Individualized Gait Pattern Generation for Sharing Lower Limb Exoskeleton Robot

The development of sharing technology makes it possible for expensive lower limb exoskeleton robots to be extensively employed. However, due to the uniqueness of gait pattern, it is challenging for lower limb exoskeleton robot to adapt to different wearers' gait patterns. Studies have shown tha...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 15; no. 4; pp. 1459 - 1470
Main Authors Wu, Xinyu, Liu, Du-Xin, Liu, Ming, Chen, Chunjie, Guo, Huiwen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-5955
1558-3783
DOI10.1109/TASE.2018.2841358

Cover

Abstract The development of sharing technology makes it possible for expensive lower limb exoskeleton robots to be extensively employed. However, due to the uniqueness of gait pattern, it is challenging for lower limb exoskeleton robot to adapt to different wearers' gait patterns. Studies have shown that the gait pattern is affected by many physical factors. This paper proposes an individualized gait pattern generation (IGPG) method for sharing lower limb exoskeleton (SLEX) robot. First, the gait sequences are parameterized to extract gait features. Then, the Gaussian process regression with automatic relevance determination is used to establish the mapping relationships between the body parameters and the gait features, and the weights of each body parameters on gait pattern are also given. The gait features of an unknown subject can be predicted based on the training set. Finally, the individualized gait pattern is reconstructed by autoencoder neural network and scaling process based on predicted gait features. The experimental results show that the gait pattern predicted by IGPG is very similar to the subject's actual trajectory and has been successfully applied on the SLEX robot. With the help of sharing technology, the training set will be increased, and the prediction accuracy of individualized gait pattern will also be improved. Note to Practitioners -The main purpose of this paper is to solve the gait pattern mismatch problem when different people wear an lower limb exoskeleton robot. The gait patterns are different for each individual, and the main gait-related factors include body parameters and walking speed (WS). Therefore, the suitable gait pattern for the wearer is predicted according to their body parameters and target WS in this paper. The detailed prediction process and a full analysis of experimental results are also given. Finally, the generated gait patterns are successfully verified on the lower limb exoskeleton robot.
AbstractList The development of sharing technology makes it possible for expensive lower limb exoskeleton robots to be extensively employed. However, due to the uniqueness of gait pattern, it is challenging for lower limb exoskeleton robot to adapt to different wearers’ gait patterns. Studies have shown that the gait pattern is affected by many physical factors. This paper proposes an individualized gait pattern generation (IGPG) method for sharing lower limb exoskeleton (SLEX) robot. First, the gait sequences are parameterized to extract gait features. Then, the Gaussian process regression with automatic relevance determination is used to establish the mapping relationships between the body parameters and the gait features, and the weights of each body parameters on gait pattern are also given. The gait features of an unknown subject can be predicted based on the training set. Finally, the individualized gait pattern is reconstructed by autoencoder neural network and scaling process based on predicted gait features. The experimental results show that the gait pattern predicted by IGPG is very similar to the subject’s actual trajectory and has been successfully applied on the SLEX robot. With the help of sharing technology, the training set will be increased, and the prediction accuracy of individualized gait pattern will also be improved. Note to Practitioners —The main purpose of this paper is to solve the gait pattern mismatch problem when different people wear an lower limb exoskeleton robot. The gait patterns are different for each individual, and the main gait-related factors include body parameters and walking speed (WS). Therefore, the suitable gait pattern for the wearer is predicted according to their body parameters and target WS in this paper. The detailed prediction process and a full analysis of experimental results are also given. Finally, the generated gait patterns are successfully verified on the lower limb exoskeleton robot.
Author Liu, Ming
Chen, Chunjie
Liu, Du-Xin
Guo, Huiwen
Wu, Xinyu
Author_xml – sequence: 1
  givenname: Xinyu
  surname: Wu
  fullname: Wu, Xinyu
  email: xy.wu@siat.ac.cn
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 2
  givenname: Du-Xin
  surname: Liu
  fullname: Liu, Du-Xin
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 3
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  organization: Department of Electronics and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong
– sequence: 4
  givenname: Chunjie
  surname: Chen
  fullname: Chen, Chunjie
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 5
  givenname: Huiwen
  surname: Guo
  fullname: Guo, Huiwen
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
BookMark eNp9kE1PwkAQhjcGEwH9AcbLJp6L-9Ht7h4JQSRpghE8N9t2qovQxe3i16-3FeLBg6eZZJ53JvMMUK92NSB0ScmIUqJvVuPldMQIVSOmYsqFOkF9KoSKuFS81_WxiIQW4gwNmmZNCIuVJn20mNelfbPl3mzsF5R4ZmzA9yYE8DWeQQ3eBOtqXDmPl8_G2_oJp-4dPE7tNsfTD9e8wAZCizy43IVzdFqZTQMXxzpEj7fT1eQuShez-WScRgXTPESCVwSU1AkwbYTgRZwXOm9HwkhTxEQyWjAZFzEonZQyYQnhSSK0YcYkZan4EF0f9u68e91DE7K12_u6PZkxSiVVUhDRUvJAFd41jYcqK2z4eSh4YzcZJVlnL-vsZZ297GivTdI_yZ23W-M__81cHTIWAH75dsgY5fwbUyR71Q
CODEN ITASC7
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126601
crossref_primary_10_1038_s44172_023_00142_8
crossref_primary_10_1007_s11042_023_14733_2
crossref_primary_10_1109_TASE_2019_2903564
crossref_primary_10_1109_TASE_2024_3445886
crossref_primary_10_1109_TASE_2020_3027748
crossref_primary_10_1109_TASE_2023_3339779
crossref_primary_10_1109_ACCESS_2021_3104464
crossref_primary_10_1109_LRA_2021_3098915
crossref_primary_10_1115_1_4052842
crossref_primary_10_1007_s11370_024_00576_9
crossref_primary_10_1109_ACCESS_2020_2975041
crossref_primary_10_1109_TMRB_2021_3105141
crossref_primary_10_3389_fnbot_2024_1379906
crossref_primary_10_1109_TASE_2021_3066403
crossref_primary_10_1186_s10033_019_0389_8
crossref_primary_10_3390_s20247127
crossref_primary_10_1109_JSEN_2024_3352005
crossref_primary_10_1109_TSMC_2020_3013904
crossref_primary_10_1016_j_jbiomech_2020_110052
crossref_primary_10_3390_s23146547
crossref_primary_10_1002_rnc_6939
crossref_primary_10_1109_TCYB_2022_3192049
crossref_primary_10_1007_s42235_023_00397_z
crossref_primary_10_3390_s19163539
crossref_primary_10_1109_JSEN_2022_3222412
crossref_primary_10_1109_TASE_2024_3421318
crossref_primary_10_1155_2022_9933018
crossref_primary_10_3390_act13030102
crossref_primary_10_1109_JSEN_2024_3523941
crossref_primary_10_1109_TASE_2023_3345919
crossref_primary_10_1007_s10846_023_01963_7
crossref_primary_10_1017_S0263574721001600
crossref_primary_10_1016_j_bspc_2021_103477
crossref_primary_10_1109_TNSRE_2020_2990129
crossref_primary_10_1109_TASE_2020_2964807
crossref_primary_10_1109_TCYB_2021_3121080
crossref_primary_10_1109_TASE_2020_3010415
crossref_primary_10_3390_biomimetics9060352
crossref_primary_10_1109_TNSRE_2020_3045425
crossref_primary_10_1109_TMECH_2023_3235054
crossref_primary_10_1109_TII_2023_3234619
crossref_primary_10_1109_TSMC_2019_2932892
crossref_primary_10_31590_ejosat_637577
crossref_primary_10_1109_TCDS_2021_3072096
crossref_primary_10_3233_THC_202386
crossref_primary_10_1109_TII_2019_2913762
crossref_primary_10_3390_s19245449
crossref_primary_10_1109_ACCESS_2019_2957823
crossref_primary_10_1109_LRA_2020_3006818
crossref_primary_10_1109_LRA_2021_3105996
crossref_primary_10_1109_TMRB_2022_3194360
crossref_primary_10_1146_annurev_bioeng_082222_012531
crossref_primary_10_1109_TASE_2018_2886376
crossref_primary_10_1109_TASE_2022_3229396
crossref_primary_10_1177_1729881419893221
crossref_primary_10_3390_s24082649
Cites_doi 10.1109/TPAMI.2003.1251144
10.1109/TNSRE.2017.2726538
10.1109/TASE.2015.2494067
10.1108/AA-11-2016-155
10.1186/1743-0003-11-167
10.1016/j.robot.2014.09.032
10.1109/JIOT.2017.2764259
10.1310/sci2102-110
10.1109/TASE.2015.2477283
10.1016/j.jbiomech.2013.09.032
10.1109/MCOM.2018.1700728
10.1007/978-1-4612-0745-0
10.1016/j.jbiomech.2008.03.015
10.1016/0021-9290(85)90043-0
10.1109/TIP.2004.832865
10.1109/MCOM.2014.6829948
10.1109/TMECH.2016.2606547
10.1177/1086026614546199
10.1109/TNSRE.2008.2008278
10.1126/science.1127647
10.1310/sci2102-93
10.1016/j.gaitpost.2013.08.028
10.1109/EMBC.2015.7319937
10.1109/TNSRE.2014.2364618
10.1109/TNSRE.2014.2365697
10.1016/S0966-6362(99)00019-3
10.1109/TASE.2012.2207453
10.1016/j.ecolecon.2015.11.027
10.1186/s12984-016-0180-3
10.1163/156855307781746061
10.1109/TNSRE.2015.2511448
10.1109/TCYB.2017.2655053
10.1097/PHM.0b013e318269d9a3
10.1109/TRO.2008.915453
10.4028/www.scientific.net/AMM.415.389
10.1109/TRO.2015.2409434
10.1109/TNSRE.2008.2008280
10.1126/science.aal5054
10.5772/51903
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2018.2841358
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 1470
ExternalDocumentID 10_1109_TASE_2018_2841358
8412213
Genre orig-research
GrantInformation_xml – fundername: NSFC-Shenzhen Robotics Research Center Project
  grantid: U1613219
– fundername: National Basic Research Program (973 Program)
  grantid: 2015CB351706
– fundername: Shenzhen Fundamental Research and Discipline Layout project
  grantid: JCYJ20150925163244742
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-53f0e8796e29a553c4bc9b2935a7ac40721c274c4e896d7626036659a2aa6dd83
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Sun Jun 29 15:24:29 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Tue Jul 01 02:56:29 EDT 2025
Wed Aug 27 02:54:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-53f0e8796e29a553c4bc9b2935a7ac40721c274c4e896d7626036659a2aa6dd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2117187505
PQPubID 27623
PageCount 12
ParticipantIDs proquest_journals_2117187505
crossref_citationtrail_10_1109_TASE_2018_2841358
crossref_primary_10_1109_TASE_2018_2841358
ieee_primary_8412213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref31
ref33
kim (ref30) 2016
ref11
ref32
ref10
ref2
zhang (ref14) 0
ref1
ref17
ref16
ref19
ref18
hinton (ref27) 2006; 313
rasmussen (ref44) 2006
ref24
ref45
ref23
ref26
ref25
wang (ref39) 2011
ref20
ref41
ref22
ref21
neal (ref28) 1996; 118
lim (ref38) 2010
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
liu (ref43) 2017; 37
ref40
wu (ref42) 2016
References_xml – ident: ref26
  doi: 10.1109/TPAMI.2003.1251144
– ident: ref36
  doi: 10.1109/TNSRE.2017.2726538
– ident: ref1
  doi: 10.1109/TASE.2015.2494067
– volume: 37
  start-page: 369
  year: 2017
  ident: ref43
  article-title: Deep spatial-temporal model for rehabilitation gait: Optimal trajectory generation for knee joint of lower-limb exoskeleton
  publication-title: Assem Autom
  doi: 10.1108/AA-11-2016-155
– ident: ref4
  doi: 10.1186/1743-0003-11-167
– ident: ref21
  doi: 10.1016/j.robot.2014.09.032
– ident: ref18
  doi: 10.1109/JIOT.2017.2764259
– ident: ref8
  doi: 10.1310/sci2102-110
– ident: ref20
  doi: 10.1109/TASE.2015.2477283
– ident: ref41
  doi: 10.1016/j.jbiomech.2013.09.032
– ident: ref13
  doi: 10.1109/MCOM.2018.1700728
– volume: 118
  year: 1996
  ident: ref28
  publication-title: Bayesian learning for neural networks
  doi: 10.1007/978-1-4612-0745-0
– ident: ref24
  doi: 10.1016/j.jbiomech.2008.03.015
– start-page: 1924
  year: 2016
  ident: ref42
  article-title: A personalized limb rehabilitation training system for stroke patients
  publication-title: Proc IEEE Int Conf Robot Biomimetics
– ident: ref45
  doi: 10.1016/0021-9290(85)90043-0
– ident: ref23
  doi: 10.1109/TIP.2004.832865
– ident: ref17
  doi: 10.1109/MCOM.2014.6829948
– start-page: 453
  year: 2016
  ident: ref30
  article-title: A simple approach to share users' own healthcare data with a mobile phone
  publication-title: Proc Int Conf Ubiquitous Future Netw
– ident: ref7
  doi: 10.1109/TMECH.2016.2606547
– ident: ref16
  doi: 10.1177/1086026614546199
– ident: ref34
  doi: 10.1109/TNSRE.2008.2008278
– volume: 313
  start-page: 504
  year: 2006
  ident: ref27
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: ref11
  doi: 10.1310/sci2102-93
– ident: ref40
  doi: 10.1016/j.gaitpost.2013.08.028
– ident: ref12
  doi: 10.1109/EMBC.2015.7319937
– ident: ref10
  doi: 10.1109/TNSRE.2014.2364618
– ident: ref6
  doi: 10.1109/TNSRE.2014.2365697
– ident: ref25
  doi: 10.1016/S0966-6362(99)00019-3
– ident: ref29
  doi: 10.1109/TASE.2012.2207453
– ident: ref15
  doi: 10.1016/j.ecolecon.2015.11.027
– ident: ref2
  doi: 10.1186/s12984-016-0180-3
– ident: ref33
  doi: 10.1163/156855307781746061
– ident: ref3
  doi: 10.1109/TNSRE.2015.2511448
– ident: ref22
  doi: 10.1109/TCYB.2017.2655053
– year: 2006
  ident: ref44
  publication-title: Gaussian Processes for Machine Learning
– start-page: 1743
  year: 2011
  ident: ref39
  article-title: A subject-based motion generation model with adjustable walking pattern for a gait robotic trainer: NaTUre-gaits
  publication-title: Proc IEEE Int Conf Intell Robots Syst (IROS)
– ident: ref9
  doi: 10.1097/PHM.0b013e318269d9a3
– ident: ref19
  doi: 10.1109/TRO.2008.915453
– start-page: 5398
  year: 2010
  ident: ref38
  article-title: Natural gait parameters prediction for gait rehabilitation via artificial neural network
  publication-title: Proc IEEE Int Conf Intell Robots Syst (IROS)
– ident: ref31
  doi: 10.4028/www.scientific.net/AMM.415.389
– ident: ref35
  doi: 10.1109/TRO.2015.2409434
– ident: ref5
  doi: 10.1109/TNSRE.2008.2008280
– ident: ref37
  doi: 10.1126/science.aal5054
– year: 0
  ident: ref14
  article-title: Energy-latency trade-off for energy-aware offloading in mobile edge computing networks
  publication-title: IEEE Internet of Things Journal
– ident: ref32
  doi: 10.5772/51903
SSID ssj0024890
Score 2.4689202
Snippet The development of sharing technology makes it possible for expensive lower limb exoskeleton robots to be extensively employed. However, due to the uniqueness...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1459
SubjectTerms Exoskeletons
Feature extraction
Gait
Gait pattern generation
Gaussian process
Legged locomotion
lower limb exoskeleton robot
Neural networks
Parameters
Pattern generation
Physical factors
Predictions
Regression analysis
Robots
Training
Trajectory
Walking
Title Individualized Gait Pattern Generation for Sharing Lower Limb Exoskeleton Robot
URI https://ieeexplore.ieee.org/document/8412213
https://www.proquest.com/docview/2117187505
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zT_rg1xSnU_Lgk9jZj6RNHodsTtlUdIO9lSS9wZi24jqQ_fUmaTeHivhWaK6E3DX3u-Tudwids1B4UcK5QwSMHUKDxOGRyx1IFIkU1YDD1sL078PukNyN6KiCLle1MABgk8-gaR7tXX6Sqbk5KrtixPN906J2Q5tZUav1xavH7HmKQQQO5ZSWN5iey68Gree2SeJiTb0Xe4Hp7r7mg2xTlR87sXUvnR3UX06syCqZNue5bKrFN87G_858F22XOBO3CsPYQxVI99HWGvtgDT3croqxJgtI8I2Y5PjR8m2muKCjNlrDGtZiw-ushXDPNFXDvcmrxO2PbDbVTkuDR_yUySw_QMNOe3Dddcr-Co7STj53aDB2gUU8BJ8LSgNFpOJSv6IiEsoypykdtCoCjIdJZEKfIAwpF74QYZKw4BBV0yyFI4QDoiRz5RiIhifgAQM34KEU4IMhqB_Xkbtc8ViV5OOmB8ZLbIMQl8dGSbFRUlwqqY4uViJvBfPGX4NrZtFXA8v1rqPGUq1x-W_OYh3yaoeskRI9_l3qBG2abxcpew1Uzd_ncKqhRy7PrM19AuAB024
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED9EH9QHv8Xp1Dz4JHb2I2mTxyHTqZuKTvCtJOkNxnQV7UD8603SboqK-FZojoa7NPe75O53AAc8lkGSCeFRiX2PsijzROILDzNNE80M4HC1MN2ruH1PLx7YwwwcTWthENEln2HDPrq7_CzXY3tUdsxpEIa2Re0cM1EFL6u1Ppn1uDtRsZjAY4Kx6g4z8MVxr3nXsmlcvGF24yCy_d2_eCHXVuXHXuwczOkydCdTK_NKho1xoRr6_Rtr43_nvgJLFdIkzXJprMIMjtZg8Qv_4Dpcn0_LsQbvmJEzOSjIjWPcHJGSkNrajRhgSyyzsxEiHdtWjXQGT4q03vLXoXFbBj6S21zlxQbcn7Z6J22v6rDgaePmC49FfR95ImIMhWQs0lRpocwrJhOpHXeaNmGrpshFnCU2-InimAkZShlnGY82YXaUj3ALSES14r7qIzUABQPk6EciVhJDtBT1_Rr4E42nuqIft10wHlMXhvgitUZKrZHSykg1OJyKPJfcG38NXrdKnw6s9F2D-sSsafV3vqYm6DUu2WAltv271D7Mt3vdTto5v7rcgQX7nTKBrw6zxcsYdw0QKdSeW38fLQDWwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individualized+Gait+Pattern+Generation+for+Sharing+Lower+Limb+Exoskeleton+Robot&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Wu%2C+Xinyu&rft.au=Du-Xin%2C+Liu&rft.au=Liu%2C+Ming&rft.au=Chen%2C+Chunjie&rft.date=2018-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=15&rft.issue=4&rft.spage=1459&rft_id=info:doi/10.1109%2FTASE.2018.2841358&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon