hd0GXnoSo4ptsVqCad69Yff2kcmidliOcFY9C0_BTOzEbbJVgYZgP5PJK93gScnK78H8opukju68Nc1fXLDEfjhzv9AstlMklahfZXYc5ma7A0QTG4DjrJu73uCz6TE2sHpORT_UtkZsiV8l9h6C9EMkPOHjC0kDFJCcn7pGhFJpjWkov-iLbRHMiJfHgi3YycZd6w5BFJblpfITn9fXvcpuXFClQjuueUSyEQ-CPWDLjj0lihA-k4i0KjrOVKORuiZIPhy8A5w37K0IYuiJiz2mBK-A0qWT-zG0BMGHgGNa1cHDIVq6ZjuiFEM5YqEpKpGuyN1ZAOCv6MFOsOf2Lp24nV4NArKPU-lT9KLcvRAFzCs1OlrTiKhcDarFGD7bEO09LZnlIMSxiYsNLjNdh_0-v7y21-SmoLFkN_16_v3Yu3oZI_Du13TEBytVOa4CsNEtUP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+Deep+Learning+and+Object-Based+Image+Analysis+to+Search+for+Low-Head+Dams+in+Indiana%2C+USA&rft.jtitle=Water+%28Basel%29&rft.au=Crookston%2C+Brian+M&rft.au=Arnold%2C+Caitlin+R&rft.date=2025-03-18&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=17&rft.issue=6&rft.spage=876&rft_id=info:doi/10.3390%2Fw17060876&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |