Anomaly Detection and Attribution in Networks With Temporally Correlated Traffic
Anomaly detection in communication networks is the first step in the challenging task of securing a network, as anomalies may indicate suspicious behaviors, attacks, network malfunctions, or failures. In this paper, we address the problem of not only detecting the anomalous events but also of attrib...
        Saved in:
      
    
          | Published in | IEEE/ACM transactions on networking Vol. 26; no. 1; pp. 131 - 144 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.02.2018
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1063-6692 1558-2566  | 
| DOI | 10.1109/TNET.2017.2765719 | 
Cover
| Abstract | Anomaly detection in communication networks is the first step in the challenging task of securing a network, as anomalies may indicate suspicious behaviors, attacks, network malfunctions, or failures. In this paper, we address the problem of not only detecting the anomalous events but also of attributing the anomaly to the flows causing it. To this end, we develop a new statistical decision theoretic framework for temporally correlated traffic in networks via Markov chain modeling. We first formulate the optimal anomaly detection problem via the generalized likelihood ratio test (GLRT) for our composite model. This results in a combinatorial optimization problem which is prohibitively expensive. We then develop two low-complexity anomaly detection algorithms. The first is based on the cross entropy (CE) method, which detects anomalies as well as attributes anomalies to flows. The second algorithm performs anomaly detection via GLRT on the aggregated flows transformation-a compact low-dimensional representation of the raw traffic flows. The two algorithms complement each other and allow the network operator to first activate the flow aggregation algorithm in order to quickly detect anomalies in the system. Once an anomaly has been detected, the operator can further investigate which specific flows are anomalous by running the CE-based algorithm. We perform extensive performance evaluations and experiment our algorithms on synthetic and semi-synthetic data, as well as on real Internet traffic data obtained from the MAWI archive, and finally make recommendations regarding their usability. | 
    
|---|---|
| AbstractList | Anomaly detection in communication networks is the first step in the challenging task of securing a network, as anomalies may indicate suspicious behaviors, attacks, network malfunctions, or failures. In this paper, we address the problem of not only detecting the anomalous events but also of attributing the anomaly to the flows causing it. To this end, we develop a new statistical decision theoretic framework for temporally correlated traffic in networks via Markov chain modeling. We first formulate the optimal anomaly detection problem via the generalized likelihood ratio test (GLRT) for our composite model. This results in a combinatorial optimization problem which is prohibitively expensive. We then develop two low-complexity anomaly detection algorithms. The first is based on the cross entropy (CE) method, which detects anomalies as well as attributes anomalies to flows. The second algorithm performs anomaly detection via GLRT on the aggregated flows transformation-a compact low-dimensional representation of the raw traffic flows. The two algorithms complement each other and allow the network operator to first activate the flow aggregation algorithm in order to quickly detect anomalies in the system. Once an anomaly has been detected, the operator can further investigate which specific flows are anomalous by running the CE-based algorithm. We perform extensive performance evaluations and experiment our algorithms on synthetic and semi-synthetic data, as well as on real Internet traffic data obtained from the MAWI archive, and finally make recommendations regarding their usability. | 
    
| Author | Thing, Vrizlynn L. L. Nagarajan, Sai Ganesh Su, Le Nevat, Ido Zhang, Pengfei Divakaran, Dinil Mon Ko, Li Ling  | 
    
| Author_xml | – sequence: 1 givenname: Ido surname: Nevat fullname: Nevat, Ido organization: TUM CREATE, Singapore – sequence: 2 givenname: Dinil Mon orcidid: 0000-0001-8706-432X surname: Divakaran fullname: Divakaran, Dinil Mon email: comdmd@nus.edu.sg organization: Cyber Security and Intelligence Department, ASTAR Institute for Infocomm Research, Singapore – sequence: 3 givenname: Sai Ganesh orcidid: 0000-0001-9821-432X surname: Nagarajan fullname: Nagarajan, Sai Ganesh organization: Cyber Security and Intelligence Department, ASTAR Institute for Infocomm Research, Singapore – sequence: 4 givenname: Pengfei surname: Zhang fullname: Zhang, Pengfei organization: Department of Engineering Science, University of Oxford, Oxford, U.K – sequence: 5 givenname: Le surname: Su fullname: Su, Le organization: Cyber Security and Intelligence Department, ASTAR Institute for Infocomm Research, Singapore – sequence: 6 givenname: Li Ling surname: Ko fullname: Ko, Li Ling organization: Department of Mathematics, University of Notre Dame, Notre Dame, IN, USA – sequence: 7 givenname: Vrizlynn L. L. surname: Thing fullname: Thing, Vrizlynn L. L. organization: Cyber Security and Intelligence Department, ASTAR Institute for Infocomm Research, Singapore  | 
    
| BookMark | eNp9kE1LAzEQhoNUsK3-APGy4HlrPnbzcSy1VaFUDyseQ5oPTN1uajZF-u_dtcWDB08zA-8zwzwjMGhCYwG4RnCCEBR31WpeTTBEbIIZLRkSZ2CIypLnuKR00PWQkpxSgS_AqG03ECICMR2Cl2kTtqo-ZPc2WZ18aDLVmGyaUvTr_c_sm2xl01eIH2325tN7VtntLkRVd9QsxGhrlazJqqic8_oSnDtVt_bqVMfgdTGvZo_58vnhaTZd5hoLkvLCOWcIQyWnXBdrTRhDBcNCOEUYIYYjZDTuopgxA51ZKwuVEdzAwmHuCjIGt8e9uxg-97ZNchP2selOSoxY0b1ectil0DGlY2jbaJ3cRb9V8SARlL042YuTvTh5Etcx7A-jfVK9ihSVr_8lb46kt9b-XuKIQSwg-QaJlH00 | 
    
| CODEN | IEANEP | 
    
| CitedBy_id | crossref_primary_10_1109_LWC_2022_3167827 crossref_primary_10_1587_transfun_2022EAP1161 crossref_primary_10_1109_TKDE_2021_3050400 crossref_primary_10_1109_TMLCN_2024_3388973 crossref_primary_10_1109_ACCESS_2019_2926518 crossref_primary_10_1155_2022_5113725 crossref_primary_10_3390_s22197436 crossref_primary_10_1016_j_comcom_2020_04_019 crossref_primary_10_1109_JIOT_2021_3051480 crossref_primary_10_1016_j_comnet_2020_107645 crossref_primary_10_1109_ACCESS_2018_2854842 crossref_primary_10_1016_j_comcom_2020_01_028 crossref_primary_10_1109_TMC_2022_3200059 crossref_primary_10_1007_s41745_021_00224_6 crossref_primary_10_1109_ACCESS_2019_2958068 crossref_primary_10_1109_TIFS_2019_2933731 crossref_primary_10_3390_app13169087 crossref_primary_10_1088_1755_1315_693_1_012054 crossref_primary_10_1109_ACCESS_2019_2891933 crossref_primary_10_2139_ssrn_3281021 crossref_primary_10_1109_TPDS_2020_2991007 crossref_primary_10_1109_ACCESS_2020_2972640 crossref_primary_10_1109_TPDS_2020_3001593 crossref_primary_10_1109_ACCESS_2020_2973214 crossref_primary_10_1109_JIOT_2021_3055937 crossref_primary_10_2478_amns_2024_1261 crossref_primary_10_1109_ACCESS_2019_2940816 crossref_primary_10_1016_j_ins_2021_04_056 crossref_primary_10_1109_TDSC_2024_3418906 crossref_primary_10_3390_s22249626 crossref_primary_10_1145_3450286 crossref_primary_10_1109_TNSM_2021_3051381  | 
    
| Cites_doi | 10.1109/TSP.2013.2293970 10.1214/aoms/1177707039 10.1109/TDSC.2011.14 10.1145/1851182.1851215 10.1109/INFCOM.2009.5061979 10.1016/j.comnet.2013.07.028 10.1145/1330107.1330148 10.1214/aoms/1177700150 10.1145/584091.584093 10.1007/s10994-014-5473-9 10.1109/JSTSP.2012.2233713 10.1109/TNET.2008.2001468 10.1109/TIT.2004.826687 10.1109/TNET.2010.2070845 10.1145/1851275.1851220 10.1109/18.149515 10.1214/ss/1042727940 10.1214/aoms/1177732144 10.1016/j.orl.2006.11.005 10.1023/A:1010091220143 10.1007/978-0-387-76544-0 10.1016/j.comcom.2005.02.012 10.1109/TCNS.2014.2378631 10.1002/ett.1432 10.1145/2677046.2677050 10.1109/JIOT.2016.2535165 10.1109/18.108249 10.1109/18.2636 10.1109/CDC.2015.7402811  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/TNET.2017.2765719 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore digital library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1558-2566 | 
    
| EndPage | 144 | 
    
| ExternalDocumentID | 10_1109_TNET_2017_2765719 8170290  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Singapore National Research Foundation grantid: NRF2014NCR-NCR001-034 funderid: 10.13039/501100001381  | 
    
| GroupedDBID | -DZ -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 85S 8US 97E 9M8 AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABPPZ ABQJQ ABVLG ACGFS ACGOD ACIWK ACM ADBCU ADL AEBYY AEFXT AEJOY AENSD AETEA AETIX AFWIH AFWXC AGQYO AGSQL AHBIQ AI. AIBXA AIKLT AKJIK AKQYR AKRVB ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 D0L EBS EJD FEDTE GUFHI HF~ HGAVV HZ~ H~9 I07 ICLAB IEDLZ IES IFIPE IFJZH IPLJI JAVBF LAI LHSKQ M43 MVM O9- OCL P1C P2P PQQKQ RIA RIE RNS ROL TN5 UPT UQL VH1 XOL YR2 ZCA AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c293t-4fffd3715868c4bc377147299fa3733d811dc2293277d0fdbae0ad98d04f28f43 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1063-6692 | 
    
| IngestDate | Sun Oct 05 00:29:22 EDT 2025 Wed Oct 01 02:31:57 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Wed Aug 27 02:52:40 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c293t-4fffd3715868c4bc377147299fa3733d811dc2293277d0fdbae0ad98d04f28f43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-9821-432X 0000-0001-8706-432X  | 
    
| PQID | 2174558580 | 
    
| PQPubID | 32020 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | crossref_primary_10_1109_TNET_2017_2765719 ieee_primary_8170290 crossref_citationtrail_10_1109_TNET_2017_2765719 proquest_journals_2174558580  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-Feb. 2018-2-00 20180201  | 
    
| PublicationDateYYYYMMDD | 2018-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-Feb.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE/ACM transactions on networking | 
    
| PublicationTitleAbbrev | TNET | 
    
| PublicationYear | 2018 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref34 ref12 ref37 ref15 ref14 ref31 ref30 ref33 ref32 ref10 ref2 iglesias (ref5) 2014; 101 ref1 ref39 ref17 van trees (ref8) 1968 ref38 ref16 ref18 markov (ref27) 1906; 15 markov (ref28) 1971; 1 bolton (ref4) 2002; 17 (ref36) 2016 ref24 ref23 ref25 ref20 wald (ref19) 1947 ref21 (ref35) 2016 kay (ref9) 1998; 2 ref7 guo (ref26) 2001 neyman (ref29) 1928; 20a ref3 ref6 ref40 rubinstein (ref11) 2013 dembo (ref22) 2009; 38 zhang (ref41) 2017  | 
    
| References_xml | – ident: ref2 doi: 10.1109/TSP.2013.2293970 – ident: ref34 doi: 10.1214/aoms/1177707039 – ident: ref16 doi: 10.1109/TDSC.2011.14 – ident: ref39 doi: 10.1145/1851182.1851215 – ident: ref38 doi: 10.1109/INFCOM.2009.5061979 – volume: 15 start-page: 18 year: 1906 ident: ref27 article-title: Rasprostranenie zakona bol'shih chisel na velichiny, zavisyaschie drug ot druga publication-title: Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete – ident: ref21 doi: 10.1016/j.comnet.2013.07.028 – year: 1968 ident: ref8 publication-title: Detection Estimation and Modulation Theory Part I – ident: ref14 doi: 10.1145/1330107.1330148 – ident: ref12 doi: 10.1214/aoms/1177700150 – ident: ref13 doi: 10.1145/584091.584093 – volume: 2 year: 1998 ident: ref9 publication-title: Fundamentals of Statistical Signal Processing Detection Theory – volume: 101 start-page: 59 year: 2014 ident: ref5 article-title: Analysis of network traffic features for anomaly detection publication-title: Mach Learn doi: 10.1007/s10994-014-5473-9 – year: 2016 ident: ref36 publication-title: WIDE Project – ident: ref18 doi: 10.1109/JSTSP.2012.2233713 – year: 2017 ident: ref41 publication-title: Statistical anomaly detection via composite hypothesis testing for Markov models – ident: ref6 doi: 10.1109/TNET.2008.2001468 – ident: ref40 doi: 10.1109/TIT.2004.826687 – ident: ref17 doi: 10.1109/TNET.2010.2070845 – ident: ref1 doi: 10.1145/1851275.1851220 – ident: ref30 doi: 10.1109/18.149515 – volume: 17 start-page: 235 year: 2002 ident: ref4 article-title: Statistical fraud detection: A review publication-title: Stat Sci doi: 10.1214/ss/1042727940 – start-page: 215 year: 2001 ident: ref26 article-title: How does TCP generate pseudo-self-similarity? publication-title: Proc MASCOTS – ident: ref15 doi: 10.1214/aoms/1177732144 – ident: ref33 doi: 10.1016/j.orl.2006.11.005 – ident: ref10 doi: 10.1023/A:1010091220143 – ident: ref23 doi: 10.1007/978-0-387-76544-0 – ident: ref25 doi: 10.1016/j.comcom.2005.02.012 – ident: ref7 doi: 10.1109/TCNS.2014.2378631 – ident: ref20 doi: 10.1002/ett.1432 – ident: ref37 doi: 10.1145/2677046.2677050 – ident: ref3 doi: 10.1109/JIOT.2016.2535165 – ident: ref32 doi: 10.1109/18.108249 – volume: 1 start-page: 552 year: 1971 ident: ref28 article-title: Extension of the limit theorems of probability theory to a sum of variables connected in a chain publication-title: Dynamic Probabilistic Systems Markov Models – year: 1947 ident: ref19 publication-title: Sequential Analysis – year: 2016 ident: ref35 publication-title: MAWI working group traffic archive – year: 2013 ident: ref11 publication-title: The Cross-Entropy Method A Unified Approach to Combinatorial Optimization Monte-Carlo Simulation and Machine Learning – ident: ref31 doi: 10.1109/18.2636 – volume: 20a start-page: 175 year: 1928 ident: ref29 article-title: On the use and interpretation of certain test criteria for purposes of statistical inference: Part I publication-title: Biometrika – volume: 38 year: 2009 ident: ref22 publication-title: Large Deviations Techniques and Applications – ident: ref24 doi: 10.1109/CDC.2015.7402811  | 
    
| SSID | ssj0013026 | 
    
| Score | 2.455558 | 
    
| Snippet | Anomaly detection in communication networks is the first step in the challenging task of securing a network, as anomalies may indicate suspicious behaviors,... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 131 | 
    
| SubjectTerms | Algorithms Anomalies Anomaly detection Combinatorial analysis Communication networks Communications traffic cross entropy method Cybersecurity Decision theory Detection algorithms Entropy Entropy (Information theory) Feature extraction Light rail systems Likelihood ratio likelihood ratio test Malfunctions Markov chain Markov chains Markov processes network traffic Testing Traffic information  | 
    
| Title | Anomaly Detection and Attribution in Networks With Temporally Correlated Traffic | 
    
| URI | https://ieeexplore.ieee.org/document/8170290 https://www.proquest.com/docview/2174558580  | 
    
| Volume | 26 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 1558-2566 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013026 issn: 1063-6692 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShIA9MiLTO8-yxKq0QEhVDK7pFjh-ioqSIpgP8emwnLRUgxJbhnFg-J3df7vN3CF2CAglKaE8EYABKBonHAqU8LjNgWlASc0eQHSa34-huEk9q6Hp9FkYp5chnqm0vXS1fzsXS_irrWDG5gBmAvgU0Kc9qfVUMiGutZhBO6CUJC6oKpk9YZzTsjyyJC9oBJDFYUZ2NGOSaqvz4ErvwMthD96uJlayS5_ayyNri45tm439nvo92qzwTd8uNcYBqKj9EOxvqgw30YKD_C5-94xtVOEJWjnkucbdYN8HC0xwPS574Aj9Oiyc8KpWsZmZUz_b1mJlUVWIT8KwSxREaD_qj3q1XNVgwnmFh4UVaaxmCH9OEiigTIYAfmWybaR5CGErq-1IExjQAkETLjCvCJaOSRDqgOgqPUT2f5-oEYU59InyiQfMokkRyBdxkU9w8SBtr2URkteSpqNTHbROMWepQCGGp9VJqvZRWXmqiq_WQ11J64y_jhl31tWG14E3UWvk1rV7ORWpRWGxgEiWnv486Q9vm3rQkZ7dQvXhbqnOTexTZhdt0n7Pz1hI | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOEAPPFuxPH3ghJrFSZyMfUQ8tFBYcQiCW-T4oaIuAUH2AL8e28luEUUVtxzGsjXjZOaLP38DsIcGNRplI5WgAygV5pFIjImkrlBYxWkmA0F2mA-u2fltdjsDP6d3YYwxgXxm-v4xnOXrBzX2v8oOvJhcIhxAn8sYY1l7W-vvmQENzdUcxkmjPBdJd4YZU3FQDE8KT-PCfoJ5hl5W510WCm1V_vkWhwRzugSXk6W1vJI__XFT9dXrB9XGr659GRa7SpMctltjBWZMvQrf3ukPrsGVA__3cvRCjk0TKFk1kbUmh820DRa5q8mwZYo_k5u75jcpWi2rkRt15Dt7jFyxqolLeV6L4jtcn54UR4Ooa7HgYiPSJmLWWp1inPGcK1apFDFmrt4WVqaYpprHsVaJM00QNbW6koZKLbimzCbcsvQHzNYPtVkHInlMVUwtWsmYploalK6ekm4i66x1D-jE5aXq9Md9G4xRGXAIFaWPUumjVHZR6sH-dMhjK77xP-M17_WpYefwHmxN4lp2r-dz6XFY5oASpxufj9qF-UFxeVFenA1_bcKCm4e3VO0tmG2exmbbVSJNtRM24BsTpdlf | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+and+Attribution+in+Networks+With+Temporally+Correlated+Traffic&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Nevat%2C+Ido&rft.au=Dinil+Mon+Divakaran&rft.au=Sai+Ganesh+Nagarajan&rft.au=Zhang%2C+Pengfei&rft.date=2018-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=26&rft.issue=1&rft.spage=131&rft_id=info:doi/10.1109%2FTNET.2017.2765719&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon |