GBNRS: A Novel Rough Set Algorithm for Fast Adaptive Attribute Reduction in Classification

Feature reduction is an important aspect of Big Data analytics on today's ever-larger datasets. Rough sets are a classical method widely applied in attribute reduction. Most rough set algorithms use the priori domain knowledge of a dataset to process continuous attributes through using a member...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 34; no. 3; pp. 1231 - 1242
Main Authors Xia, Shuyin, Zhang, Hao, Li, Wenhua, Wang, Guoyin, Giem, Elisabeth, Chen, Zizhong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2020.2997039

Cover

Abstract Feature reduction is an important aspect of Big Data analytics on today's ever-larger datasets. Rough sets are a classical method widely applied in attribute reduction. Most rough set algorithms use the priori domain knowledge of a dataset to process continuous attributes through using a membership function. Neighborhood rough sets (NRS) replace the membership function with the concept of neighborhoods, allowing NRS to handle scenarios where no a priori knowledge is available. However, the neighborhood radius of each object in NRS is fixed, and the optimization of the radius depends on grid searching. This diminishes both the efficiency and effectiveness, leading to a time complexity of not lower than <inline-formula><tex-math notation="LaTeX">O(N^2)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>N</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="xia-ieq1-2997039.gif"/> </inline-formula>. To resolve these limitations, granular ball neighborhood rough sets (GBNRS), a novel NRS method with time complexity <inline-formula><tex-math notation="LaTeX">O(N)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="xia-ieq2-2997039.gif"/> </inline-formula>, is proposed. GBNRS adaptively generates a different neighborhood for each object, resulting in greater generality and flexibility in comparison to standard NRS methods. GBNRS is compared with the current state-of-the-art NRS method, FARNeMF, and find that GBNRS obtains both higher performance and higher classification accuracy on public benchmark datasets. All code has been released in the open source GBNRS library at http://www.cquptshuyinxia.com/GBNRS.html .
AbstractList Feature reduction is an important aspect of Big Data analytics on today's ever-larger datasets. Rough sets are a classical method widely applied in attribute reduction. Most rough set algorithms use the priori domain knowledge of a dataset to process continuous attributes through using a membership function. Neighborhood rough sets (NRS) replace the membership function with the concept of neighborhoods, allowing NRS to handle scenarios where no a priori knowledge is available. However, the neighborhood radius of each object in NRS is fixed, and the optimization of the radius depends on grid searching. This diminishes both the efficiency and effectiveness, leading to a time complexity of not lower than <inline-formula><tex-math notation="LaTeX">O(N^2)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>N</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="xia-ieq1-2997039.gif"/> </inline-formula>. To resolve these limitations, granular ball neighborhood rough sets (GBNRS), a novel NRS method with time complexity <inline-formula><tex-math notation="LaTeX">O(N)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="xia-ieq2-2997039.gif"/> </inline-formula>, is proposed. GBNRS adaptively generates a different neighborhood for each object, resulting in greater generality and flexibility in comparison to standard NRS methods. GBNRS is compared with the current state-of-the-art NRS method, FARNeMF, and find that GBNRS obtains both higher performance and higher classification accuracy on public benchmark datasets. All code has been released in the open source GBNRS library at http://www.cquptshuyinxia.com/GBNRS.html .
Feature reduction is an important aspect of Big Data analytics on today’s ever-larger datasets. Rough sets are a classical method widely applied in attribute reduction. Most rough set algorithms use the priori domain knowledge of a dataset to process continuous attributes through using a membership function. Neighborhood rough sets (NRS) replace the membership function with the concept of neighborhoods, allowing NRS to handle scenarios where no a priori knowledge is available. However, the neighborhood radius of each object in NRS is fixed, and the optimization of the radius depends on grid searching. This diminishes both the efficiency and effectiveness, leading to a time complexity of not lower than [Formula Omitted]. To resolve these limitations, granular ball neighborhood rough sets (GBNRS), a novel NRS method with time complexity [Formula Omitted], is proposed. GBNRS adaptively generates a different neighborhood for each object, resulting in greater generality and flexibility in comparison to standard NRS methods. GBNRS is compared with the current state-of-the-art NRS method, FARNeMF, and find that GBNRS obtains both higher performance and higher classification accuracy on public benchmark datasets. All code has been released in the open source GBNRS library at http://www.cquptshuyinxia.com/GBNRS.html .
Author Wang, Guoyin
Xia, Shuyin
Zhang, Hao
Chen, Zizhong
Giem, Elisabeth
Li, Wenhua
Author_xml – sequence: 1
  givenname: Shuyin
  orcidid: 0000-0001-5993-9563
  surname: Xia
  fullname: Xia, Shuyin
  email: xiasy@cqupt.edu.cn
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Telecommunications and Posts, Chongqing, China
– sequence: 2
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  email: 1025476698@qq.com
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Telecommunications and Posts, Chongqing, China
– sequence: 3
  givenname: Wenhua
  surname: Li
  fullname: Li, Wenhua
  email: 846659545@qq.com
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Telecommunications and Posts, Chongqing, China
– sequence: 4
  givenname: Guoyin
  surname: Wang
  fullname: Wang, Guoyin
  email: wanggy@cqupt.edu.cn
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Telecommunications and Posts, Chongqing, China
– sequence: 5
  givenname: Elisabeth
  surname: Giem
  fullname: Giem, Elisabeth
  email: gieme01@ucr.edu
  organization: Department of Computer Science and Engineering, University of California Riverside, Riverside, CA, USA
– sequence: 6
  givenname: Zizhong
  surname: Chen
  fullname: Chen, Zizhong
  email: zizhongchen@gmail.com
  organization: Department of Computer Science and Engineering, University of California Riverside, Riverside, CA, USA
BookMark eNp9kE1PwjAYxxujiYB-AOOliedhn3Zv9TYR0EgwAbx4Wbqtg5KxYtuR-O3dhHjw4Ol5yf__vPz66LzWtUToBsgQgPD71evTeEgJJUPKeUQYP0M9CILYo8DhvM2JD57P_OgS9a3dEkLiKIYe-pg-zhfLB5zguT7ICi90s97gpXQ4qdbaKLfZ4VIbPBG2bRVi79RB4sQ5o7LGSbyQRZM7pWusajyqhLWqVLnoOlfoohSVldenOEDvk_Fq9OzN3qYvo2Tm5ZQz5zFBuQjCUmZ-kbEiBmC5yAmBKKYhEWFeiMCXADGlhLUfQRaFJWWsrWkRSGADdHecuzf6s5HWpVvdmLpdmdKQBiyMQhK2quioyo221sgyzZX7udMZoaoUSNqBTDuQaQcyPYFsnfDHuTdqJ8zXv57bo0dJKX_1nHDuA2PfnmF-Wg
CODEN ITKEEH
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3325199
crossref_primary_10_1016_j_ins_2022_08_066
crossref_primary_10_3233_JIFS_223960
crossref_primary_10_1016_j_ins_2023_119368
crossref_primary_10_1016_j_knosys_2023_110898
crossref_primary_10_1109_TFUZZ_2022_3206508
crossref_primary_10_1145_3659946
crossref_primary_10_1007_s13042_023_01965_9
crossref_primary_10_1109_TNNLS_2023_3248064
crossref_primary_10_3390_math10040553
crossref_primary_10_1109_ACCESS_2021_3061690
crossref_primary_10_1109_TKDE_2024_3525003
crossref_primary_10_1016_j_inffus_2024_102867
crossref_primary_10_1007_s13042_021_01384_8
crossref_primary_10_1109_TKDE_2024_3419184
crossref_primary_10_1016_j_patcog_2024_111115
crossref_primary_10_1016_j_inffus_2024_102486
crossref_primary_10_1109_TBDATA_2023_3342643
crossref_primary_10_1016_j_ijar_2023_108974
crossref_primary_10_1109_TKDE_2023_3237833
crossref_primary_10_1016_j_ijar_2025_109420
crossref_primary_10_1007_s13042_023_01954_y
crossref_primary_10_1007_s10462_024_10976_z
crossref_primary_10_1007_s13369_024_09147_7
crossref_primary_10_1016_j_eswa_2024_126030
crossref_primary_10_1016_j_ins_2024_121861
crossref_primary_10_1016_j_neunet_2025_107178
crossref_primary_10_1109_TKDE_2022_3222447
crossref_primary_10_1016_j_ins_2024_120858
crossref_primary_10_1109_TKDE_2024_3405489
crossref_primary_10_32604_cmc_2024_049147
crossref_primary_10_1007_s00500_024_09835_4
crossref_primary_10_1016_j_ijar_2023_108966
crossref_primary_10_1109_TKDE_2024_3428485
crossref_primary_10_1007_s10489_023_04657_7
crossref_primary_10_1007_s10489_024_05533_8
crossref_primary_10_1109_TFUZZ_2024_3437367
crossref_primary_10_1016_j_asoc_2025_112716
crossref_primary_10_1016_j_ins_2023_119753
crossref_primary_10_1007_s10489_024_05904_1
crossref_primary_10_1007_s13042_023_01977_5
crossref_primary_10_1016_j_ijar_2022_05_011
crossref_primary_10_1109_TKDE_2022_3181208
crossref_primary_10_3390_e27010094
crossref_primary_10_1016_j_engappai_2023_106080
crossref_primary_10_1016_j_asoc_2024_112664
crossref_primary_10_1016_j_ijar_2024_109271
crossref_primary_10_1109_TKDE_2024_3474728
crossref_primary_10_3390_electronics12204375
crossref_primary_10_1002_cpe_7388
crossref_primary_10_1016_j_ins_2023_119845
crossref_primary_10_1007_s13042_022_01629_0
crossref_primary_10_1016_j_eswa_2024_125714
crossref_primary_10_1016_j_eswa_2024_123778
crossref_primary_10_1016_j_ijar_2024_109354
crossref_primary_10_1016_j_asoc_2024_111450
crossref_primary_10_1007_s10489_022_03696_w
crossref_primary_10_1109_TFUZZ_2023_3275635
crossref_primary_10_1016_j_eswa_2023_122965
crossref_primary_10_1109_TSMC_2021_3119119
crossref_primary_10_1007_s10489_024_06134_1
crossref_primary_10_1016_j_eswa_2023_122324
crossref_primary_10_1016_j_ins_2024_121016
crossref_primary_10_1016_j_scs_2021_102764
crossref_primary_10_1007_s12559_024_10400_2
crossref_primary_10_1007_s13042_021_01404_7
crossref_primary_10_1016_j_ins_2023_119698
crossref_primary_10_1109_TFUZZ_2024_3392328
crossref_primary_10_1109_TFUZZ_2024_3397697
crossref_primary_10_1007_s10489_022_03496_2
crossref_primary_10_1016_j_compbiomed_2023_107538
crossref_primary_10_1007_s13042_022_01708_2
crossref_primary_10_1016_j_inffus_2023_01_019
crossref_primary_10_1016_j_ins_2024_121261
crossref_primary_10_1016_j_engappai_2024_109035
crossref_primary_10_1016_j_ins_2022_09_006
crossref_primary_10_1016_j_ins_2024_121661
crossref_primary_10_32604_iasc_2023_037874
crossref_primary_10_1016_j_ins_2024_120731
crossref_primary_10_1016_j_eswa_2024_123313
crossref_primary_10_1007_s10489_022_04445_9
crossref_primary_10_1007_s13042_023_01775_z
crossref_primary_10_1016_j_ijar_2024_109210
crossref_primary_10_1007_s10489_024_05809_z
crossref_primary_10_1007_s13042_022_01528_4
crossref_primary_10_1016_j_asoc_2025_112880
crossref_primary_10_3390_sym15050996
crossref_primary_10_1016_j_fss_2025_109382
crossref_primary_10_1155_2021_9945840
crossref_primary_10_1016_j_asoc_2024_111303
crossref_primary_10_1109_TNNLS_2022_3175922
crossref_primary_10_1016_j_inffus_2023_101951
crossref_primary_10_1016_j_eswa_2024_124086
crossref_primary_10_1109_TFUZZ_2023_3250639
crossref_primary_10_1109_TKDE_2023_3249475
crossref_primary_10_1016_j_eswa_2024_125323
crossref_primary_10_1109_TPAMI_2024_3400281
crossref_primary_10_1007_s13042_022_01618_3
crossref_primary_10_1007_s13042_022_01633_4
crossref_primary_10_1007_s13042_020_01257_6
crossref_primary_10_1016_j_knosys_2022_109394
crossref_primary_10_1016_j_ijar_2025_109364
crossref_primary_10_1109_TFUZZ_2023_3261908
crossref_primary_10_1109_TNNLS_2023_3300916
crossref_primary_10_1016_j_ijar_2023_03_002
crossref_primary_10_1109_TKDE_2022_3178090
crossref_primary_10_1109_TKDE_2022_3220200
crossref_primary_10_1016_j_ins_2023_01_046
crossref_primary_10_1016_j_ijar_2022_08_005
crossref_primary_10_3390_sym14081652
Cites_doi 10.1109/TKDE.2014.2320740
10.1109/TFUZZ.2016.2632745
10.1016/j.ins.2019.01.010
10.1016/j.ins.2008.11.020
10.1016/j.ijar.2018.12.013
10.1126/science.1242072
10.1109/91.660805
10.1007/BF02943234
10.1109/TCYB.2016.2636339
10.1109/TKDE.2012.146
10.1109/TFUZZ.2014.2360548
10.1109/TFUZZ.2006.889960
10.1109/TFUZZ.2015.2426204
10.1109/TKDE.2012.234
10.3724/SP.J.1001.2008.00640
10.1109/TCYB.2015.2496425
10.3724/SP.J.1146.2006.01873
10.1016/j.ins.2006.06.003
10.1016/S0165-0114(97)00077-8
10.1109/TKDE.2012.242
10.1016/s0165-0114(03)00021-6
10.1117/12.669023
10.1109/TFUZZ.2016.2574918
10.1109/TFUZZ.2013.2291570
10.1109/TKDE.2008.147
10.1016/j.artint.2010.04.018
10.1109/ACCESS.2018.2841876
10.1109/TFUZZ.2017.2718492
10.1109/TFUZZ.2016.2581186
10.1109/TFUZZ.2017.2670551
10.1109/TFUZZ.2017.2698420
10.1109/TFUZZ.2014.2327993
10.1109/TCYB.2014.2357892
10.1007/978-94-015-7975-9_21
10.1016/j.knosys.2017.01.008
10.1109/TFUZZ.2014.2387877
10.1109/TFUZZ.2017.2647966
10.1109/TFUZZ.2017.2768044
10.1109/TKDE.2018.2873791
10.1007/BF01001956
10.1016/j.knosys.2018.04.023
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2020.2997039
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1242
ExternalDocumentID 10_1109_TKDE_2020_2997039
9099413
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61806030; 61936001
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2019QY(Y)0301; 2016QY01W0200
  funderid: 10.13039/501100012166
– fundername: Natural Science Foundation of Chongqing
  grantid: cstc2019jcyj-msxmX0485; cstc2019jcyj-cxttX0002
  funderid: 10.13039/501100005230
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-3a29a56feb4db3d8113cac00178260a6cda54e11822035581b76f2338222d5e13
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 06:07:44 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
Wed Oct 01 02:06:24 EDT 2025
Wed Aug 27 03:00:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-3a29a56feb4db3d8113cac00178260a6cda54e11822035581b76f2338222d5e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5993-9563
PQID 2625367606
PQPubID 85438
PageCount 12
ParticipantIDs ieee_primary_9099413
proquest_journals_2625367606
crossref_primary_10_1109_TKDE_2020_2997039
crossref_citationtrail_10_1109_TKDE_2020_2997039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
ref37
ref14
ref36
ref30
Ling (ref31) 2003; 14
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Hoa (ref12); 96
ref24
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Hu (ref13) 2008; 21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Miao (ref23) 1999; 36
References_xml – ident: ref7
  doi: 10.1109/TKDE.2014.2320740
– ident: ref18
  doi: 10.1109/TFUZZ.2016.2632745
– ident: ref37
  doi: 10.1016/j.ins.2019.01.010
– ident: ref43
  doi: 10.1016/j.ins.2008.11.020
– ident: ref32
  doi: 10.1016/j.ijar.2018.12.013
– ident: ref28
  doi: 10.1126/science.1242072
– ident: ref17
  doi: 10.1109/91.660805
– volume: 14
  start-page: 770
  issue: 4
  year: 2003
  ident: ref31
  article-title: Theory of fuzzy quotient space (methods of fuzzy granular computing)
  publication-title: J. Softw.
– ident: ref34
  doi: 10.1007/BF02943234
– volume: 96
  start-page: 1541
  volume-title: Proc. Int. Conf. Inf. Process. Manage. Uncertainty
  ident: ref12
  article-title: Some efficient algorithms for rough set methods
– ident: ref9
  doi: 10.1109/TCYB.2016.2636339
– ident: ref19
  doi: 10.1109/TKDE.2012.146
– ident: ref41
  doi: 10.1109/TFUZZ.2014.2360548
– ident: ref30
  doi: 10.1109/TFUZZ.2006.889960
– ident: ref1
  doi: 10.1109/TFUZZ.2015.2426204
– ident: ref3
  doi: 10.1109/TKDE.2012.234
– ident: ref15
  doi: 10.3724/SP.J.1001.2008.00640
– ident: ref4
  doi: 10.1109/TCYB.2015.2496425
– ident: ref38
  doi: 10.3724/SP.J.1146.2006.01873
– ident: ref25
  doi: 10.1016/j.ins.2006.06.003
– ident: ref44
  doi: 10.1016/S0165-0114(97)00077-8
– ident: ref21
  doi: 10.1109/TKDE.2012.242
– ident: ref16
  doi: 10.1016/s0165-0114(03)00021-6
– ident: ref42
  doi: 10.1117/12.669023
– volume: 36
  start-page: 681
  issue: 6
  year: 1999
  ident: ref23
  article-title: A heuristic algorithm for reduction of knowledge
  publication-title: J. Comput. Res. Develop.
– ident: ref33
  doi: 10.1109/TFUZZ.2016.2574918
– ident: ref5
  doi: 10.1109/TFUZZ.2013.2291570
– volume: 21
  start-page: 730
  issue: 6
  year: 2008
  ident: ref13
  article-title: Efficient symbolic and numerical attribute reduction with neighborhood rough sets
  publication-title: Pattern Recognit. Artif. Intell.
– ident: ref20
  doi: 10.1109/TKDE.2008.147
– ident: ref26
  doi: 10.1016/j.artint.2010.04.018
– ident: ref27
  doi: 10.1109/ACCESS.2018.2841876
– ident: ref39
  doi: 10.1109/TFUZZ.2017.2718492
– ident: ref40
  doi: 10.1109/TFUZZ.2016.2581186
– ident: ref2
  doi: 10.1109/TFUZZ.2017.2670551
– ident: ref11
  doi: 10.1109/TFUZZ.2017.2698420
– ident: ref45
  doi: 10.1109/TFUZZ.2014.2327993
– ident: ref22
  doi: 10.1109/TCYB.2014.2357892
– ident: ref29
  doi: 10.1007/978-94-015-7975-9_21
– ident: ref8
  doi: 10.1016/j.knosys.2017.01.008
– ident: ref6
  doi: 10.1109/TFUZZ.2014.2387877
– ident: ref14
  doi: 10.1109/TFUZZ.2017.2647966
– ident: ref10
  doi: 10.1109/TFUZZ.2017.2768044
– ident: ref36
  doi: 10.1109/TKDE.2018.2873791
– ident: ref24
  doi: 10.1007/BF01001956
– ident: ref35
  doi: 10.1016/j.knosys.2018.04.023
SSID ssj0008781
Score 2.6653154
Snippet Feature reduction is an important aspect of Big Data analytics on today's ever-larger datasets. Rough sets are a classical method widely applied in attribute...
Feature reduction is an important aspect of Big Data analytics on today’s ever-larger datasets. Rough sets are a classical method widely applied in attribute...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1231
SubjectTerms Adaptive algorithms
Approximation algorithms
Big Data
Classification
Complexity
Datasets
Feature extraction
fuzzy rough sets
granular ball computing
Heuristic algorithms
neighborhood rough sets
Optimization
Reduction
Rough set models
Rough sets
Search problems
Source code
Time complexity
Title GBNRS: A Novel Rough Set Algorithm for Fast Adaptive Attribute Reduction in Classification
URI https://ieeexplore.ieee.org/document/9099413
https://www.proquest.com/docview/2625367606
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB0BJzgAC6y2u7DygdNqUxwnThpuhaUgED0UkBCXyJ-AKC2CdA_765lx0ooFhLhFkS1ZeuPxPHtmHsA21xmG3dai8SLTSZ2Ko44XKhJOGs9TizZC95Cn_ezoIj2-lJdz8HtWC-OcC8lnrk2f4S3fjs2Ersp2CgxnUpKonc87WV2rNfO6nTwIkiK7QE6UpHnzghnzYuf85M8BMkHB2-h70cKL_86gIKryxhOH46W3AqfThdVZJXftSaXb5t-rno2fXfkqLDdxJuvWhvEF5txoDVamGg6s2dJrsPSiIeE6XB3u9Qdnu6zL-uO_bsgGpOHDzlzFusPr8eNtdXPPMMplPfWEv6x6IGfJulUtm-XYgBrBEtTsdsSC3iZlIgXwN-Cid3C-fxQ16guRwRCgihIlCiUz73RqdWI7cZwYZehUQ0bCVWaskqkjfiI49WiPdZ55gYwXIw4rXZx8hYXReOS-Acu9Q8wlR2sxqdeJktrHXhfeikx6mbeAT_EoTdOanBQyhmWgKLwoCcKSICwbCFvwazbloe7L8dHgdYJkNrBBowWbU9DLZuc-lQIJIXWx49n392f9gEVBJRAhD20TFqrHidvCwKTSP4NFPgMjLN0Y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB1V7QE4tNCCCBTwgRNiU6_X3s1yC9AQaJNDmkoVl5U_adU0qdpND_x6ZrybiC8hbquVLVl64_E8e2YewGtucgy7nUPjRaYjvU6TXhA6EV7ZwKVDG6F7yNE4H57KL2fqbAPermthvPcx-cx36TO-5buFXdJV2UGJ4YwkidotJaVUTbXW2u_2iihJivwCWVEmi_YNM-XlwfTo4yFyQcG76H3RxstfTqEoq_KHL44HzGAHRqulNXkll91lbbr2-29dG_937Q9hu400Wb8xjUew4ee7sLNScWDtpt6FBz-1JNyDr5_ejycn71ifjRd3fsYmpOLDTnzN-rNvi5uL-vyKYZzLBvoWfzl9Te6S9etGOMuzCbWCJbDZxZxFxU3KRYrwP4bTweH0wzBp9RcSi0FAnWRalFrlwRvpTOZ6aZpZbelcQ07CdW6dVtITQxGcurSnpsiDQM6LMYdTPs2ewOZ8MfdPgRXBI-qKo71YGUymlQlpMGVwIldBFR3gKzwq2zYnJ42MWRVJCi8rgrAiCKsWwg68WU-5bjpz_GvwHkGyHtii0YH9FehVu3dvK4GUkPrY8fzZ32e9gnvD6ei4Ov48PnoO9wUVRMSstH3YrG-W_gWGKbV5Ga3zB-Dk4GU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GBNRS%3A+A+Novel+Rough+Set+Algorithm+for+Fast+Adaptive+Attribute+Reduction+in+Classification&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Xia%2C+Shuyin&rft.au=Zhang%2C+Hao&rft.au=Li%2C+Wenhua&rft.au=Wang%2C+Guoyin&rft.date=2022-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=34&rft.issue=3&rft.spage=1231&rft_id=info:doi/10.1109%2FTKDE.2020.2997039&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon