Probabilistic Generative Model for Hyperspectral Unmixing Accounting for Endmember Variability

The complex nature of hyperspectral images makes the analysis of spectral signatures a challenging task in remote sensing. For quantitative analysis, spectral unmixing is a well-established and effective tool to analyze the spectra and spatial distribution of substances in the scene. The classical u...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 15
Main Authors Shi, Shuaikai, Zhao, Min, Zhang, Lijun, Altmann, Yoann, Chen, Jie
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2021.3121799

Cover

More Information
Summary:The complex nature of hyperspectral images makes the analysis of spectral signatures a challenging task in remote sensing. For quantitative analysis, spectral unmixing is a well-established and effective tool to analyze the spectra and spatial distribution of substances in the scene. The classical unmixing algorithms usually fail to tackle spectral variability caused by variations in environmental conditions. Many variants based on the linear mixing process have been proposed to tackle this problem; however, the spectral variability modeling capacity of these algorithms is usually insufficient. In this article, we present a probabilistic generative model to address endmember variability and provide more accurate abundance and endmember estimates. The proposed model simultaneously extracts the endmembers and estimates abundances in an unsupervised manner. In particular, it allows fitting arbitrary endmember distributions through the nonlinear modeling capability of neural networks compared to other methods that use parametric endmember variability models. The performance of the proposed approach is evaluated on both synthetic and real datasets. Experimental results show its superiority in comparison with other state-of-the-art methods. The code of this work is available at https://github.com/shuaikaishi/PGMSU for the sake of reproducibility.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2021.3121799