Genetic Algorithm for Path Loss Model Selection in Signal Strength-Based Indoor Localization

Ranging methods using received signal strength (RSS) information are widely used for indoor localization because they can be easily implemented without conducting site surveys. However, range estimation with a single pathloss model produces considerable errors, which degrade the positioning performa...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 21; no. 21; pp. 24285 - 24296
Main Authors Lee, Byeong-ho, Ham, Doyoung, Choi, Jeongsik, Kim, Seong-Cheol, Kim, Yong-Hwa
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2021.3110971

Cover

Abstract Ranging methods using received signal strength (RSS) information are widely used for indoor localization because they can be easily implemented without conducting site surveys. However, range estimation with a single pathloss model produces considerable errors, which degrade the positioning performance. This problem mainly arises because the single pathloss model cannot reflect diverse indoor radio wave propagation characteristics. In this study, we develop a new overlapping multi-state model to consider multiple candidates of pathloss models including line-of-sight (LOS) and non-line-of-sight (NLOS) states, and propose an efficient way to select a proper model for each reference node involved in the localization process. To this end, we formulate a cost function whose value varies widely depending on the choice of pathloss model of each access point. Because the computational complexity to find an optimal channel model for each reference node exponentially increases with the number of reference nodes, we apply a genetic algorithm to significantly reduce the complexity so that the proposed method can be executed in real-time. Experimental validations with ray-tracing simulations and RSS measurements at a real site confirm the improvement of localization accuracy for Wi-Fi in indoor environments. The proposed method achieves up to 1.92 m mean positioning error under a practical indoor environment and produces a performance improvement of 31.09% over the benchmark scenario.
AbstractList Ranging methods using received signal strength (RSS) information are widely used for indoor localization because they can be easily implemented without conducting site surveys. However, range estimation with a single pathloss model produces considerable errors, which degrade the positioning performance. This problem mainly arises because the single pathloss model cannot reflect diverse indoor radio wave propagation characteristics. In this study, we develop a new overlapping multi-state model to consider multiple candidates of pathloss models including line-of-sight (LOS) and non-line-of-sight (NLOS) states, and propose an efficient way to select a proper model for each reference node involved in the localization process. To this end, we formulate a cost function whose value varies widely depending on the choice of pathloss model of each access point. Because the computational complexity to find an optimal channel model for each reference node exponentially increases with the number of reference nodes, we apply a genetic algorithm to significantly reduce the complexity so that the proposed method can be executed in real-time. Experimental validations with ray-tracing simulations and RSS measurements at a real site confirm the improvement of localization accuracy for Wi-Fi in indoor environments. The proposed method achieves up to 1.92 m mean positioning error under a practical indoor environment and produces a performance improvement of 31.09% over the benchmark scenario.
Author Kim, Yong-Hwa
Lee, Byeong-ho
Ham, Doyoung
Kim, Seong-Cheol
Choi, Jeongsik
Author_xml – sequence: 1
  givenname: Byeong-ho
  orcidid: 0000-0001-8999-0861
  surname: Lee
  fullname: Lee, Byeong-ho
  email: bhlee@maxwell.snu.ac.kr
  organization: Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
– sequence: 2
  givenname: Doyoung
  surname: Ham
  fullname: Ham, Doyoung
  email: wj2dy@maxwell.snu.ac.kr
  organization: Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
– sequence: 3
  givenname: Jeongsik
  surname: Choi
  fullname: Choi, Jeongsik
  email: jeongsik.choi@knu.ac.kr
  organization: School of Electronics Engineering, Kyungpook National University, Daegu, South Korea
– sequence: 4
  givenname: Seong-Cheol
  orcidid: 0000-0002-7896-5625
  surname: Kim
  fullname: Kim, Seong-Cheol
  email: sckim@maxwell.snu.ac.kr
  organization: Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
– sequence: 5
  givenname: Yong-Hwa
  orcidid: 0000-0003-2183-5085
  surname: Kim
  fullname: Kim, Yong-Hwa
  email: yongkim@ut.ac.kr
  organization: Department of Data Science, Korea National University of Transportation, Uiwang-si, South Korea
BookMark eNp9kV1LwzAUhoNMcE5_gHgT8LozH23TXs4x56R-wBS8EEqWnm4ZXTOT7EJ_vakbXnghBM7J4X0Ob96col5rWkDogpIhpSS_vp9PHoeMMDrk3V3QI9SnSZJFVMRZr-s5iWIu3k7QqXNrQmguEtFH71NowWuFR83SWO1XG1wbi5-lX-HCOIcfTAUNnkMDymvTYt3iuV62Msy8hXbpV9GNdFDhWVuZQBZGyUZ_yU58ho5r2Tg4P9QBer2dvIzvouJpOhuPikixnPsoXmQqkzSvUwlJznnoBVWizhgBWXFYxHVapYoDpAum5KI7KldcCkgkyYEP0NV-79aajx04X67NzgaPrmRJlhFBKGNBJfYqZcPDLNSl0v7Hp7dSNyUlZRdd2UVZdlGWhygDSf-QW6s30n7-y1zuGQ0Av_o8fEMqUv4NJCCCfA
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1590_2179_10742025v24i1286888
crossref_primary_10_32604_cmes_2023_031534
crossref_primary_10_1007_s11277_024_11524_2
crossref_primary_10_1016_j_sciaf_2023_e01550
crossref_primary_10_3390_s23010188
crossref_primary_10_3390_s22176593
crossref_primary_10_1109_TVT_2022_3151018
crossref_primary_10_1016_j_adhoc_2023_103123
crossref_primary_10_1016_j_comcom_2023_05_020
crossref_primary_10_1109_TVT_2023_3253934
crossref_primary_10_3390_electronics12040905
crossref_primary_10_1109_JSEN_2024_3443096
crossref_primary_10_3390_app12083923
crossref_primary_10_1016_j_vehcom_2023_100685
crossref_primary_10_1109_JSEN_2022_3222412
crossref_primary_10_1016_j_iot_2023_100758
crossref_primary_10_1109_TVT_2023_3275203
crossref_primary_10_1007_s00607_024_01391_x
Cites_doi 10.1109/ICCSCE.2011.6190487
10.1109/COMST.2015.2464084
10.1145/1067170.1067193
10.2307/2332510
10.1007/s11277-013-1040-0
10.1109/VETECS.2009.5073315
10.1109/JSEN.2021.3083149
10.5194/ars-9-203-2011
10.1109/JIOT.2019.2948888
10.1109/74.382334
10.1109/WCNC.2014.6952825
10.1109/INFCOM.2000.832252
10.1109/TIM.2018.2863478
10.1109/COMST.2016.2553452
10.3390/s18114000
10.23919/ICACT.2017.7890239
10.1109/MSP.2005.1458287
10.1109/JIOT.2020.3020888
10.1109/ISWPC.2010.5483724
10.1017/CBO9780511841224
10.1016/j.comnet.2018.07.017
10.1109/JIOT.2016.2558659
10.1109/IEEESTD.2016.7786995
10.1109/NCIS.2011.151
10.1007/s10776-008-0085-6
10.33012/2019.16702
10.1109/ACCESS.2020.2973212
10.1109/TWC.2014.040214.131082
10.1109/LCOMM.2014.040214.132781
10.1109/ACCESS.2019.2941657
10.1109/JIOT.2016.2628713
10.1186/s13638-015-0298-1
10.1109/IPIN.2012.6418856
10.1109/VETECS.2008.353
10.1109/JIOT.2020.2986685
10.1109/JIOT.2018.2871831
10.1109/JSEN.2019.2940247
10.1016/S0167-9473(97)00053-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2021.3110971
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 24296
ExternalDocumentID 10_1109_JSEN_2021_3110971
9530676
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and ICT (MSIT), South Korea, through the Information Technology Research Center (ITRC)
  funderid: 10.13039/501100014188
– fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP)
  grantid: IITP-2021-0-02048
  funderid: 10.13039/501100014188
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-4b8c8a19f6ae59338a171c7f820ead3eb4f6d6c3ee6b2cabcabcc9c3a7e5a09e3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:08:14 EDT 2025
Thu Apr 24 23:06:51 EDT 2025
Wed Oct 01 05:05:37 EDT 2025
Wed Aug 27 02:29:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-4b8c8a19f6ae59338a171c7f820ead3eb4f6d6c3ee6b2cabcabcc9c3a7e5a09e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2183-5085
0000-0002-7896-5625
0000-0001-8999-0861
PQID 2588070122
PQPubID 75733
PageCount 12
ParticipantIDs ieee_primary_9530676
crossref_primary_10_1109_JSEN_2021_3110971
proquest_journals_2588070122
crossref_citationtrail_10_1109_JSEN_2021_3110971
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref31
wang (ref14) 2003; 54
ref30
ref33
ref11
ref32
ref10
ref2
(ref39) 2017
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
olakovi? (ref1) 2018; 144
ref41
ref22
ref21
ref43
(ref38) 2019
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
keser (ref8) 2016; 5
ref40
erceg (ref28) 2004
References_xml – ident: ref32
  doi: 10.1109/ICCSCE.2011.6190487
– ident: ref5
  doi: 10.1109/COMST.2015.2464084
– year: 2019
  ident: ref38
  publication-title: Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 450 GHz
– ident: ref7
  doi: 10.1145/1067170.1067193
– volume: 54
  start-page: 5
  year: 2003
  ident: ref14
  article-title: An indoors wireless positioning system based on wireless local area network infrastructure
  publication-title: Proc 6th Int Symp Satell Navigat Technol Including Mobile Positioning Location Services
– ident: ref43
  doi: 10.2307/2332510
– ident: ref26
  doi: 10.1007/s11277-013-1040-0
– ident: ref21
  doi: 10.1109/VETECS.2009.5073315
– ident: ref17
  doi: 10.1109/JSEN.2021.3083149
– ident: ref23
  doi: 10.5194/ars-9-203-2011
– ident: ref4
  doi: 10.1109/JIOT.2019.2948888
– ident: ref40
  doi: 10.1109/74.382334
– ident: ref19
  doi: 10.1109/WCNC.2014.6952825
– ident: ref6
  doi: 10.1109/INFCOM.2000.832252
– ident: ref13
  doi: 10.1109/TIM.2018.2863478
– ident: ref27
  doi: 10.1109/COMST.2016.2553452
– ident: ref35
  doi: 10.3390/s18114000
– ident: ref37
  doi: 10.23919/ICACT.2017.7890239
– ident: ref29
  doi: 10.1109/MSP.2005.1458287
– ident: ref2
  doi: 10.1109/JIOT.2020.3020888
– ident: ref22
  doi: 10.1109/ISWPC.2010.5483724
– ident: ref36
  doi: 10.1017/CBO9780511841224
– volume: 144
  start-page: 17
  year: 2018
  ident: ref1
  article-title: Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2018.07.017
– ident: ref9
  doi: 10.1109/JIOT.2016.2558659
– ident: ref42
  doi: 10.1109/IEEESTD.2016.7786995
– ident: ref18
  doi: 10.1109/NCIS.2011.151
– year: 2017
  ident: ref39
  publication-title: Study on Channel Model for Frequencies From 0 5 to 100 GHz
– ident: ref34
  doi: 10.1007/s10776-008-0085-6
– ident: ref11
  doi: 10.33012/2019.16702
– year: 2004
  ident: ref28
  publication-title: IEEE 802 11 TGn channel models
– ident: ref15
  doi: 10.1109/ACCESS.2020.2973212
– ident: ref30
  doi: 10.1109/TWC.2014.040214.131082
– ident: ref20
  doi: 10.1109/LCOMM.2014.040214.132781
– ident: ref10
  doi: 10.1109/ACCESS.2019.2941657
– ident: ref12
  doi: 10.1109/JIOT.2016.2628713
– volume: 5
  start-page: 20
  year: 2016
  ident: ref8
  article-title: A priori verification and validation study of RFKON database
  publication-title: Int J Theor Appl Comput Sci
– ident: ref24
  doi: 10.1186/s13638-015-0298-1
– ident: ref33
  doi: 10.1109/IPIN.2012.6418856
– ident: ref31
  doi: 10.1109/VETECS.2008.353
– ident: ref16
  doi: 10.1109/JIOT.2020.2986685
– ident: ref3
  doi: 10.1109/JIOT.2018.2871831
– ident: ref41
  doi: 10.1109/JSEN.2019.2940247
– ident: ref25
  doi: 10.1016/S0167-9473(97)00053-4
SSID ssj0019757
Score 2.4592094
Snippet Ranging methods using received signal strength (RSS) information are widely used for indoor localization because they can be easily implemented without...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24285
SubjectTerms Attenuation
Complexity
Cost function
Distance measurement
genetic algorithm
Genetic algorithms
Indoor environment
Indoor environments
indoor localization
Line of sight
Localization
Location awareness
path loss model
Radio waves
Ray tracing
Received signal strength
Signal strength
trilateration
Wave propagation
Wi-Fi
Wireless fidelity
Title Genetic Algorithm for Path Loss Model Selection in Signal Strength-Based Indoor Localization
URI https://ieeexplore.ieee.org/document/9530676
https://www.proquest.com/docview/2588070122
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21vbQcgLagLhTkAydUb5M48cexoFalaiukpdIekCLbcXZX3WZRyR7g1zOTeFdQKoSUQw6exNEbe-ZlPDMA73LpUqGqhBeFrDmuRM2tzAwXWrucciWFJaJ4dS3Pb_KLcTHegKN1LkwIoTt8FoZ028Xyq4Vf0q-yY1OQgys3YVNp2edqrSMGRnVVPXEBJzwXahwjmGliji9Gp9fIBLMUCSoFXNM_bFDXVOWvnbgzL2fP4Go1sf5Uye1w2bqh__mgZuP_zvw5PI1-JjvpFWMXNkKzB09-qz64B9uxAfr0xz58pfLTOJSdzCeL-1k7vWPozbLP6B-yS_wGRj3T5mzUdc1BKNmsYaPZhF5Bce1m0k75BzSIFfvUVAuUvCQbGXM8X8DN2emXj-c8Nl7gHq1_y3OnvbapqaUNhUESa1OVelWjt4CKJ4LLa1lJL0KQLvPW0eWNF1aFwiYmiJew1SyacABMhcRXRRBO11nupbBIZ5DB4D5Zay0TP4BkBUXpY1Vyao4xLzt2kpiS0CsJvTKiN4D3a5FvfUmOfw3eJzTWAyMQAzhc4V3GRfu9zArczBTFGl89LvUadujZfSriIWy198vwBn2S1r3tlPEX_x7cow
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6Vcig9UGhBDRTYAyfEprb3Ye-xVK3SkkRIaaUckKz1ep1EBAcV5wC_nhl7E_ESQvLBhx3tWt_sznyenRmA11IXsUjLiCulK447MeNWJ4aLLCsk5UoKS0RxNNaDW3k9VdMdeLvNhfHet5fPfJ9e21h-uXJr-lV2ahQ5uPoe3FdSStVla21jBiZt63riFo64FOk0xDDjyJxeTy7GyAWTGCkqhVzjX6xQ21blj7O4NTCXBzDaLK27V_Kpv26Kvvv-W9XG_137I3gYPE121qnGY9jx9SHs_1R_8BD2Qgv0-bcj-EgFqHEoO1vOVneLZv6ZoT_LPqCHyIb4DYy6pi3ZpO2bg2CyRc0mixlNQZHtetbM-Ts0iSW7qssVSg7JSoYszydwe3lxcz7gofUCd2j_Gy6LzGU2NpW2XhmksTZOY5dW6C-g6glfyEqX2gnvdZE4W9DjjBM29cpGxounsFuvan8MLPWRK5UXRVYl0mlhkdAgh8GTssoyHbkeRBsochfqklN7jGXe8pPI5IReTujlAb0evNmKfOmKcvxr8BGhsR0YgOjByQbvPGzbr3mi8DhLKdr47O9Sr2BvcDMa5sOr8fvn8IDm6RITT2C3uVv7F-ihNMXLVjF_ALPE3_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Algorithm+for+Path+Loss+Model+Selection+in+Signal+Strength-Based+Indoor+Localization&rft.jtitle=IEEE+sensors+journal&rft.au=Lee%2C+Byeong-ho&rft.au=Ham%2C+Doyoung&rft.au=Choi%2C+Jeongsik&rft.au=Seong-Cheol%2C+Kim&rft.date=2021-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=21&rft.spage=24285&rft_id=info:doi/10.1109%2FJSEN.2021.3110971&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon