Accelerated Design Methodology for Dual-Input Doherty Power Amplifiers
A novel design theory and the methodology are presented for dual-input Doherty power amplifiers (DPAs) in which the auxiliary transistor does not fully turn off at backoff power. Given the input parameters selected by the PA designer, a Doherty load modulation behavior is exactly implemented at the...
Saved in:
Published in | IEEE transactions on microwave theory and techniques Vol. 67; no. 10; pp. 3983 - 3995 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9480 1557-9670 |
DOI | 10.1109/TMTT.2019.2924373 |
Cover
Abstract | A novel design theory and the methodology are presented for dual-input Doherty power amplifiers (DPAs) in which the auxiliary transistor does not fully turn off at backoff power. Given the input parameters selected by the PA designer, a Doherty load modulation behavior is exactly implemented at the current-source reference planes of the transistors by solving for the characteristic impedance of the Doherty quarter-wave transformer and the common load. The Doherty output combiner at the package reference plane that sustains the desired dual-input DPA performance is then synthesized using nonlinear embedding and exactly implemented with a lossless and reciprocal circuit. The new analytic DPA design theory also provides an expanded design space, which facilitates the selection of the optimal design based on the gain, linearity, and efficiency tradeoff. The design methodology is implemented in a software program to enable the automatic design of a dual-input DPA prototype at the package reference planes within 24 s. To validate the theory and the design methodology, a 2-GHz dual-input asymmetric DPA is fabricated and measured. When excited with a 20-MHz local thermal equilibrium (LTE) signal with 9.55-dB peak-to-average power ratio (PAPR), the DPA achieves an average power-added efficiency (PAE) of 51.6% with an adjacent-channel-power-leakage ratio (ACLR) of -47.1 dBc after linearization. |
---|---|
AbstractList | A novel design theory and the methodology are presented for dual-input Doherty power amplifiers (DPAs) in which the auxiliary transistor does not fully turn off at backoff power. Given the input parameters selected by the PA designer, a Doherty load modulation behavior is exactly implemented at the current-source reference planes of the transistors by solving for the characteristic impedance of the Doherty quarter-wave transformer and the common load. The Doherty output combiner at the package reference plane that sustains the desired dual-input DPA performance is then synthesized using nonlinear embedding and exactly implemented with a lossless and reciprocal circuit. The new analytic DPA design theory also provides an expanded design space, which facilitates the selection of the optimal design based on the gain, linearity, and efficiency tradeoff. The design methodology is implemented in a software program to enable the automatic design of a dual-input DPA prototype at the package reference planes within 24 s. To validate the theory and the design methodology, a 2-GHz dual-input asymmetric DPA is fabricated and measured. When excited with a 20-MHz local thermal equilibrium (LTE) signal with 9.55-dB peak-to-average power ratio (PAPR), the DPA achieves an average power-added efficiency (PAE) of 51.6% with an adjacent-channel-power-leakage ratio (ACLR) of -47.1 dBc after linearization. A novel design theory and the methodology are presented for dual-input Doherty power amplifiers (DPAs) in which the auxiliary transistor does not fully turn off at backoff power. Given the input parameters selected by the PA designer, a Doherty load modulation behavior is exactly implemented at the current-source reference planes of the transistors by solving for the characteristic impedance of the Doherty quarter-wave transformer and the common load. The Doherty output combiner at the package reference plane that sustains the desired dual-input DPA performance is then synthesized using nonlinear embedding and exactly implemented with a lossless and reciprocal circuit. The new analytic DPA design theory also provides an expanded design space, which facilitates the selection of the optimal design based on the gain, linearity, and efficiency tradeoff. The design methodology is implemented in a software program to enable the automatic design of a dual-input DPA prototype at the package reference planes within 24 s. To validate the theory and the design methodology, a 2-GHz dual-input asymmetric DPA is fabricated and measured. When excited with a 20-MHz local thermal equilibrium (LTE) signal with 9.55-dB peak-to-average power ratio (PAPR), the DPA achieves an average power-added efficiency (PAE) of 51.6% with an adjacent-channel-power-leakage ratio (ACLR) of −47.1 dBc after linearization. |
Author | Hahn, Yunsik Liang, Chenyu Roblin, Patrick |
Author_xml | – sequence: 1 givenname: Chenyu orcidid: 0000-0003-0433-6831 surname: Liang fullname: Liang, Chenyu organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA – sequence: 2 givenname: Patrick orcidid: 0000-0003-3909-6110 surname: Roblin fullname: Roblin, Patrick email: roblin.1@osu.edu organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA – sequence: 3 givenname: Yunsik orcidid: 0000-0003-0260-4134 surname: Hahn fullname: Hahn, Yunsik organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA |
BookMark | eNp9kE1Lw0AQhhdRsK3-APES8Jy6H9ns7rG0VgsteojnZbOZtClpNm42SP-9KS0ePMgchoH3mRmeMbpuXAMIPRA8JQSr52yTZVOKiZpSRRMm2BUaEc5FrFKBr9EIYyJjlUh8i8Zdtx_GhGM5QsuZtVCDNwGKaAFdtW2iDYSdK1zttseodD5a9KaOV03bh2jhduDDMfpw3-Cj2aGtq7IC392hm9LUHdxf-gR9Ll-y-Vu8fn9dzWfr2FLFQsylSQqpSrBgQBCeDmUAW4r58JCkoswZwTkplKXCJLmVSSlYXtg8TwkvFJugp_Pe1ruvHrqg9673zXBSU4aZShQXyZAi55T1rus8lLr11cH4oyZYn3Tpky590qUvugZG_GFsFUyoXBO8qep_ycczWQHA7yUpUjo4Zj_gQ3nG |
CODEN | IETMAB |
CitedBy_id | crossref_primary_10_1109_TMTT_2020_3019430 crossref_primary_10_1109_TMTT_2023_3325105 crossref_primary_10_1109_TMTT_2022_3222355 crossref_primary_10_3390_mi15030388 crossref_primary_10_1109_ACCESS_2023_3293425 crossref_primary_10_1109_TMTT_2020_3011419 crossref_primary_10_1109_TMTT_2021_3055812 crossref_primary_10_1016_j_aeue_2024_155372 crossref_primary_10_1109_TMTT_2021_3091507 crossref_primary_10_1109_TMTT_2021_3126885 |
Cites_doi | 10.1109/TMTT.2013.2288604 10.1109/MW-M.2006.247914 10.1109/TMTT.2010.2091207 10.1109/TBC.1987.266625 10.1109/TMTT.2014.2366130 10.1109/TCSI.2016.2636155 10.1109/MMM.2010.940101 10.1109/MWSYM.2014.6848558 10.1109/TMTT.2011.2106137 10.1109/TMTT.2012.2207910 10.1109/TMTT.2014.2387061 10.1109/TMTT.2018.2870830 10.1109/TCSI.2018.2882770 10.1109/TMTT.2013.2262803 10.1109/TMTT.2016.2529601 10.1109/TMTT.2015.2435731 10.1109/JPROC.2012.2211091 10.1109/22.971638 10.1109/TMTT.2014.2333498 10.1109/LMWC.2017.2763739 10.1109/IWCIA.2017.8203576 10.1109/MMM.2016.2561478 10.1109/PAWR.2017.7875569 10.1109/INMMIC.2015.7330387 10.1109/TMTT.2009.2022816 10.1109/MWSYM.2015.7166956 10.1109/WAMICON.2017.7930280 10.1109/TMTT.2016.2617882 10.1109/JRPROC.1936.228468 10.1109/TMTT.2014.2333713 10.1109/TMTT.2017.2756046 10.1109/PAWR.2019.8708731 10.1109/MWSYM.2017.8058741 10.1109/TMTT.2011.2160278 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TMTT.2019.2924373 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9670 |
EndPage | 3995 |
ExternalDocumentID | 10_1109_TMTT_2019_2924373 8762145 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1711278 funderid: 10.13039/100000001 |
GroupedDBID | -~X .GJ 0R~ 29I 3EH 4.4 5GY 5VS 66. 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c293t-58a4d89feceae7156565ae0c205014827fb310b1d9c27a4bc84f73bdcbb615d93 |
IEDL.DBID | RIE |
ISSN | 0018-9480 |
IngestDate | Mon Jun 30 10:11:52 EDT 2025 Tue Jul 01 02:00:14 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 Wed Aug 27 02:43:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-58a4d89feceae7156565ae0c205014827fb310b1d9c27a4bc84f73bdcbb615d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3909-6110 0000-0003-0260-4134 0000-0003-0433-6831 |
PQID | 2303949574 |
PQPubID | 106035 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TMTT_2019_2924373 crossref_primary_10_1109_TMTT_2019_2924373 proquest_journals_2303949574 ieee_primary_8762145 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on microwave theory and techniques |
PublicationTitleAbbrev | TMTT |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 özen (ref15) 2014 ref9 ref4 ref3 ref6 ref5 özen (ref16) 2016; 64 |
References_xml | – ident: ref7 doi: 10.1109/TMTT.2013.2288604 – ident: ref4 doi: 10.1109/MW-M.2006.247914 – ident: ref8 doi: 10.1109/TMTT.2010.2091207 – ident: ref2 doi: 10.1109/TBC.1987.266625 – ident: ref22 doi: 10.1109/TMTT.2014.2366130 – ident: ref18 doi: 10.1109/TCSI.2016.2636155 – ident: ref28 doi: 10.1109/MMM.2010.940101 – ident: ref21 doi: 10.1109/MWSYM.2014.6848558 – ident: ref12 doi: 10.1109/TMTT.2011.2106137 – ident: ref13 doi: 10.1109/TMTT.2012.2207910 – ident: ref6 doi: 10.1109/TMTT.2014.2387061 – ident: ref11 doi: 10.1109/TMTT.2018.2870830 – ident: ref24 doi: 10.1109/TCSI.2018.2882770 – ident: ref29 doi: 10.1109/TMTT.2013.2262803 – start-page: 1 year: 2014 ident: ref15 article-title: Symmetrical Doherty amplifier with high efficiency over large output power dynamic range publication-title: IEEE MTT-S Int Microw Symp Dig – volume: 64 start-page: 1273 year: 2016 ident: ref16 article-title: Symmetrical Doherty power amplifier with extended efficiency range publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2016.2529601 – ident: ref35 doi: 10.1109/TMTT.2015.2435731 – ident: ref5 doi: 10.1109/JPROC.2012.2211091 – ident: ref3 doi: 10.1109/22.971638 – ident: ref30 doi: 10.1109/TMTT.2014.2333498 – ident: ref17 doi: 10.1109/LMWC.2017.2763739 – ident: ref23 doi: 10.1109/IWCIA.2017.8203576 – ident: ref14 doi: 10.1109/MMM.2016.2561478 – ident: ref32 doi: 10.1109/PAWR.2017.7875569 – ident: ref31 doi: 10.1109/INMMIC.2015.7330387 – ident: ref27 doi: 10.1109/TMTT.2009.2022816 – ident: ref20 doi: 10.1109/MWSYM.2015.7166956 – ident: ref33 doi: 10.1109/WAMICON.2017.7930280 – ident: ref19 doi: 10.1109/TMTT.2016.2617882 – ident: ref1 doi: 10.1109/JRPROC.1936.228468 – ident: ref10 doi: 10.1109/TMTT.2014.2333713 – ident: ref25 doi: 10.1109/TMTT.2017.2756046 – ident: ref34 doi: 10.1109/PAWR.2019.8708731 – ident: ref26 doi: 10.1109/MWSYM.2017.8058741 – ident: ref9 doi: 10.1109/TMTT.2011.2160278 |
SSID | ssj0014508 |
Score | 2.3934844 |
Snippet | A novel design theory and the methodology are presented for dual-input Doherty power amplifiers (DPAs) in which the auxiliary transistor does not fully turn... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3983 |
SubjectTerms | Amplifier design Circuit design Current sources Design Design engineering Doherty power amplifiers (DPAs) Impedance Impedance measurement Linearity Load modeling Microwave theory and techniques nonlinear embedding Planes Power amplifiers Power efficiency Prototypes Semiconductor devices Software Transistors |
Title | Accelerated Design Methodology for Dual-Input Doherty Power Amplifiers |
URI | https://ieeexplore.ieee.org/document/8762145 https://www.proquest.com/docview/2303949574 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA-XACdGuWZO2OU6MaSANceik3aomTYXE1E3QXvj1xGk38RLi1kMcpbYT27HzGeCKBnkgMcjxZRQ4xuKnTiRp4EjfkzxkSnP76n32GEzn7GHBFy242b6F0Vrb4jPt4qfN5WcrVeFV2QB3LmW8DW2jZvVbrW3GgHGvOXXNBmbRJoNJPTGIZ3GMRVzCHQrE3_O_2CDbVOXHSWzNy2QfZpuF1VUlL25VSle9f8Ns_O_KD2Cv8TPJqFaMQ2jp4gh2P6EPdmEyUsoYHcSKyMjYVnKQmW0oba_aiXFnybhKl859sa5KMl49Iw4vecK-amSEleg59tE-hvnkLr6dOk1bBUcZ2146PEpZFolcK53qkKJHx1PtqaGHOcZoGObS-HySZkINw5RJFbE89GWmpDTuTyb8E-gUq0KfAkk1pznlaSbN32llbD8T2hD6NGN5pFQPvA2jE9VgjmPri2ViYw9PJCibBGWTNLLpwfWWZF0Dbvw1uIu83g5s2NyD_kaaSbMl3xITa_nChIMhO_ud6hx2cO66Uq8PnfK10hfG4yjlpVW1D_7H0VU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADb8R45sAJ0dGsSZscJ8a0AUUcisStatJUSEwbgvbCrydOu4mXELceYiWN49iO7c8ApzQsQoVOTqBE6FmNn3lC0dBTga94xLThruo9vguHD-z6kT-24HxeC2OMcclnpoOfLpafT3WFT2UXKLmU8QVY4tarEHW11jxmwLjf3LtWhJmYxTCpLy-SOEkwjUt2uhIR-IIvWsi1VflxFzsFM1iHeLa0Oq_kuVOVqqPfv6E2_nftG7DWWJqkVx-NTWiZyRasfsIf3IZBT2urdhAtIid9l8tBYtdS2j22E2vQkn6Vjb3R5KUqSX_6hEi85B47q5Ee5qIX2El7Bx4GV8nl0GsaK3jaavfS4yJjuZCF0SYzEUWbjmfG110fo4yiGxXKWn2K5lJ3o4wpLVgRBSrXSlkDKJfBLixOphOzByQznBaUZ7myf2e01f5MGksY0JwVQus2-LONTnWDOo7NL8ap8z58mSJvUuRN2vCmDWdzkpcacuOvwdu41_OBzTa34XDGzbQRyrfUeluBtA5hxPZ_pzqB5WES36a3o7ubA1jBeeq8vUNYLF8rc2Ttj1Idu2P3AS5L1Kg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+Design+Methodology+for+Dual-Input+Doherty+Power+Amplifiers&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Liang%2C+Chenyu&rft.au=Roblin%2C+Patrick&rft.au=Hahn%2C+Yunsik&rft.date=2019-10-01&rft.issn=0018-9480&rft.eissn=1557-9670&rft.volume=67&rft.issue=10&rft.spage=3983&rft.epage=3995&rft_id=info:doi/10.1109%2FTMTT.2019.2924373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMTT_2019_2924373 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon |