Accelerated Design Methodology for Dual-Input Doherty Power Amplifiers

A novel design theory and the methodology are presented for dual-input Doherty power amplifiers (DPAs) in which the auxiliary transistor does not fully turn off at backoff power. Given the input parameters selected by the PA designer, a Doherty load modulation behavior is exactly implemented at the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 67; no. 10; pp. 3983 - 3995
Main Authors Liang, Chenyu, Roblin, Patrick, Hahn, Yunsik
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9480
1557-9670
DOI10.1109/TMTT.2019.2924373

Cover

Abstract A novel design theory and the methodology are presented for dual-input Doherty power amplifiers (DPAs) in which the auxiliary transistor does not fully turn off at backoff power. Given the input parameters selected by the PA designer, a Doherty load modulation behavior is exactly implemented at the current-source reference planes of the transistors by solving for the characteristic impedance of the Doherty quarter-wave transformer and the common load. The Doherty output combiner at the package reference plane that sustains the desired dual-input DPA performance is then synthesized using nonlinear embedding and exactly implemented with a lossless and reciprocal circuit. The new analytic DPA design theory also provides an expanded design space, which facilitates the selection of the optimal design based on the gain, linearity, and efficiency tradeoff. The design methodology is implemented in a software program to enable the automatic design of a dual-input DPA prototype at the package reference planes within 24 s. To validate the theory and the design methodology, a 2-GHz dual-input asymmetric DPA is fabricated and measured. When excited with a 20-MHz local thermal equilibrium (LTE) signal with 9.55-dB peak-to-average power ratio (PAPR), the DPA achieves an average power-added efficiency (PAE) of 51.6% with an adjacent-channel-power-leakage ratio (ACLR) of -47.1 dBc after linearization.
AbstractList A novel design theory and the methodology are presented for dual-input Doherty power amplifiers (DPAs) in which the auxiliary transistor does not fully turn off at backoff power. Given the input parameters selected by the PA designer, a Doherty load modulation behavior is exactly implemented at the current-source reference planes of the transistors by solving for the characteristic impedance of the Doherty quarter-wave transformer and the common load. The Doherty output combiner at the package reference plane that sustains the desired dual-input DPA performance is then synthesized using nonlinear embedding and exactly implemented with a lossless and reciprocal circuit. The new analytic DPA design theory also provides an expanded design space, which facilitates the selection of the optimal design based on the gain, linearity, and efficiency tradeoff. The design methodology is implemented in a software program to enable the automatic design of a dual-input DPA prototype at the package reference planes within 24 s. To validate the theory and the design methodology, a 2-GHz dual-input asymmetric DPA is fabricated and measured. When excited with a 20-MHz local thermal equilibrium (LTE) signal with 9.55-dB peak-to-average power ratio (PAPR), the DPA achieves an average power-added efficiency (PAE) of 51.6% with an adjacent-channel-power-leakage ratio (ACLR) of -47.1 dBc after linearization.
A novel design theory and the methodology are presented for dual-input Doherty power amplifiers (DPAs) in which the auxiliary transistor does not fully turn off at backoff power. Given the input parameters selected by the PA designer, a Doherty load modulation behavior is exactly implemented at the current-source reference planes of the transistors by solving for the characteristic impedance of the Doherty quarter-wave transformer and the common load. The Doherty output combiner at the package reference plane that sustains the desired dual-input DPA performance is then synthesized using nonlinear embedding and exactly implemented with a lossless and reciprocal circuit. The new analytic DPA design theory also provides an expanded design space, which facilitates the selection of the optimal design based on the gain, linearity, and efficiency tradeoff. The design methodology is implemented in a software program to enable the automatic design of a dual-input DPA prototype at the package reference planes within 24 s. To validate the theory and the design methodology, a 2-GHz dual-input asymmetric DPA is fabricated and measured. When excited with a 20-MHz local thermal equilibrium (LTE) signal with 9.55-dB peak-to-average power ratio (PAPR), the DPA achieves an average power-added efficiency (PAE) of 51.6% with an adjacent-channel-power-leakage ratio (ACLR) of −47.1 dBc after linearization.
Author Hahn, Yunsik
Liang, Chenyu
Roblin, Patrick
Author_xml – sequence: 1
  givenname: Chenyu
  orcidid: 0000-0003-0433-6831
  surname: Liang
  fullname: Liang, Chenyu
  organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA
– sequence: 2
  givenname: Patrick
  orcidid: 0000-0003-3909-6110
  surname: Roblin
  fullname: Roblin, Patrick
  email: roblin.1@osu.edu
  organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA
– sequence: 3
  givenname: Yunsik
  orcidid: 0000-0003-0260-4134
  surname: Hahn
  fullname: Hahn, Yunsik
  organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA
BookMark eNp9kE1Lw0AQhhdRsK3-APES8Jy6H9ns7rG0VgsteojnZbOZtClpNm42SP-9KS0ePMgchoH3mRmeMbpuXAMIPRA8JQSr52yTZVOKiZpSRRMm2BUaEc5FrFKBr9EIYyJjlUh8i8Zdtx_GhGM5QsuZtVCDNwGKaAFdtW2iDYSdK1zttseodD5a9KaOV03bh2jhduDDMfpw3-Cj2aGtq7IC392hm9LUHdxf-gR9Ll-y-Vu8fn9dzWfr2FLFQsylSQqpSrBgQBCeDmUAW4r58JCkoswZwTkplKXCJLmVSSlYXtg8TwkvFJugp_Pe1ruvHrqg9673zXBSU4aZShQXyZAi55T1rus8lLr11cH4oyZYn3Tpky590qUvugZG_GFsFUyoXBO8qep_ycczWQHA7yUpUjo4Zj_gQ3nG
CODEN IETMAB
CitedBy_id crossref_primary_10_1109_TMTT_2020_3019430
crossref_primary_10_1109_TMTT_2023_3325105
crossref_primary_10_1109_TMTT_2022_3222355
crossref_primary_10_3390_mi15030388
crossref_primary_10_1109_ACCESS_2023_3293425
crossref_primary_10_1109_TMTT_2020_3011419
crossref_primary_10_1109_TMTT_2021_3055812
crossref_primary_10_1016_j_aeue_2024_155372
crossref_primary_10_1109_TMTT_2021_3091507
crossref_primary_10_1109_TMTT_2021_3126885
Cites_doi 10.1109/TMTT.2013.2288604
10.1109/MW-M.2006.247914
10.1109/TMTT.2010.2091207
10.1109/TBC.1987.266625
10.1109/TMTT.2014.2366130
10.1109/TCSI.2016.2636155
10.1109/MMM.2010.940101
10.1109/MWSYM.2014.6848558
10.1109/TMTT.2011.2106137
10.1109/TMTT.2012.2207910
10.1109/TMTT.2014.2387061
10.1109/TMTT.2018.2870830
10.1109/TCSI.2018.2882770
10.1109/TMTT.2013.2262803
10.1109/TMTT.2016.2529601
10.1109/TMTT.2015.2435731
10.1109/JPROC.2012.2211091
10.1109/22.971638
10.1109/TMTT.2014.2333498
10.1109/LMWC.2017.2763739
10.1109/IWCIA.2017.8203576
10.1109/MMM.2016.2561478
10.1109/PAWR.2017.7875569
10.1109/INMMIC.2015.7330387
10.1109/TMTT.2009.2022816
10.1109/MWSYM.2015.7166956
10.1109/WAMICON.2017.7930280
10.1109/TMTT.2016.2617882
10.1109/JRPROC.1936.228468
10.1109/TMTT.2014.2333713
10.1109/TMTT.2017.2756046
10.1109/PAWR.2019.8708731
10.1109/MWSYM.2017.8058741
10.1109/TMTT.2011.2160278
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TMTT.2019.2924373
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9670
EndPage 3995
ExternalDocumentID 10_1109_TMTT_2019_2924373
8762145
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1711278
  funderid: 10.13039/100000001
GroupedDBID -~X
.GJ
0R~
29I
3EH
4.4
5GY
5VS
66.
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-58a4d89feceae7156565ae0c205014827fb310b1d9c27a4bc84f73bdcbb615d93
IEDL.DBID RIE
ISSN 0018-9480
IngestDate Mon Jun 30 10:11:52 EDT 2025
Tue Jul 01 02:00:14 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
Wed Aug 27 02:43:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-58a4d89feceae7156565ae0c205014827fb310b1d9c27a4bc84f73bdcbb615d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3909-6110
0000-0003-0260-4134
0000-0003-0433-6831
PQID 2303949574
PQPubID 106035
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TMTT_2019_2924373
crossref_primary_10_1109_TMTT_2019_2924373
proquest_journals_2303949574
ieee_primary_8762145
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on microwave theory and techniques
PublicationTitleAbbrev TMTT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
özen (ref15) 2014
ref9
ref4
ref3
ref6
ref5
özen (ref16) 2016; 64
References_xml – ident: ref7
  doi: 10.1109/TMTT.2013.2288604
– ident: ref4
  doi: 10.1109/MW-M.2006.247914
– ident: ref8
  doi: 10.1109/TMTT.2010.2091207
– ident: ref2
  doi: 10.1109/TBC.1987.266625
– ident: ref22
  doi: 10.1109/TMTT.2014.2366130
– ident: ref18
  doi: 10.1109/TCSI.2016.2636155
– ident: ref28
  doi: 10.1109/MMM.2010.940101
– ident: ref21
  doi: 10.1109/MWSYM.2014.6848558
– ident: ref12
  doi: 10.1109/TMTT.2011.2106137
– ident: ref13
  doi: 10.1109/TMTT.2012.2207910
– ident: ref6
  doi: 10.1109/TMTT.2014.2387061
– ident: ref11
  doi: 10.1109/TMTT.2018.2870830
– ident: ref24
  doi: 10.1109/TCSI.2018.2882770
– ident: ref29
  doi: 10.1109/TMTT.2013.2262803
– start-page: 1
  year: 2014
  ident: ref15
  article-title: Symmetrical Doherty amplifier with high efficiency over large output power dynamic range
  publication-title: IEEE MTT-S Int Microw Symp Dig
– volume: 64
  start-page: 1273
  year: 2016
  ident: ref16
  article-title: Symmetrical Doherty power amplifier with extended efficiency range
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2016.2529601
– ident: ref35
  doi: 10.1109/TMTT.2015.2435731
– ident: ref5
  doi: 10.1109/JPROC.2012.2211091
– ident: ref3
  doi: 10.1109/22.971638
– ident: ref30
  doi: 10.1109/TMTT.2014.2333498
– ident: ref17
  doi: 10.1109/LMWC.2017.2763739
– ident: ref23
  doi: 10.1109/IWCIA.2017.8203576
– ident: ref14
  doi: 10.1109/MMM.2016.2561478
– ident: ref32
  doi: 10.1109/PAWR.2017.7875569
– ident: ref31
  doi: 10.1109/INMMIC.2015.7330387
– ident: ref27
  doi: 10.1109/TMTT.2009.2022816
– ident: ref20
  doi: 10.1109/MWSYM.2015.7166956
– ident: ref33
  doi: 10.1109/WAMICON.2017.7930280
– ident: ref19
  doi: 10.1109/TMTT.2016.2617882
– ident: ref1
  doi: 10.1109/JRPROC.1936.228468
– ident: ref10
  doi: 10.1109/TMTT.2014.2333713
– ident: ref25
  doi: 10.1109/TMTT.2017.2756046
– ident: ref34
  doi: 10.1109/PAWR.2019.8708731
– ident: ref26
  doi: 10.1109/MWSYM.2017.8058741
– ident: ref9
  doi: 10.1109/TMTT.2011.2160278
SSID ssj0014508
Score 2.3934844
Snippet A novel design theory and the methodology are presented for dual-input Doherty power amplifiers (DPAs) in which the auxiliary transistor does not fully turn...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3983
SubjectTerms Amplifier design
Circuit design
Current sources
Design
Design engineering
Doherty power amplifiers (DPAs)
Impedance
Impedance measurement
Linearity
Load modeling
Microwave theory and techniques
nonlinear embedding
Planes
Power amplifiers
Power efficiency
Prototypes
Semiconductor devices
Software
Transistors
Title Accelerated Design Methodology for Dual-Input Doherty Power Amplifiers
URI https://ieeexplore.ieee.org/document/8762145
https://www.proquest.com/docview/2303949574
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA-XACdGuWZO2OU6MaSANceik3aomTYXE1E3QXvj1xGk38RLi1kMcpbYT27HzGeCKBnkgMcjxZRQ4xuKnTiRp4EjfkzxkSnP76n32GEzn7GHBFy242b6F0Vrb4jPt4qfN5WcrVeFV2QB3LmW8DW2jZvVbrW3GgHGvOXXNBmbRJoNJPTGIZ3GMRVzCHQrE3_O_2CDbVOXHSWzNy2QfZpuF1VUlL25VSle9f8Ns_O_KD2Cv8TPJqFaMQ2jp4gh2P6EPdmEyUsoYHcSKyMjYVnKQmW0oba_aiXFnybhKl859sa5KMl49Iw4vecK-amSEleg59tE-hvnkLr6dOk1bBUcZ2146PEpZFolcK53qkKJHx1PtqaGHOcZoGObS-HySZkINw5RJFbE89GWmpDTuTyb8E-gUq0KfAkk1pznlaSbN32llbD8T2hD6NGN5pFQPvA2jE9VgjmPri2ViYw9PJCibBGWTNLLpwfWWZF0Dbvw1uIu83g5s2NyD_kaaSbMl3xITa_nChIMhO_ud6hx2cO66Uq8PnfK10hfG4yjlpVW1D_7H0VU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADb8R45sAJ0dGsSZscJ8a0AUUcisStatJUSEwbgvbCrydOu4mXELceYiWN49iO7c8ApzQsQoVOTqBE6FmNn3lC0dBTga94xLThruo9vguHD-z6kT-24HxeC2OMcclnpoOfLpafT3WFT2UXKLmU8QVY4tarEHW11jxmwLjf3LtWhJmYxTCpLy-SOEkwjUt2uhIR-IIvWsi1VflxFzsFM1iHeLa0Oq_kuVOVqqPfv6E2_nftG7DWWJqkVx-NTWiZyRasfsIf3IZBT2urdhAtIid9l8tBYtdS2j22E2vQkn6Vjb3R5KUqSX_6hEi85B47q5Ee5qIX2El7Bx4GV8nl0GsaK3jaavfS4yJjuZCF0SYzEUWbjmfG110fo4yiGxXKWn2K5lJ3o4wpLVgRBSrXSlkDKJfBLixOphOzByQznBaUZ7myf2e01f5MGksY0JwVQus2-LONTnWDOo7NL8ap8z58mSJvUuRN2vCmDWdzkpcacuOvwdu41_OBzTa34XDGzbQRyrfUeluBtA5hxPZ_pzqB5WES36a3o7ubA1jBeeq8vUNYLF8rc2Ttj1Idu2P3AS5L1Kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+Design+Methodology+for+Dual-Input+Doherty+Power+Amplifiers&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Liang%2C+Chenyu&rft.au=Roblin%2C+Patrick&rft.au=Hahn%2C+Yunsik&rft.date=2019-10-01&rft.issn=0018-9480&rft.eissn=1557-9670&rft.volume=67&rft.issue=10&rft.spage=3983&rft.epage=3995&rft_id=info:doi/10.1109%2FTMTT.2019.2924373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMTT_2019_2924373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon