Genetic Algorithm for Path Loss Model Selection in Signal Strength-Based Indoor Localization
Ranging methods using received signal strength (RSS) information are widely used for indoor localization because they can be easily implemented without conducting site surveys. However, range estimation with a single pathloss model produces considerable errors, which degrade the positioning performa...
Saved in:
| Published in | IEEE sensors journal Vol. 21; no. 21; pp. 24285 - 24296 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2021.3110971 |
Cover
| Abstract | Ranging methods using received signal strength (RSS) information are widely used for indoor localization because they can be easily implemented without conducting site surveys. However, range estimation with a single pathloss model produces considerable errors, which degrade the positioning performance. This problem mainly arises because the single pathloss model cannot reflect diverse indoor radio wave propagation characteristics. In this study, we develop a new overlapping multi-state model to consider multiple candidates of pathloss models including line-of-sight (LOS) and non-line-of-sight (NLOS) states, and propose an efficient way to select a proper model for each reference node involved in the localization process. To this end, we formulate a cost function whose value varies widely depending on the choice of pathloss model of each access point. Because the computational complexity to find an optimal channel model for each reference node exponentially increases with the number of reference nodes, we apply a genetic algorithm to significantly reduce the complexity so that the proposed method can be executed in real-time. Experimental validations with ray-tracing simulations and RSS measurements at a real site confirm the improvement of localization accuracy for Wi-Fi in indoor environments. The proposed method achieves up to 1.92 m mean positioning error under a practical indoor environment and produces a performance improvement of 31.09% over the benchmark scenario. |
|---|---|
| AbstractList | Ranging methods using received signal strength (RSS) information are widely used for indoor localization because they can be easily implemented without conducting site surveys. However, range estimation with a single pathloss model produces considerable errors, which degrade the positioning performance. This problem mainly arises because the single pathloss model cannot reflect diverse indoor radio wave propagation characteristics. In this study, we develop a new overlapping multi-state model to consider multiple candidates of pathloss models including line-of-sight (LOS) and non-line-of-sight (NLOS) states, and propose an efficient way to select a proper model for each reference node involved in the localization process. To this end, we formulate a cost function whose value varies widely depending on the choice of pathloss model of each access point. Because the computational complexity to find an optimal channel model for each reference node exponentially increases with the number of reference nodes, we apply a genetic algorithm to significantly reduce the complexity so that the proposed method can be executed in real-time. Experimental validations with ray-tracing simulations and RSS measurements at a real site confirm the improvement of localization accuracy for Wi-Fi in indoor environments. The proposed method achieves up to 1.92 m mean positioning error under a practical indoor environment and produces a performance improvement of 31.09% over the benchmark scenario. |
| Author | Kim, Yong-Hwa Lee, Byeong-ho Ham, Doyoung Kim, Seong-Cheol Choi, Jeongsik |
| Author_xml | – sequence: 1 givenname: Byeong-ho orcidid: 0000-0001-8999-0861 surname: Lee fullname: Lee, Byeong-ho email: bhlee@maxwell.snu.ac.kr organization: Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea – sequence: 2 givenname: Doyoung surname: Ham fullname: Ham, Doyoung email: wj2dy@maxwell.snu.ac.kr organization: Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea – sequence: 3 givenname: Jeongsik surname: Choi fullname: Choi, Jeongsik email: jeongsik.choi@knu.ac.kr organization: School of Electronics Engineering, Kyungpook National University, Daegu, South Korea – sequence: 4 givenname: Seong-Cheol orcidid: 0000-0002-7896-5625 surname: Kim fullname: Kim, Seong-Cheol email: sckim@maxwell.snu.ac.kr organization: Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea – sequence: 5 givenname: Yong-Hwa orcidid: 0000-0003-2183-5085 surname: Kim fullname: Kim, Yong-Hwa email: yongkim@ut.ac.kr organization: Department of Data Science, Korea National University of Transportation, Uiwang-si, South Korea |
| BookMark | eNp9kV1LwzAUhoNMcE5_gHgT8LozH23TXs4x56R-wBS8EEqWnm4ZXTOT7EJ_vakbXnghBM7J4X0Ob96col5rWkDogpIhpSS_vp9PHoeMMDrk3V3QI9SnSZJFVMRZr-s5iWIu3k7QqXNrQmguEtFH71NowWuFR83SWO1XG1wbi5-lX-HCOIcfTAUNnkMDymvTYt3iuV62Msy8hXbpV9GNdFDhWVuZQBZGyUZ_yU58ho5r2Tg4P9QBer2dvIzvouJpOhuPikixnPsoXmQqkzSvUwlJznnoBVWizhgBWXFYxHVapYoDpAum5KI7KldcCkgkyYEP0NV-79aajx04X67NzgaPrmRJlhFBKGNBJfYqZcPDLNSl0v7Hp7dSNyUlZRdd2UVZdlGWhygDSf-QW6s30n7-y1zuGQ0Av_o8fEMqUv4NJCCCfA |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1590_2179_10742025v24i1286888 crossref_primary_10_32604_cmes_2023_031534 crossref_primary_10_1007_s11277_024_11524_2 crossref_primary_10_1016_j_sciaf_2023_e01550 crossref_primary_10_3390_s23010188 crossref_primary_10_3390_s22176593 crossref_primary_10_1109_TVT_2022_3151018 crossref_primary_10_1016_j_adhoc_2023_103123 crossref_primary_10_1016_j_comcom_2023_05_020 crossref_primary_10_1109_TVT_2023_3253934 crossref_primary_10_3390_electronics12040905 crossref_primary_10_1109_JSEN_2024_3443096 crossref_primary_10_3390_app12083923 crossref_primary_10_1016_j_vehcom_2023_100685 crossref_primary_10_1109_JSEN_2022_3222412 crossref_primary_10_1016_j_iot_2023_100758 crossref_primary_10_1109_TVT_2023_3275203 crossref_primary_10_1007_s00607_024_01391_x |
| Cites_doi | 10.1109/ICCSCE.2011.6190487 10.1109/COMST.2015.2464084 10.1145/1067170.1067193 10.2307/2332510 10.1007/s11277-013-1040-0 10.1109/VETECS.2009.5073315 10.1109/JSEN.2021.3083149 10.5194/ars-9-203-2011 10.1109/JIOT.2019.2948888 10.1109/74.382334 10.1109/WCNC.2014.6952825 10.1109/INFCOM.2000.832252 10.1109/TIM.2018.2863478 10.1109/COMST.2016.2553452 10.3390/s18114000 10.23919/ICACT.2017.7890239 10.1109/MSP.2005.1458287 10.1109/JIOT.2020.3020888 10.1109/ISWPC.2010.5483724 10.1017/CBO9780511841224 10.1016/j.comnet.2018.07.017 10.1109/JIOT.2016.2558659 10.1109/IEEESTD.2016.7786995 10.1109/NCIS.2011.151 10.1007/s10776-008-0085-6 10.33012/2019.16702 10.1109/ACCESS.2020.2973212 10.1109/TWC.2014.040214.131082 10.1109/LCOMM.2014.040214.132781 10.1109/ACCESS.2019.2941657 10.1109/JIOT.2016.2628713 10.1186/s13638-015-0298-1 10.1109/IPIN.2012.6418856 10.1109/VETECS.2008.353 10.1109/JIOT.2020.2986685 10.1109/JIOT.2018.2871831 10.1109/JSEN.2019.2940247 10.1016/S0167-9473(97)00053-4 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2021.3110971 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 24296 |
| ExternalDocumentID | 10_1109_JSEN_2021_3110971 9530676 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Science and ICT (MSIT), South Korea, through the Information Technology Research Center (ITRC) funderid: 10.13039/501100014188 – fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP) grantid: IITP-2021-0-02048 funderid: 10.13039/501100014188 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-4b8c8a19f6ae59338a171c7f820ead3eb4f6d6c3ee6b2cabcabcc9c3a7e5a09e3 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:08:14 EDT 2025 Thu Apr 24 23:06:51 EDT 2025 Wed Oct 01 05:05:37 EDT 2025 Wed Aug 27 02:29:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-4b8c8a19f6ae59338a171c7f820ead3eb4f6d6c3ee6b2cabcabcc9c3a7e5a09e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2183-5085 0000-0002-7896-5625 0000-0001-8999-0861 |
| PQID | 2588070122 |
| PQPubID | 75733 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9530676 crossref_primary_10_1109_JSEN_2021_3110971 proquest_journals_2588070122 crossref_citationtrail_10_1109_JSEN_2021_3110971 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref31 wang (ref14) 2003; 54 ref30 ref33 ref11 ref32 ref10 ref2 (ref39) 2017 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 olakovi? (ref1) 2018; 144 ref41 ref22 ref21 ref43 (ref38) 2019 ref27 ref29 ref7 ref9 ref4 ref3 ref6 ref5 keser (ref8) 2016; 5 ref40 erceg (ref28) 2004 |
| References_xml | – ident: ref32 doi: 10.1109/ICCSCE.2011.6190487 – ident: ref5 doi: 10.1109/COMST.2015.2464084 – year: 2019 ident: ref38 publication-title: Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 450 GHz – ident: ref7 doi: 10.1145/1067170.1067193 – volume: 54 start-page: 5 year: 2003 ident: ref14 article-title: An indoors wireless positioning system based on wireless local area network infrastructure publication-title: Proc 6th Int Symp Satell Navigat Technol Including Mobile Positioning Location Services – ident: ref43 doi: 10.2307/2332510 – ident: ref26 doi: 10.1007/s11277-013-1040-0 – ident: ref21 doi: 10.1109/VETECS.2009.5073315 – ident: ref17 doi: 10.1109/JSEN.2021.3083149 – ident: ref23 doi: 10.5194/ars-9-203-2011 – ident: ref4 doi: 10.1109/JIOT.2019.2948888 – ident: ref40 doi: 10.1109/74.382334 – ident: ref19 doi: 10.1109/WCNC.2014.6952825 – ident: ref6 doi: 10.1109/INFCOM.2000.832252 – ident: ref13 doi: 10.1109/TIM.2018.2863478 – ident: ref27 doi: 10.1109/COMST.2016.2553452 – ident: ref35 doi: 10.3390/s18114000 – ident: ref37 doi: 10.23919/ICACT.2017.7890239 – ident: ref29 doi: 10.1109/MSP.2005.1458287 – ident: ref2 doi: 10.1109/JIOT.2020.3020888 – ident: ref22 doi: 10.1109/ISWPC.2010.5483724 – ident: ref36 doi: 10.1017/CBO9780511841224 – volume: 144 start-page: 17 year: 2018 ident: ref1 article-title: Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues publication-title: Comput Netw doi: 10.1016/j.comnet.2018.07.017 – ident: ref9 doi: 10.1109/JIOT.2016.2558659 – ident: ref42 doi: 10.1109/IEEESTD.2016.7786995 – ident: ref18 doi: 10.1109/NCIS.2011.151 – year: 2017 ident: ref39 publication-title: Study on Channel Model for Frequencies From 0 5 to 100 GHz – ident: ref34 doi: 10.1007/s10776-008-0085-6 – ident: ref11 doi: 10.33012/2019.16702 – year: 2004 ident: ref28 publication-title: IEEE 802 11 TGn channel models – ident: ref15 doi: 10.1109/ACCESS.2020.2973212 – ident: ref30 doi: 10.1109/TWC.2014.040214.131082 – ident: ref20 doi: 10.1109/LCOMM.2014.040214.132781 – ident: ref10 doi: 10.1109/ACCESS.2019.2941657 – ident: ref12 doi: 10.1109/JIOT.2016.2628713 – volume: 5 start-page: 20 year: 2016 ident: ref8 article-title: A priori verification and validation study of RFKON database publication-title: Int J Theor Appl Comput Sci – ident: ref24 doi: 10.1186/s13638-015-0298-1 – ident: ref33 doi: 10.1109/IPIN.2012.6418856 – ident: ref31 doi: 10.1109/VETECS.2008.353 – ident: ref16 doi: 10.1109/JIOT.2020.2986685 – ident: ref3 doi: 10.1109/JIOT.2018.2871831 – ident: ref41 doi: 10.1109/JSEN.2019.2940247 – ident: ref25 doi: 10.1016/S0167-9473(97)00053-4 |
| SSID | ssj0019757 |
| Score | 2.4592094 |
| Snippet | Ranging methods using received signal strength (RSS) information are widely used for indoor localization because they can be easily implemented without... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 24285 |
| SubjectTerms | Attenuation Complexity Cost function Distance measurement genetic algorithm Genetic algorithms Indoor environment Indoor environments indoor localization Line of sight Localization Location awareness path loss model Radio waves Ray tracing Received signal strength Signal strength trilateration Wave propagation Wi-Fi Wireless fidelity |
| Title | Genetic Algorithm for Path Loss Model Selection in Signal Strength-Based Indoor Localization |
| URI | https://ieeexplore.ieee.org/document/9530676 https://www.proquest.com/docview/2588070122 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21vbQcgLagLhTkAydUb5M48cexoFalaiukpdIekCLbcXZX3WZRyR7g1zOTeFdQKoSUQw6exNEbe-ZlPDMA73LpUqGqhBeFrDmuRM2tzAwXWrucciWFJaJ4dS3Pb_KLcTHegKN1LkwIoTt8FoZ028Xyq4Vf0q-yY1OQgys3YVNp2edqrSMGRnVVPXEBJzwXahwjmGliji9Gp9fIBLMUCSoFXNM_bFDXVOWvnbgzL2fP4Go1sf5Uye1w2bqh__mgZuP_zvw5PI1-JjvpFWMXNkKzB09-qz64B9uxAfr0xz58pfLTOJSdzCeL-1k7vWPozbLP6B-yS_wGRj3T5mzUdc1BKNmsYaPZhF5Bce1m0k75BzSIFfvUVAuUvCQbGXM8X8DN2emXj-c8Nl7gHq1_y3OnvbapqaUNhUESa1OVelWjt4CKJ4LLa1lJL0KQLvPW0eWNF1aFwiYmiJew1SyacABMhcRXRRBO11nupbBIZ5DB4D5Zay0TP4BkBUXpY1Vyao4xLzt2kpiS0CsJvTKiN4D3a5FvfUmOfw3eJzTWAyMQAzhc4V3GRfu9zArczBTFGl89LvUadujZfSriIWy198vwBn2S1r3tlPEX_x7cow |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6Vcig9UGhBDRTYAyfEprb3Ye-xVK3SkkRIaaUckKz1ep1EBAcV5wC_nhl7E_ESQvLBhx3tWt_sznyenRmA11IXsUjLiCulK447MeNWJ4aLLCsk5UoKS0RxNNaDW3k9VdMdeLvNhfHet5fPfJ9e21h-uXJr-lV2ahQ5uPoe3FdSStVla21jBiZt63riFo64FOk0xDDjyJxeTy7GyAWTGCkqhVzjX6xQ21blj7O4NTCXBzDaLK27V_Kpv26Kvvv-W9XG_137I3gYPE121qnGY9jx9SHs_1R_8BD2Qgv0-bcj-EgFqHEoO1vOVneLZv6ZoT_LPqCHyIb4DYy6pi3ZpO2bg2CyRc0mixlNQZHtetbM-Ts0iSW7qssVSg7JSoYszydwe3lxcz7gofUCd2j_Gy6LzGU2NpW2XhmksTZOY5dW6C-g6glfyEqX2gnvdZE4W9DjjBM29cpGxounsFuvan8MLPWRK5UXRVYl0mlhkdAgh8GTssoyHbkeRBsochfqklN7jGXe8pPI5IReTujlAb0evNmKfOmKcvxr8BGhsR0YgOjByQbvPGzbr3mi8DhLKdr47O9Sr2BvcDMa5sOr8fvn8IDm6RITT2C3uVv7F-ihNMXLVjF_ALPE3_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Algorithm+for+Path+Loss+Model+Selection+in+Signal+Strength-Based+Indoor+Localization&rft.jtitle=IEEE+sensors+journal&rft.au=Lee%2C+Byeong-ho&rft.au=Ham%2C+Doyoung&rft.au=Choi%2C+Jeongsik&rft.au=Seong-Cheol%2C+Kim&rft.date=2021-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=21&rft.spage=24285&rft_id=info:doi/10.1109%2FJSEN.2021.3110971&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |