Individualized Gait Pattern Generation for Sharing Lower Limb Exoskeleton Robot
The development of sharing technology makes it possible for expensive lower limb exoskeleton robots to be extensively employed. However, due to the uniqueness of gait pattern, it is challenging for lower limb exoskeleton robot to adapt to different wearers' gait patterns. Studies have shown tha...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 15; no. 4; pp. 1459 - 1470 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-5955 1558-3783 |
DOI | 10.1109/TASE.2018.2841358 |
Cover
Abstract | The development of sharing technology makes it possible for expensive lower limb exoskeleton robots to be extensively employed. However, due to the uniqueness of gait pattern, it is challenging for lower limb exoskeleton robot to adapt to different wearers' gait patterns. Studies have shown that the gait pattern is affected by many physical factors. This paper proposes an individualized gait pattern generation (IGPG) method for sharing lower limb exoskeleton (SLEX) robot. First, the gait sequences are parameterized to extract gait features. Then, the Gaussian process regression with automatic relevance determination is used to establish the mapping relationships between the body parameters and the gait features, and the weights of each body parameters on gait pattern are also given. The gait features of an unknown subject can be predicted based on the training set. Finally, the individualized gait pattern is reconstructed by autoencoder neural network and scaling process based on predicted gait features. The experimental results show that the gait pattern predicted by IGPG is very similar to the subject's actual trajectory and has been successfully applied on the SLEX robot. With the help of sharing technology, the training set will be increased, and the prediction accuracy of individualized gait pattern will also be improved. Note to Practitioners -The main purpose of this paper is to solve the gait pattern mismatch problem when different people wear an lower limb exoskeleton robot. The gait patterns are different for each individual, and the main gait-related factors include body parameters and walking speed (WS). Therefore, the suitable gait pattern for the wearer is predicted according to their body parameters and target WS in this paper. The detailed prediction process and a full analysis of experimental results are also given. Finally, the generated gait patterns are successfully verified on the lower limb exoskeleton robot. |
---|---|
AbstractList | The development of sharing technology makes it possible for expensive lower limb exoskeleton robots to be extensively employed. However, due to the uniqueness of gait pattern, it is challenging for lower limb exoskeleton robot to adapt to different wearers’ gait patterns. Studies have shown that the gait pattern is affected by many physical factors. This paper proposes an individualized gait pattern generation (IGPG) method for sharing lower limb exoskeleton (SLEX) robot. First, the gait sequences are parameterized to extract gait features. Then, the Gaussian process regression with automatic relevance determination is used to establish the mapping relationships between the body parameters and the gait features, and the weights of each body parameters on gait pattern are also given. The gait features of an unknown subject can be predicted based on the training set. Finally, the individualized gait pattern is reconstructed by autoencoder neural network and scaling process based on predicted gait features. The experimental results show that the gait pattern predicted by IGPG is very similar to the subject’s actual trajectory and has been successfully applied on the SLEX robot. With the help of sharing technology, the training set will be increased, and the prediction accuracy of individualized gait pattern will also be improved. Note to Practitioners —The main purpose of this paper is to solve the gait pattern mismatch problem when different people wear an lower limb exoskeleton robot. The gait patterns are different for each individual, and the main gait-related factors include body parameters and walking speed (WS). Therefore, the suitable gait pattern for the wearer is predicted according to their body parameters and target WS in this paper. The detailed prediction process and a full analysis of experimental results are also given. Finally, the generated gait patterns are successfully verified on the lower limb exoskeleton robot. |
Author | Liu, Ming Chen, Chunjie Liu, Du-Xin Guo, Huiwen Wu, Xinyu |
Author_xml | – sequence: 1 givenname: Xinyu surname: Wu fullname: Wu, Xinyu email: xy.wu@siat.ac.cn organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 2 givenname: Du-Xin surname: Liu fullname: Liu, Du-Xin organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 3 givenname: Ming surname: Liu fullname: Liu, Ming organization: Department of Electronics and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong – sequence: 4 givenname: Chunjie surname: Chen fullname: Chen, Chunjie organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 5 givenname: Huiwen surname: Guo fullname: Guo, Huiwen organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
BookMark | eNp9kE1PwkAQhjcGEwH9AcbLJp6L-9Ht7h4JQSRpghE8N9t2qovQxe3i16-3FeLBg6eZZJ53JvMMUK92NSB0ScmIUqJvVuPldMQIVSOmYsqFOkF9KoSKuFS81_WxiIQW4gwNmmZNCIuVJn20mNelfbPl3mzsF5R4ZmzA9yYE8DWeQQ3eBOtqXDmPl8_G2_oJp-4dPE7tNsfTD9e8wAZCizy43IVzdFqZTQMXxzpEj7fT1eQuShez-WScRgXTPESCVwSU1AkwbYTgRZwXOm9HwkhTxEQyWjAZFzEonZQyYQnhSSK0YcYkZan4EF0f9u68e91DE7K12_u6PZkxSiVVUhDRUvJAFd41jYcqK2z4eSh4YzcZJVlnL-vsZZ297GivTdI_yZ23W-M__81cHTIWAH75dsgY5fwbUyR71Q |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126601 crossref_primary_10_1038_s44172_023_00142_8 crossref_primary_10_1007_s11042_023_14733_2 crossref_primary_10_1109_TASE_2019_2903564 crossref_primary_10_1109_TASE_2024_3445886 crossref_primary_10_1109_TASE_2020_3027748 crossref_primary_10_1109_TASE_2023_3339779 crossref_primary_10_1109_ACCESS_2021_3104464 crossref_primary_10_1109_LRA_2021_3098915 crossref_primary_10_1115_1_4052842 crossref_primary_10_1007_s11370_024_00576_9 crossref_primary_10_1109_ACCESS_2020_2975041 crossref_primary_10_1109_TMRB_2021_3105141 crossref_primary_10_3389_fnbot_2024_1379906 crossref_primary_10_1109_TASE_2021_3066403 crossref_primary_10_1186_s10033_019_0389_8 crossref_primary_10_3390_s20247127 crossref_primary_10_1109_JSEN_2024_3352005 crossref_primary_10_1109_TSMC_2020_3013904 crossref_primary_10_1016_j_jbiomech_2020_110052 crossref_primary_10_3390_s23146547 crossref_primary_10_1002_rnc_6939 crossref_primary_10_1109_TCYB_2022_3192049 crossref_primary_10_1007_s42235_023_00397_z crossref_primary_10_3390_s19163539 crossref_primary_10_1109_JSEN_2022_3222412 crossref_primary_10_1109_TASE_2024_3421318 crossref_primary_10_1155_2022_9933018 crossref_primary_10_3390_act13030102 crossref_primary_10_1109_JSEN_2024_3523941 crossref_primary_10_1109_TASE_2023_3345919 crossref_primary_10_1007_s10846_023_01963_7 crossref_primary_10_1017_S0263574721001600 crossref_primary_10_1016_j_bspc_2021_103477 crossref_primary_10_1109_TNSRE_2020_2990129 crossref_primary_10_1109_TASE_2020_2964807 crossref_primary_10_1109_TCYB_2021_3121080 crossref_primary_10_1109_TASE_2020_3010415 crossref_primary_10_3390_biomimetics9060352 crossref_primary_10_1109_TNSRE_2020_3045425 crossref_primary_10_1109_TMECH_2023_3235054 crossref_primary_10_1109_TII_2023_3234619 crossref_primary_10_1109_TSMC_2019_2932892 crossref_primary_10_31590_ejosat_637577 crossref_primary_10_1109_TCDS_2021_3072096 crossref_primary_10_3233_THC_202386 crossref_primary_10_1109_TII_2019_2913762 crossref_primary_10_3390_s19245449 crossref_primary_10_1109_ACCESS_2019_2957823 crossref_primary_10_1109_LRA_2020_3006818 crossref_primary_10_1109_LRA_2021_3105996 crossref_primary_10_1109_TMRB_2022_3194360 crossref_primary_10_1146_annurev_bioeng_082222_012531 crossref_primary_10_1109_TASE_2018_2886376 crossref_primary_10_1109_TASE_2022_3229396 crossref_primary_10_1177_1729881419893221 crossref_primary_10_3390_s24082649 |
Cites_doi | 10.1109/TPAMI.2003.1251144 10.1109/TNSRE.2017.2726538 10.1109/TASE.2015.2494067 10.1108/AA-11-2016-155 10.1186/1743-0003-11-167 10.1016/j.robot.2014.09.032 10.1109/JIOT.2017.2764259 10.1310/sci2102-110 10.1109/TASE.2015.2477283 10.1016/j.jbiomech.2013.09.032 10.1109/MCOM.2018.1700728 10.1007/978-1-4612-0745-0 10.1016/j.jbiomech.2008.03.015 10.1016/0021-9290(85)90043-0 10.1109/TIP.2004.832865 10.1109/MCOM.2014.6829948 10.1109/TMECH.2016.2606547 10.1177/1086026614546199 10.1109/TNSRE.2008.2008278 10.1126/science.1127647 10.1310/sci2102-93 10.1016/j.gaitpost.2013.08.028 10.1109/EMBC.2015.7319937 10.1109/TNSRE.2014.2364618 10.1109/TNSRE.2014.2365697 10.1016/S0966-6362(99)00019-3 10.1109/TASE.2012.2207453 10.1016/j.ecolecon.2015.11.027 10.1186/s12984-016-0180-3 10.1163/156855307781746061 10.1109/TNSRE.2015.2511448 10.1109/TCYB.2017.2655053 10.1097/PHM.0b013e318269d9a3 10.1109/TRO.2008.915453 10.4028/www.scientific.net/AMM.415.389 10.1109/TRO.2015.2409434 10.1109/TNSRE.2008.2008280 10.1126/science.aal5054 10.5772/51903 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TASE.2018.2841358 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 1470 |
ExternalDocumentID | 10_1109_TASE_2018_2841358 8412213 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSFC-Shenzhen Robotics Research Center Project grantid: U1613219 – fundername: National Basic Research Program (973 Program) grantid: 2015CB351706 – fundername: Shenzhen Fundamental Research and Discipline Layout project grantid: JCYJ20150925163244742 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-53f0e8796e29a553c4bc9b2935a7ac40721c274c4e896d7626036659a2aa6dd83 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Sun Jun 29 15:24:29 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Tue Jul 01 02:56:29 EDT 2025 Wed Aug 27 02:54:25 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-53f0e8796e29a553c4bc9b2935a7ac40721c274c4e896d7626036659a2aa6dd83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2117187505 |
PQPubID | 27623 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2117187505 crossref_citationtrail_10_1109_TASE_2018_2841358 crossref_primary_10_1109_TASE_2018_2841358 ieee_primary_8412213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref31 ref33 kim (ref30) 2016 ref11 ref32 ref10 ref2 zhang (ref14) 0 ref1 ref17 ref16 ref19 ref18 hinton (ref27) 2006; 313 rasmussen (ref44) 2006 ref24 ref45 ref23 ref26 ref25 wang (ref39) 2011 ref20 ref41 ref22 ref21 neal (ref28) 1996; 118 lim (ref38) 2010 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 liu (ref43) 2017; 37 ref40 wu (ref42) 2016 |
References_xml | – ident: ref26 doi: 10.1109/TPAMI.2003.1251144 – ident: ref36 doi: 10.1109/TNSRE.2017.2726538 – ident: ref1 doi: 10.1109/TASE.2015.2494067 – volume: 37 start-page: 369 year: 2017 ident: ref43 article-title: Deep spatial-temporal model for rehabilitation gait: Optimal trajectory generation for knee joint of lower-limb exoskeleton publication-title: Assem Autom doi: 10.1108/AA-11-2016-155 – ident: ref4 doi: 10.1186/1743-0003-11-167 – ident: ref21 doi: 10.1016/j.robot.2014.09.032 – ident: ref18 doi: 10.1109/JIOT.2017.2764259 – ident: ref8 doi: 10.1310/sci2102-110 – ident: ref20 doi: 10.1109/TASE.2015.2477283 – ident: ref41 doi: 10.1016/j.jbiomech.2013.09.032 – ident: ref13 doi: 10.1109/MCOM.2018.1700728 – volume: 118 year: 1996 ident: ref28 publication-title: Bayesian learning for neural networks doi: 10.1007/978-1-4612-0745-0 – ident: ref24 doi: 10.1016/j.jbiomech.2008.03.015 – start-page: 1924 year: 2016 ident: ref42 article-title: A personalized limb rehabilitation training system for stroke patients publication-title: Proc IEEE Int Conf Robot Biomimetics – ident: ref45 doi: 10.1016/0021-9290(85)90043-0 – ident: ref23 doi: 10.1109/TIP.2004.832865 – ident: ref17 doi: 10.1109/MCOM.2014.6829948 – start-page: 453 year: 2016 ident: ref30 article-title: A simple approach to share users' own healthcare data with a mobile phone publication-title: Proc Int Conf Ubiquitous Future Netw – ident: ref7 doi: 10.1109/TMECH.2016.2606547 – ident: ref16 doi: 10.1177/1086026614546199 – ident: ref34 doi: 10.1109/TNSRE.2008.2008278 – volume: 313 start-page: 504 year: 2006 ident: ref27 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: ref11 doi: 10.1310/sci2102-93 – ident: ref40 doi: 10.1016/j.gaitpost.2013.08.028 – ident: ref12 doi: 10.1109/EMBC.2015.7319937 – ident: ref10 doi: 10.1109/TNSRE.2014.2364618 – ident: ref6 doi: 10.1109/TNSRE.2014.2365697 – ident: ref25 doi: 10.1016/S0966-6362(99)00019-3 – ident: ref29 doi: 10.1109/TASE.2012.2207453 – ident: ref15 doi: 10.1016/j.ecolecon.2015.11.027 – ident: ref2 doi: 10.1186/s12984-016-0180-3 – ident: ref33 doi: 10.1163/156855307781746061 – ident: ref3 doi: 10.1109/TNSRE.2015.2511448 – ident: ref22 doi: 10.1109/TCYB.2017.2655053 – year: 2006 ident: ref44 publication-title: Gaussian Processes for Machine Learning – start-page: 1743 year: 2011 ident: ref39 article-title: A subject-based motion generation model with adjustable walking pattern for a gait robotic trainer: NaTUre-gaits publication-title: Proc IEEE Int Conf Intell Robots Syst (IROS) – ident: ref9 doi: 10.1097/PHM.0b013e318269d9a3 – ident: ref19 doi: 10.1109/TRO.2008.915453 – start-page: 5398 year: 2010 ident: ref38 article-title: Natural gait parameters prediction for gait rehabilitation via artificial neural network publication-title: Proc IEEE Int Conf Intell Robots Syst (IROS) – ident: ref31 doi: 10.4028/www.scientific.net/AMM.415.389 – ident: ref35 doi: 10.1109/TRO.2015.2409434 – ident: ref5 doi: 10.1109/TNSRE.2008.2008280 – ident: ref37 doi: 10.1126/science.aal5054 – year: 0 ident: ref14 article-title: Energy-latency trade-off for energy-aware offloading in mobile edge computing networks publication-title: IEEE Internet of Things Journal – ident: ref32 doi: 10.5772/51903 |
SSID | ssj0024890 |
Score | 2.4689202 |
Snippet | The development of sharing technology makes it possible for expensive lower limb exoskeleton robots to be extensively employed. However, due to the uniqueness... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1459 |
SubjectTerms | Exoskeletons Feature extraction Gait Gait pattern generation Gaussian process Legged locomotion lower limb exoskeleton robot Neural networks Parameters Pattern generation Physical factors Predictions Regression analysis Robots Training Trajectory Walking |
Title | Individualized Gait Pattern Generation for Sharing Lower Limb Exoskeleton Robot |
URI | https://ieeexplore.ieee.org/document/8412213 https://www.proquest.com/docview/2117187505 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zT_rg1xSnU_Lgk9jZj6RNHodsTtlUdIO9lSS9wZi24jqQ_fUmaTeHivhWaK6E3DX3u-Tudwids1B4UcK5QwSMHUKDxOGRyx1IFIkU1YDD1sL078PukNyN6KiCLle1MABgk8-gaR7tXX6Sqbk5KrtixPN906J2Q5tZUav1xavH7HmKQQQO5ZSWN5iey68Gree2SeJiTb0Xe4Hp7r7mg2xTlR87sXUvnR3UX06syCqZNue5bKrFN87G_858F22XOBO3CsPYQxVI99HWGvtgDT3croqxJgtI8I2Y5PjR8m2muKCjNlrDGtZiw-ushXDPNFXDvcmrxO2PbDbVTkuDR_yUySw_QMNOe3Dddcr-Co7STj53aDB2gUU8BJ8LSgNFpOJSv6IiEsoypykdtCoCjIdJZEKfIAwpF74QYZKw4BBV0yyFI4QDoiRz5RiIhifgAQM34KEU4IMhqB_Xkbtc8ViV5OOmB8ZLbIMQl8dGSbFRUlwqqY4uViJvBfPGX4NrZtFXA8v1rqPGUq1x-W_OYh3yaoeskRI9_l3qBG2abxcpew1Uzd_ncKqhRy7PrM19AuAB024 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED9EH9QHv8Xp1Dz4JHb2I2mTxyHTqZuKTvCtJOkNxnQV7UD8603SboqK-FZojoa7NPe75O53AAc8lkGSCeFRiX2PsijzROILDzNNE80M4HC1MN2ruH1PLx7YwwwcTWthENEln2HDPrq7_CzXY3tUdsxpEIa2Re0cM1EFL6u1Ppn1uDtRsZjAY4Kx6g4z8MVxr3nXsmlcvGF24yCy_d2_eCHXVuXHXuwczOkydCdTK_NKho1xoRr6_Rtr43_nvgJLFdIkzXJprMIMjtZg8Qv_4Dpcn0_LsQbvmJEzOSjIjWPcHJGSkNrajRhgSyyzsxEiHdtWjXQGT4q03vLXoXFbBj6S21zlxQbcn7Z6J22v6rDgaePmC49FfR95ImIMhWQs0lRpocwrJhOpHXeaNmGrpshFnCU2-InimAkZShlnGY82YXaUj3ALSES14r7qIzUABQPk6EciVhJDtBT1_Rr4E42nuqIft10wHlMXhvgitUZKrZHSykg1OJyKPJfcG38NXrdKnw6s9F2D-sSsafV3vqYm6DUu2WAltv271D7Mt3vdTto5v7rcgQX7nTKBrw6zxcsYdw0QKdSeW38fLQDWwQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individualized+Gait+Pattern+Generation+for+Sharing+Lower+Limb+Exoskeleton+Robot&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Wu%2C+Xinyu&rft.au=Du-Xin%2C+Liu&rft.au=Liu%2C+Ming&rft.au=Chen%2C+Chunjie&rft.date=2018-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=15&rft.issue=4&rft.spage=1459&rft_id=info:doi/10.1109%2FTASE.2018.2841358&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |