Energy-Efficient Resource Allocation for 6G Backscatter-Enabled NOMA IoV Networks

The integration of Ambient Backscatter Communication (AmBC) with Non-Orthogonal Multiple Access (NOMA) is expected to support connectivity of low-powered Internet-of-Vehicles (IoVs) in the upcoming Sixth-Generation (6G) transportation systems. This paper proposes an energy-efficient resource allocat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 23; no. 7; pp. 9775 - 9785
Main Authors Khan, Wali Ullah, Javed, Muhammad Awais, Nguyen, Tu N., Khan, Shafiullah, Elhalawany, Basem M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2021.3110942

Cover

Abstract The integration of Ambient Backscatter Communication (AmBC) with Non-Orthogonal Multiple Access (NOMA) is expected to support connectivity of low-powered Internet-of-Vehicles (IoVs) in the upcoming Sixth-Generation (6G) transportation systems. This paper proposes an energy-efficient resource allocation framework for the AmBC-enabled NOMA IoV network under imperfect Successive Interference Cancellation (SIC) decoding. In particular, multiple Road-Side Units (RSUs) transmit superimposed signals to their associated IoVs utilizing downlink NOMA transmission. Meanwhile, the Backscatter Tags (BackTags) also transmit data symbols towards nearby IoVs by reflecting the superimposed signals of RSUs. Thus, the objective is to maximize the total energy efficiency of the NOMA IoV network subject to the minimum data rate of all IoVs. A joint problem that simultaneously optimizes the total power budget of each RSU, power allocation coefficient of IoVs and reflection power of BackTags under imperfect SIC decoding is formulated. A Dinkelbach approach is first adopted to transform the optimization problem and then the transformed problem is decoupled into two subproblems for optimal transmit power at RSUs and efficient reflection power at BackTags, respectively. To solve the problems efficiently, dual theory and Karush-Kuhn-Tucker conditions are exploited, where the Lagrangian dual variables are iteratively calculated using the subgradient method. To check the performance of the proposed framework, a benchmark optimization without AmBC is also provided. Numerical results demonstrate the superiority of the proposed AmBC-enabled NOMA IoV framework over the benchmark conventional IoV framework.
AbstractList The integration of Ambient Backscatter Communication (AmBC) with Non-Orthogonal Multiple Access (NOMA) is expected to support connectivity of low-powered Internet-of-Vehicles (IoVs) in the upcoming Sixth-Generation (6G) transportation systems. This paper proposes an energy-efficient resource allocation framework for the AmBC-enabled NOMA IoV network under imperfect Successive Interference Cancellation (SIC) decoding. In particular, multiple Road-Side Units (RSUs) transmit superimposed signals to their associated IoVs utilizing downlink NOMA transmission. Meanwhile, the Backscatter Tags (BackTags) also transmit data symbols towards nearby IoVs by reflecting the superimposed signals of RSUs. Thus, the objective is to maximize the total energy efficiency of the NOMA IoV network subject to the minimum data rate of all IoVs. A joint problem that simultaneously optimizes the total power budget of each RSU, power allocation coefficient of IoVs and reflection power of BackTags under imperfect SIC decoding is formulated. A Dinkelbach approach is first adopted to transform the optimization problem and then the transformed problem is decoupled into two subproblems for optimal transmit power at RSUs and efficient reflection power at BackTags, respectively. To solve the problems efficiently, dual theory and Karush-Kuhn-Tucker conditions are exploited, where the Lagrangian dual variables are iteratively calculated using the subgradient method. To check the performance of the proposed framework, a benchmark optimization without AmBC is also provided. Numerical results demonstrate the superiority of the proposed AmBC-enabled NOMA IoV framework over the benchmark conventional IoV framework.
Author Nguyen, Tu N.
Khan, Wali Ullah
Elhalawany, Basem M.
Khan, Shafiullah
Javed, Muhammad Awais
Author_xml – sequence: 1
  givenname: Wali Ullah
  orcidid: 0000-0003-1485-5141
  surname: Khan
  fullname: Khan, Wali Ullah
  email: waliullahkhan30@gmail.com
  organization: Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg City, Luxembourg
– sequence: 2
  givenname: Muhammad Awais
  orcidid: 0000-0001-5816-097X
  surname: Javed
  fullname: Javed, Muhammad Awais
  email: awais.javed@comsats.edu.pk
  organization: Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad, Pakistan
– sequence: 3
  givenname: Tu N.
  orcidid: 0000-0001-7184-4102
  surname: Nguyen
  fullname: Nguyen, Tu N.
  email: tu.nguyen@kennesaw.edu
  organization: Department of Computer Science, Kennesaw State University, Marietta, GA, USA
– sequence: 4
  givenname: Shafiullah
  surname: Khan
  fullname: Khan, Shafiullah
  email: shafielectronics@icp.edu.pk
  organization: Department of Electronics, Islamia College University, Peshawar, Pakistan
– sequence: 5
  givenname: Basem M.
  orcidid: 0000-0002-5900-6541
  surname: Elhalawany
  fullname: Elhalawany, Basem M.
  email: basem.mamdoh@feng.bu.edu.eg
  organization: College of Computer Science, Shenzhen University, Shenzhen, China
BookMark eNp9kF9PwjAUxRuDiYh-AONLE5-Hve26rY9IEEkQoqKvTde1ZjBXbEcM395NiA8--HT_5Jx7bn7nqFe72iB0BWQIQMTtarZ6GVJCYci6OaYnqA-cZxEhkPS6nsaRIJycofMQ1u025gB99DSpjX_fRxNrS12ausHPJrid1waPqspp1ZSuxtZ5nEzxndKb0K4a46NJrfLKFHixfBzhmXvDC9N8Ob8JF-jUqiqYy2MdoNf7yWr8EM2X09l4NI80FayJYmFtqvIszxUDrYngJufKssSSBAoKLAadkoTRlBQkEQJagTG0MJxqLnLKBujmcHfr3efOhEau27_rNlLSJMtSwlLSqeCg0t6F4I2VW19-KL-XQGRHSnbkZEdOHsm1nvSPR5fND4jGq7L613l9cJbtr79JgseMZ8C-AV9KfA0
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_comnet_2024_110916
crossref_primary_10_1109_ACCESS_2023_3307516
crossref_primary_10_1109_TVT_2024_3395748
crossref_primary_10_1016_j_phycom_2023_102162
crossref_primary_10_1109_JSEN_2022_3204586
crossref_primary_10_1109_TITS_2024_3395790
crossref_primary_10_3390_info16020098
crossref_primary_10_1155_2022_7353080
crossref_primary_10_1109_JIOT_2024_3424728
crossref_primary_10_2174_2210327913666221021110816
crossref_primary_10_1109_ACCESS_2024_3358409
crossref_primary_10_1109_TITS_2023_3267607
crossref_primary_10_1155_2022_1901058
crossref_primary_10_1155_2021_6013448
crossref_primary_10_1109_TMC_2022_3158618
crossref_primary_10_1109_TVT_2023_3271106
crossref_primary_10_1371_journal_pone_0310002
crossref_primary_10_3390_s22186906
crossref_primary_10_1109_COMST_2024_3393612
crossref_primary_10_1109_JIOT_2023_3247021
crossref_primary_10_1109_TMC_2023_3315275
crossref_primary_10_1016_j_gltp_2022_03_008
crossref_primary_10_1109_ACCESS_2023_3253432
crossref_primary_10_1177_15501329221107246
crossref_primary_10_3390_app14062492
crossref_primary_10_1016_j_jksuci_2023_101837
crossref_primary_10_1109_JIOT_2024_3391219
crossref_primary_10_3390_drones7030159
crossref_primary_10_1016_j_comcom_2022_02_010
crossref_primary_10_1109_TGCN_2022_3216209
crossref_primary_10_1109_TVT_2021_3127043
crossref_primary_10_1155_2021_1685260
crossref_primary_10_1016_j_gltp_2022_03_018
crossref_primary_10_1109_JIOT_2024_3520954
crossref_primary_10_1109_ACCESS_2021_3139118
crossref_primary_10_1109_TIV_2022_3224057
crossref_primary_10_1155_2022_7357820
crossref_primary_10_4018_IJSIR_350221
crossref_primary_10_1109_TVT_2022_3165134
crossref_primary_10_1109_TITS_2022_3178267
crossref_primary_10_1109_ACCESS_2024_3467069
crossref_primary_10_1109_OJCOMS_2022_3143098
crossref_primary_10_1186_s13634_021_00828_1
crossref_primary_10_1007_s11227_023_05847_3
crossref_primary_10_1016_j_jksuci_2023_03_025
crossref_primary_10_1109_TITS_2022_3209899
crossref_primary_10_1109_TITS_2021_3126766
crossref_primary_10_1016_j_jksuci_2023_101841
crossref_primary_10_1109_TITS_2022_3187567
crossref_primary_10_1016_j_dcan_2024_02_007
crossref_primary_10_1155_2022_3763555
crossref_primary_10_1109_TGCN_2022_3144465
crossref_primary_10_1109_TITS_2023_3275741
crossref_primary_10_1109_TVT_2023_3344603
crossref_primary_10_1016_j_dcan_2022_10_028
crossref_primary_10_1109_JSYST_2022_3194705
crossref_primary_10_1155_2022_1302170
crossref_primary_10_1109_JSYST_2021_3131122
crossref_primary_10_1109_TVT_2023_3314394
crossref_primary_10_1109_ACCESS_2023_3236966
crossref_primary_10_1016_j_gltp_2022_04_013
crossref_primary_10_1109_TITS_2025_3528961
crossref_primary_10_1109_TWC_2024_3359650
crossref_primary_10_1109_TNSE_2022_3168533
crossref_primary_10_1109_TGCN_2023_3261499
crossref_primary_10_1049_cmu2_12315
crossref_primary_10_1109_ACCESS_2024_3432852
crossref_primary_10_1109_MCOMSTD_0007_2200065
Cites_doi 10.1109/JIOT.2021.3068056
10.1109/TITS.2021.3095437
10.1109/ACCESS.2020.3012976
10.1109/TWC.2018.2864741
10.1109/TITS.2021.3091402
10.1109/TVT.2021.3095955
10.1109/ACCESS.2019.2926923
10.1109/GCWkshps45667.2019.9024401
10.1109/ACCESS.2020.2991197
10.1109/TVT.2021.3056220
10.1109/TCCN.2019.2945802
10.1016/j.phycom.2021.101296
10.1109/JIOT.2021.3065970
10.1109/TCOMM.2021.3051897
10.1016/j.aej.2021.04.107
10.1109/LWC.2019.2944369
10.1109/INFOCOMWKSHPS50562.2020.9162720
10.1016/j.phycom.2021.101294
10.1049/iet-com.2018.5251
10.1109/TITS.2020.3001682
10.1002/itl2.265
10.1109/MWC.2019.1800515
10.1109/ACCESS.2019.2918345
10.1109/LCOMM.2021.3052936
10.1109/ACCESS.2018.2877199
10.1109/JSAC.2017.2726018
10.1109/TVT.2020.3038387
10.1109/INFOCOMWKSHPS50562.2020.9162938
10.1109/IOTM.0001.2000055
10.1109/ACCESS.2021.3050038
10.1109/MNET.2021.9454596
10.1007/s12083-021-01176-5
10.1109/TWC.2020.3008568
10.1007/978-3-030-46201-7_7
10.1002/itl2.307
10.1016/j.ijpe.2020.107831
10.1109/ACCESS.2020.2967153
10.1109/TCOMM.2018.2885999
10.1109/TVT.2020.3006478
10.1109/TCOMM.2021.3050503
10.1109/ACCESS.2019.2897822
10.1007/978-3-030-72777-2_6
10.1109/OJCOMS.2021.3071496
10.1109/LWC.2020.3031042
10.1109/TCOMM.2019.2904499
10.1109/TGCN.2021.3062060
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2021.3110942
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 9785
ExternalDocumentID 10_1109_TITS_2021_3110942
9543581
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-49ff7ab8bba31cc095eb5af36f061d21341c7063270d0699195eee2de52c59b23
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 04:52:30 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
Tue Jul 01 04:29:07 EDT 2025
Wed Aug 27 02:25:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-49ff7ab8bba31cc095eb5af36f061d21341c7063270d0699195eee2de52c59b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7184-4102
0000-0001-5816-097X
0000-0003-1485-5141
0000-0002-5900-6541
PQID 2688703702
PQPubID 75735
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TITS_2021_3110942
crossref_primary_10_1109_TITS_2021_3110942
proquest_journals_2688703702
ieee_primary_9543581
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref5
  doi: 10.1109/JIOT.2021.3068056
– ident: ref28
  doi: 10.1109/TITS.2021.3095437
– ident: ref29
  doi: 10.1109/ACCESS.2020.3012976
– ident: ref35
  doi: 10.1109/TWC.2018.2864741
– ident: ref1
  doi: 10.1109/TITS.2021.3091402
– ident: ref15
  doi: 10.1109/TVT.2021.3095955
– ident: ref20
  doi: 10.1109/ACCESS.2019.2926923
– ident: ref41
  doi: 10.1109/GCWkshps45667.2019.9024401
– ident: ref27
  doi: 10.1109/ACCESS.2020.2991197
– ident: ref44
  doi: 10.1109/TVT.2021.3056220
– ident: ref14
  doi: 10.1109/TCCN.2019.2945802
– ident: ref18
  doi: 10.1016/j.phycom.2021.101296
– ident: ref6
  doi: 10.1109/JIOT.2021.3065970
– ident: ref7
  doi: 10.1109/TCOMM.2021.3051897
– ident: ref16
  doi: 10.1016/j.aej.2021.04.107
– ident: ref39
  doi: 10.1109/LWC.2019.2944369
– ident: ref42
  doi: 10.1109/INFOCOMWKSHPS50562.2020.9162720
– ident: ref19
  doi: 10.1016/j.phycom.2021.101294
– ident: ref45
  doi: 10.1049/iet-com.2018.5251
– ident: ref3
  doi: 10.1109/TITS.2020.3001682
– ident: ref36
  doi: 10.1002/itl2.265
– ident: ref46
  doi: 10.1109/MWC.2019.1800515
– ident: ref24
  doi: 10.1109/ACCESS.2019.2918345
– ident: ref37
  doi: 10.1109/LCOMM.2021.3052936
– ident: ref22
  doi: 10.1109/ACCESS.2018.2877199
– ident: ref25
  doi: 10.1109/JSAC.2017.2726018
– ident: ref11
  doi: 10.1109/TVT.2020.3038387
– ident: ref32
  doi: 10.1109/INFOCOMWKSHPS50562.2020.9162938
– ident: ref10
  doi: 10.1109/IOTM.0001.2000055
– ident: ref2
  doi: 10.1109/ACCESS.2021.3050038
– ident: ref12
  doi: 10.1109/MNET.2021.9454596
– ident: ref17
  doi: 10.1007/s12083-021-01176-5
– ident: ref21
  doi: 10.1109/TWC.2020.3008568
– ident: ref31
  doi: 10.1007/978-3-030-46201-7_7
– ident: ref43
  doi: 10.1002/itl2.307
– ident: ref9
  doi: 10.1016/j.ijpe.2020.107831
– ident: ref38
  doi: 10.1109/ACCESS.2020.2967153
– ident: ref26
  doi: 10.1109/TCOMM.2018.2885999
– ident: ref33
  doi: 10.1109/TVT.2020.3006478
– ident: ref34
  doi: 10.1109/TCOMM.2021.3050503
– ident: ref30
  doi: 10.1109/ACCESS.2019.2897822
– ident: ref8
  doi: 10.1007/978-3-030-72777-2_6
– ident: ref4
  doi: 10.1109/OJCOMS.2021.3071496
– ident: ref40
  doi: 10.1109/LWC.2020.3031042
– ident: ref23
  doi: 10.1109/TCOMM.2019.2904499
– ident: ref13
  doi: 10.1109/TGCN.2021.3062060
SSID ssj0014511
Score 2.6187296
Snippet The integration of Ambient Backscatter Communication (AmBC) with Non-Orthogonal Multiple Access (NOMA) is expected to support connectivity of low-powered...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9775
SubjectTerms 6G mobile communication
ambient backscatter communication (AmBC)
Backscattering
Benchmarks
Decoding
Dinkelbach method
Energy efficiency
imperfect successive interference cancellation (SIC)
Internet of Vehicles
Kuhn-Tucker method
NOMA
non-orthogonal multiple access (NOMA)
Nonorthogonal multiple access
Optimization
Reliability
Resource allocation
Resource management
Silicon carbide
Transportation networks
Transportation systems
Title Energy-Efficient Resource Allocation for 6G Backscatter-Enabled NOMA IoV Networks
URI https://ieeexplore.ieee.org/document/9543581
https://www.proquest.com/docview/2688703702
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0BJziwI8omHzghXFzHSepjQWWTWoQoiFvkZbhQtQjaC1_P2EkqNiFuSTSWLD_HM_bMewY49KgMJuh4LjLLlbKGa0xy7o0xwghP8yhwh3v97PJeXT-mj3NwPOPCIGIsPsNmeIy5fD9203BUdqJTFeS65mE-z3XJ1ZplDILOVtRGlYprkdYZzJbQJ4OrwR3tBGWLNqj0ruQXHxQvVfmxEkf3cr4CvbpjZVXJc3M6sU33_k2z8b89X4XlKs5knXJirMEcjtZh6ZP64AbcdiPvj3ejigS1Z_VZPusMg48LmDEKall2wU4DF99FMU7ejXwrz_o3vQ67Gj-wfllL_rYJ9-fdwdklr25Y4I7c_ISrcGJrbNtak7Sco3ALbWqekuyJ3LyPYm-OQExkTqhlFEqSAaL0mEqXaiuTLVgYjUe4Dazd9gl9d2gQFSqlbUZ2mTHotPK5a4Cox7xwlfx4uAVjWMRtiNBFgKkIMBUVTA04mjV5KbU3_jLeCMM-M6xGvAF7NbBF9Xe-FTKjpVUkuZA7v7fahUUZaA6xLHcPFiavU9yn4GNiD-Ks-wDc_dXq
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2VcIAe-GhADQ3gQ08VThyvdzd7DCghgSZV1QTltvLH5EKUVM3mwq9n7N2NSosQt93VWLL8vJ4Ze94zwLlDpTFCy1ORGK6U0TzDKOVOay20cDSPPHd4OkvGC_VtGS-P4NOBC4OIofgMO_4xnOW7rd37rbJuFisv1_UEnsaUVaQlW-twZuCVtoI6qlQ8E3F9htkTWXc-md9QLih7lKLSu5J_eKFwrcqjtTg4mNFLmNZdK-tKfnb2henYXw9UG_-376_gRRVpskE5NV7DEW5O4Pie_mATroeB-ceHQUeC2rN6N58N1t7LedQYhbUs-co-eza-DXKcfBgYV47NrqYDNtn-YLOymnz3Bhaj4fzLmFd3LHBLjr7gyu_ZatM3Rkc9ayngQhPrVZSsyNG7IPdmCcZIpoRbQsEkGSBKh7G0cWZk9BYam-0GT4H1-y6i7xY1okKlMpOQXaI12ky51LZA1GOe20qA3N-Dsc5DIiKy3MOUe5jyCqYWXBya3JbqG_8ybvphPxhWI96Cdg1sXv2fu1wmtLiKKBXy3d9bfYRn4_n0Mr-czL6fwXPpSQ-hSLcNjeJuj-8pFCnMhzADfwNFvdk7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+Resource+Allocation+for+6G+Backscatter-Enabled+NOMA+IoV+Networks&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Khan%2C+Wali+Ullah&rft.au=Javed%2C+Muhammad+Awais&rft.au=Nguyen%2C+Tu+N.&rft.au=Khan%2C+Shafiullah&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=7&rft.spage=9775&rft.epage=9785&rft_id=info:doi/10.1109%2FTITS.2021.3110942&rft.externalDocID=9543581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon