Adaptive Fault-Tolerant Tracking Control for MIMO Discrete-Time Systems via Reinforcement Learning Algorithm With Less Learning Parameters

This paper is concerned with a reinforcement learning-based adaptive tracking control technique to tolerate faults for a class of unknown multiple-input multiple-output nonlinear discrete-time systems with less learning parameters. Not only abrupt faults are considered, but also incipient faults are...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 14; no. 1; pp. 299 - 313
Main Authors Liu, Lei, Wang, Zhanshan, Zhang, Huaguang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-5955
1558-3783
DOI10.1109/TASE.2016.2517155

Cover

Abstract This paper is concerned with a reinforcement learning-based adaptive tracking control technique to tolerate faults for a class of unknown multiple-input multiple-output nonlinear discrete-time systems with less learning parameters. Not only abrupt faults are considered, but also incipient faults are taken into account. Based on the approximation ability of neural networks, action network and critic network are proposed to approximate the optimal signal and to generate the novel cost function, respectively. The remarkable feature of the proposed method is that it can reduce the cost in the procedure of tolerating fault and can decrease the number of learning parameters and thus reduce the computational burden. Stability analysis is given to ensure the uniform boundedness of adaptive control signals and tracking errors. Finally, three simulations are used to show the effectiveness of the present strategy.
AbstractList This paper is concerned with a reinforcement learning-based adaptive tracking control technique to tolerate faults for a class of unknown multiple-input multiple-output nonlinear discrete-time systems with less learning parameters. Not only abrupt faults are considered, but also incipient faults are taken into account. Based on the approximation ability of neural networks, action network and critic network are proposed to approximate the optimal signal and to generate the novel cost function, respectively. The remarkable feature of the proposed method is that it can reduce the cost in the procedure of tolerating fault and can decrease the number of learning parameters and thus reduce the computational burden. Stability analysis is given to ensure the uniform boundedness of adaptive control signals and tracking errors. Finally, three simulations are used to show the effectiveness of the present strategy.
Author Huaguang Zhang
Zhanshan Wang
Lei Liu
Author_xml – sequence: 1
  givenname: Lei
  surname: Liu
  fullname: Liu, Lei
– sequence: 2
  givenname: Zhanshan
  surname: Wang
  fullname: Wang, Zhanshan
– sequence: 3
  givenname: Huaguang
  surname: Zhang
  fullname: Zhang, Huaguang
BookMark eNp9kM1KAzEUhYNUsK0-gLgJuJ6an8lMZllq_YFKRUdcDjG9o9GZSU1Soa_gU5uhouDCzU1yc87JzTdCg852gNAxJRNKSXFWTu_nE0ZoNmGC5lSIPTSMVSY8l3zQ71ORiEKIAzTy_pUQlsqCDNHndKXWwXwAvlCbJiSlbcCpLuDSKf1mumc8s11wtsG1dfjm-maJz43XDgIkpWkB3299gNbjD6PwHZguyjS0EBMWoFzXJ0ybZ-tMeGnxY6yx7_3v5a1yqo1pzh-i_Vo1Ho6-1zF6uJiXs6tksby8nk0XiWYFDwlXNCOZ5gpqkkoK8R_1KlNCayo0UZrpvEgFI5CyWoriSVOo05QxJrWMJ8bH6HSXu3b2fQM-VK9247r4ZEWlyHmaxYCoyncq7az3DupKm6CC6Wko01SUVD34qgdf9eCrb_DRSf841860ym3_9ZzsPAYAfvQ5l3GSnH8BEUeSHQ
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_TSMC_2019_2957301
crossref_primary_10_1109_TSMC_2018_2875187
crossref_primary_10_1109_TASE_2023_3340726
crossref_primary_10_1109_TASE_2021_3072339
crossref_primary_10_1016_j_asoc_2019_105629
crossref_primary_10_1016_j_conengprac_2019_01_013
crossref_primary_10_1109_TSMC_2018_2792472
crossref_primary_10_1016_j_neunet_2023_04_008
crossref_primary_10_1007_s11071_017_3516_z
crossref_primary_10_1109_TNNLS_2018_2810138
crossref_primary_10_1109_TFUZZ_2019_2930034
crossref_primary_10_1109_TNNLS_2021_3054378
crossref_primary_10_1115_1_4043333
crossref_primary_10_1109_TSMC_2018_2816928
crossref_primary_10_1016_j_ymssp_2017_09_039
crossref_primary_10_1109_TNNLS_2018_2812709
crossref_primary_10_1049_iet_spr_2018_5077
crossref_primary_10_1016_j_knosys_2017_12_019
crossref_primary_10_1016_j_isatra_2019_07_024
crossref_primary_10_1016_j_ifacol_2018_09_583
crossref_primary_10_1109_TSMC_2018_2847283
crossref_primary_10_1007_s11071_023_08989_4
crossref_primary_10_1155_2022_7726338
crossref_primary_10_1016_j_ast_2019_105424
crossref_primary_10_1016_j_jfranklin_2019_08_024
crossref_primary_10_1109_TCYB_2018_2858264
crossref_primary_10_1109_TIE_2019_2893847
crossref_primary_10_1109_TSMC_2018_2841063
crossref_primary_10_1109_TASE_2019_2917580
crossref_primary_10_1016_j_engappai_2024_109989
crossref_primary_10_1109_JSYST_2023_3262510
crossref_primary_10_1109_TFUZZ_2019_2919490
crossref_primary_10_1109_TSMC_2023_3269108
crossref_primary_10_1109_TASE_2024_3426328
crossref_primary_10_1016_j_automatica_2020_108922
crossref_primary_10_1007_s12206_022_0807_1
crossref_primary_10_1109_TFUZZ_2017_2717801
crossref_primary_10_1109_TASE_2022_3215738
crossref_primary_10_1016_j_jfranklin_2021_12_012
crossref_primary_10_1016_j_oceaneng_2021_109594
crossref_primary_10_1016_j_neucom_2018_07_096
crossref_primary_10_1016_j_neucom_2020_04_009
crossref_primary_10_1002_acs_3548
crossref_primary_10_1007_s12555_020_0063_z
crossref_primary_10_1016_j_neucom_2018_10_022
crossref_primary_10_1109_TNNLS_2018_2861942
crossref_primary_10_1109_TCYB_2017_2660533
crossref_primary_10_1016_j_ijepes_2019_04_011
crossref_primary_10_1016_j_neucom_2024_127869
crossref_primary_10_1021_acs_iecr_3c01789
crossref_primary_10_1155_2021_5880795
crossref_primary_10_1016_j_knosys_2019_07_007
crossref_primary_10_1109_TCSI_2018_2819655
crossref_primary_10_1109_ACCESS_2018_2854720
crossref_primary_10_1109_TASE_2024_3372713
crossref_primary_10_1021_acs_cgd_1c01519
crossref_primary_10_1016_j_jprocont_2020_11_005
crossref_primary_10_1049_iet_cta_2018_0101
crossref_primary_10_1109_TSMC_2018_2883907
crossref_primary_10_1080_00207179_2017_1407877
crossref_primary_10_1016_j_neucom_2020_06_027
crossref_primary_10_1177_0142331218786529
crossref_primary_10_1109_TIE_2019_2937037
crossref_primary_10_1109_TSMC_2018_2834823
crossref_primary_10_1007_s11063_016_9562_6
crossref_primary_10_1016_j_conengprac_2023_105783
crossref_primary_10_1049_iet_cta_2018_5353
crossref_primary_10_1016_j_nahs_2021_101083
crossref_primary_10_1088_1742_6596_1302_2_022061
crossref_primary_10_1109_TCYB_2017_2755864
crossref_primary_10_1109_TASE_2021_3102588
crossref_primary_10_1016_j_asoc_2024_112149
crossref_primary_10_1109_ACCESS_2020_3022893
crossref_primary_10_1109_TNNLS_2017_2749641
crossref_primary_10_1080_21642583_2021_1969700
crossref_primary_10_1016_j_neunet_2017_09_005
crossref_primary_10_1016_j_neucom_2018_12_031
crossref_primary_10_1007_s10462_022_10348_5
crossref_primary_10_1109_TNNLS_2017_2651903
crossref_primary_10_1007_s40435_021_00871_8
crossref_primary_10_1016_j_neucom_2018_02_088
crossref_primary_10_1109_TASE_2023_3278978
crossref_primary_10_1109_TSMC_2019_2903203
crossref_primary_10_1109_TSMC_2019_2957183
crossref_primary_10_1007_s12555_020_0923_6
crossref_primary_10_1080_00207721_2017_1344890
crossref_primary_10_1109_TII_2021_3080841
crossref_primary_10_1109_TNNLS_2023_3281403
crossref_primary_10_1002_oca_2567
crossref_primary_10_1016_j_neucom_2018_02_082
crossref_primary_10_1109_TSMC_2022_3185286
crossref_primary_10_1002_oca_2841
crossref_primary_10_1016_j_ast_2022_107818
crossref_primary_10_1109_TSMC_2017_2785314
crossref_primary_10_1109_TNNLS_2017_2751018
crossref_primary_10_1109_TFUZZ_2024_3423709
crossref_primary_10_1109_TII_2019_2903098
crossref_primary_10_1109_TSMC_2019_2917056
crossref_primary_10_1109_TCYB_2018_2828308
crossref_primary_10_1109_TSMC_2017_2785796
crossref_primary_10_1016_j_jfranklin_2017_05_011
crossref_primary_10_1177_0954410018813213
crossref_primary_10_1109_TSMC_2018_2833872
crossref_primary_10_1109_TSMC_2019_2956769
crossref_primary_10_1109_TASE_2023_3340411
crossref_primary_10_1109_TFUZZ_2024_3454283
crossref_primary_10_1002_acs_3338
crossref_primary_10_1109_TSMC_2016_2642118
crossref_primary_10_1016_j_ifacol_2020_12_194
crossref_primary_10_12677_DSC_2019_84025
crossref_primary_10_1002_acs_3210
crossref_primary_10_1109_ACCESS_2018_2872751
crossref_primary_10_1109_TASE_2024_3391629
crossref_primary_10_1016_j_fss_2017_07_002
crossref_primary_10_1177_01423312231174077
crossref_primary_10_1016_j_neucom_2021_12_017
crossref_primary_10_1109_TASE_2024_3444463
crossref_primary_10_1109_TCYB_2018_2799683
crossref_primary_10_1016_j_ress_2023_109218
crossref_primary_10_1109_TCYB_2020_2997348
crossref_primary_10_1016_j_ins_2020_07_055
crossref_primary_10_1109_TNNLS_2016_2642128
crossref_primary_10_1016_j_ifacol_2020_12_878
crossref_primary_10_1016_j_neucom_2016_12_011
crossref_primary_10_1007_s11071_016_2622_7
crossref_primary_10_1109_TNNLS_2017_2660070
crossref_primary_10_1002_rnc_4086
crossref_primary_10_1109_TMECH_2018_2817495
crossref_primary_10_1016_j_ast_2022_108060
crossref_primary_10_1109_TSMC_2019_2954875
crossref_primary_10_1007_s11071_017_3961_8
crossref_primary_10_23919_JSEE_2023_000162
crossref_primary_10_1016_j_fss_2017_07_018
crossref_primary_10_1109_TASE_2017_2667709
crossref_primary_10_1109_ACCESS_2019_2891724
crossref_primary_10_1109_TCYB_2017_2712188
crossref_primary_10_1109_TCYB_2018_2859421
crossref_primary_10_2139_ssrn_3967353
crossref_primary_10_1109_TASE_2024_3453926
crossref_primary_10_1007_s10462_023_10468_6
crossref_primary_10_1109_TSMC_2018_2819703
crossref_primary_10_1016_j_measurement_2021_109008
crossref_primary_10_1109_TNNLS_2018_2805689
crossref_primary_10_1109_TASE_2021_3070140
crossref_primary_10_1109_TNNLS_2019_2899589
crossref_primary_10_1016_j_automatica_2019_01_018
crossref_primary_10_1109_TASE_2022_3223702
crossref_primary_10_1109_ACCESS_2019_2927884
crossref_primary_10_1007_s00773_019_00681_w
crossref_primary_10_1016_j_neucom_2018_09_011
crossref_primary_10_1155_2021_5577241
crossref_primary_10_1016_j_neucom_2017_11_027
crossref_primary_10_1109_TIE_2020_3001857
crossref_primary_10_1016_j_jfranklin_2017_12_001
crossref_primary_10_1016_j_jfranklin_2018_07_009
crossref_primary_10_1049_cps2_12007
crossref_primary_10_1109_TCDS_2018_2868921
crossref_primary_10_1109_TCYB_2020_2982168
crossref_primary_10_1109_TSMC_2017_2748964
crossref_primary_10_1007_s00521_018_3585_z
crossref_primary_10_1007_s11432_017_9363_y
crossref_primary_10_1109_TASE_2020_3008846
crossref_primary_10_1007_s11768_021_00049_9
crossref_primary_10_1109_ACCESS_2020_3020550
crossref_primary_10_1109_TSMC_2017_2672664
crossref_primary_10_1007_s11071_024_10301_x
crossref_primary_10_1016_j_asej_2018_07_006
crossref_primary_10_1016_j_amc_2022_127759
crossref_primary_10_1007_s12555_018_0297_1
crossref_primary_10_1016_j_jfranklin_2021_05_004
Cites_doi 10.1109/TSMCB.2008.924141
10.1016/S1874-1029(14)60365-7
10.1109/TSMCC.2002.801727
10.1109/TCST.2006.883191
10.1109/ICCA.2010.5524211
10.1109/TSMCB.2006.880135
10.1109/TFUZZ.2010.2095861
10.1049/iet-cta.2013.0676
10.1109/TCST.2008.2010521
10.1016/S1874-1029(15)60002-7
10.1109/TFUZZ.2003.819837
10.1109/TNNLS.2012.2234133
10.1016/j.automatica.2013.10.006
10.1109/TCST.2004.839569
10.1109/TASE.2013.2284545
10.1080/00207179.2012.723828
10.1109/TAC.2010.2089650
10.1109/TNNLS.2014.2360724
10.1109/TASE.2013.2264809
10.1109/TCSI.2011.2157734
10.1109/TSMCB.2012.2196432
10.1109/TSMCB.2008.922019
10.1002/acs.2399
10.1080/00207170903580340
10.1016/S1874-1029(14)60405-5
10.1109/TFUZZ.2011.2158652
10.1016/S1874-1029(15)60003-9
10.1109/TSMCB.2011.2166384
10.1002/rnc.1802
10.1109/TFUZZ.2013.2254493
10.1109/37.387613
10.1109/TIE.2014.2367034
10.1109/CDC.1995.478953
10.1109/TAC.2011.2164734
10.1109/TASE.2012.2230628
10.1016/S0167-6911(97)00068-6
10.1109/TASE.2006.872120
10.1016/j.automatica.2014.04.006
10.1109/TCYB.2014.2323994
10.1109/TSMCB.2004.840124
10.1016/j.automatica.2013.02.001
10.1109/TAC.2004.832201
10.1109/TII.2012.2223220
10.1109/TSMCB.2004.826827
10.1016/j.neunet.2014.03.008
10.1016/j.automatica.2010.05.022
10.1109/TASE.2014.2303139
10.1109/TNNLS.2013.2283879
10.1109/TNNLS.2013.2292704
10.1109/TAC.2014.2384371
10.1109/TASE.2013.2280974
10.1016/j.sysconle.2015.02.004
10.1109/TFUZZ.2009.2038277
10.1109/TSMCB.2010.2043839
10.1109/TCYB.2014.2303131
10.1109/TSMCB.2008.926607
10.1109/TASE.2005.844122
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2016.2517155
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 313
ExternalDocumentID 4298204651
10_1109_TASE_2016_2517155
7389437
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c293t-3a1606c3aef0481e489fd6a5cc15c0ac2c794520e42f859bc1ef442228c89bc23
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Mon Jun 30 05:40:48 EDT 2025
Wed Oct 01 03:35:38 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Tue Aug 26 17:01:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-3a1606c3aef0481e489fd6a5cc15c0ac2c794520e42f859bc1ef442228c89bc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1857346794
PQPubID 27623
PageCount 15
ParticipantIDs ieee_primary_7389437
proquest_journals_1857346794
crossref_citationtrail_10_1109_TASE_2016_2517155
crossref_primary_10_1109_TASE_2016_2517155
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Jan.
2017-1-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-Jan.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
liu (ref49) 2013; 10
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
bertsekas (ref33) 1995
ref35
ref34
ref37
ref36
ref31
ref30
ref32
liu (ref22) 2008; 38
ref2
ref1
ref39
ref38
xu (ref29) 2014; 25
li (ref41) 2010; 18
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
References_xml – ident: ref21
  doi: 10.1109/TSMCB.2008.924141
– ident: ref58
  doi: 10.1016/S1874-1029(14)60365-7
– ident: ref24
  doi: 10.1109/TSMCC.2002.801727
– ident: ref2
  doi: 10.1109/TCST.2006.883191
– ident: ref31
  doi: 10.1109/ICCA.2010.5524211
– ident: ref20
  doi: 10.1109/TSMCB.2006.880135
– ident: ref14
  doi: 10.1109/TFUZZ.2010.2095861
– ident: ref53
  doi: 10.1049/iet-cta.2013.0676
– ident: ref1
  doi: 10.1109/TCST.2008.2010521
– ident: ref55
  doi: 10.1016/S1874-1029(15)60002-7
– ident: ref35
  doi: 10.1109/TFUZZ.2003.819837
– ident: ref27
  doi: 10.1109/TNNLS.2012.2234133
– ident: ref52
  doi: 10.1016/j.automatica.2013.10.006
– ident: ref9
  doi: 10.1109/TCST.2004.839569
– ident: ref23
  doi: 10.1109/TASE.2013.2284545
– ident: ref10
  doi: 10.1080/00207179.2012.723828
– ident: ref45
  doi: 10.1109/TAC.2010.2089650
– ident: ref37
  doi: 10.1109/TNNLS.2014.2360724
– ident: ref12
  doi: 10.1109/TASE.2013.2264809
– ident: ref5
  doi: 10.1109/TCSI.2011.2157734
– ident: ref38
  doi: 10.1109/TSMCB.2012.2196432
– volume: 38
  start-page: 988
  year: 2008
  ident: ref22
  article-title: Adaptive critic learning techniques for engine torque and air-fuel ratio control
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2008.922019
– ident: ref6
  doi: 10.1002/acs.2399
– ident: ref44
  doi: 10.1080/00207170903580340
– ident: ref57
  doi: 10.1016/S1874-1029(14)60405-5
– ident: ref34
  doi: 10.1109/TFUZZ.2011.2158652
– ident: ref56
  doi: 10.1016/S1874-1029(15)60003-9
– ident: ref43
  doi: 10.1109/TSMCB.2011.2166384
– ident: ref17
  doi: 10.1002/rnc.1802
– ident: ref50
  doi: 10.1109/TFUZZ.2013.2254493
– ident: ref51
  doi: 10.1109/37.387613
– ident: ref8
  doi: 10.1109/TIE.2014.2367034
– ident: ref26
  doi: 10.1109/CDC.1995.478953
– ident: ref11
  doi: 10.1109/TAC.2011.2164734
– volume: 10
  start-page: 687
  year: 2013
  ident: ref49
  article-title: Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2012.2230628
– ident: ref39
  doi: 10.1016/S0167-6911(97)00068-6
– ident: ref13
  doi: 10.1109/TASE.2006.872120
– year: 1995
  ident: ref33
  publication-title: Dynamic Programming and Optimal Control
– ident: ref4
  doi: 10.1016/j.automatica.2014.04.006
– ident: ref48
  doi: 10.1109/TCYB.2014.2323994
– ident: ref30
  doi: 10.1109/TSMCB.2004.840124
– ident: ref16
  doi: 10.1016/j.automatica.2013.02.001
– ident: ref3
  doi: 10.1109/TAC.2004.832201
– ident: ref46
  doi: 10.1109/TII.2012.2223220
– ident: ref36
  doi: 10.1109/TSMCB.2004.826827
– ident: ref18
  doi: 10.1016/j.neunet.2014.03.008
– ident: ref15
  doi: 10.1016/j.automatica.2010.05.022
– ident: ref25
  doi: 10.1109/TASE.2014.2303139
– ident: ref40
  doi: 10.1109/TNNLS.2013.2283879
– volume: 25
  start-page: 635
  year: 2014
  ident: ref29
  article-title: Reinforcement learning output feedback NN control using deterministic learning technique
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2292704
– ident: ref7
  doi: 10.1109/TAC.2014.2384371
– ident: ref32
  doi: 10.1109/TASE.2013.2280974
– ident: ref54
  doi: 10.1016/j.sysconle.2015.02.004
– volume: 18
  start-page: 150
  year: 2010
  ident: ref41
  article-title: A novel robust adaptive-fuzzy-tracking control for a class of nonlinearmulti-input/multi-output systems
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2009.2038277
– ident: ref28
  doi: 10.1109/TSMCB.2010.2043839
– ident: ref47
  doi: 10.1109/TCYB.2014.2303131
– ident: ref19
  doi: 10.1109/TSMCB.2008.926607
– ident: ref42
  doi: 10.1109/TASE.2005.844122
SSID ssj0024890
Score 2.54259
Snippet This paper is concerned with a reinforcement learning-based adaptive tracking control technique to tolerate faults for a class of unknown multiple-input...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 299
SubjectTerms Adaptive critic design
Adaptive systems
Algorithms
Control systems
Cost function
Discrete-time systems
Fault tolerance
fault tolerant control
MIMO
multiple-input multiple-output discrete-time systems
Neural networks
reinforcement learning algorithm
Tracking control systems
Title Adaptive Fault-Tolerant Tracking Control for MIMO Discrete-Time Systems via Reinforcement Learning Algorithm With Less Learning Parameters
URI https://ieeexplore.ieee.org/document/7389437
https://www.proquest.com/docview/1857346794
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BJ3rog4eaFpAPPVU4eHftfRwjSJRWSltBENxWXq9No6YJIpse-hP6q5nxOgHRCvWy2odtWfvZnvF45huAD4hx7VSdcVsIx2WqBS9qIbmVWtaxNpnNKTh59CUdXsrP1-p6A47XsTDWWu98Zrt068_y67lZkqnsJEuILTzbhM0sT9tYrQdevdzbU0gj4KpQKpxgRqI4Gfcu-uTElXaJnyuiqL5HMsgnVflrJfbiZfAKRquOtV4lP7rLpuqa3084G_-356_hZdAzWa8dGG9gw8524MUj9sFd-NOr9S2tdmygl9OGj-dTi5KrYSi_DFnQ2Wnrx85QsWWjT6Ov7GyCqwyq2ZwiR1hgO2e_JpqdW0_Bary1kQXW1hvWm97M7ybN95_sCq_4frF4-PhNk2cY0XvuweWgPz4d8pCagRvUDxqe6Ah3PibR1hHhjMW_7-pUK2MiZYQ2scF5rmJhZexyVVQmsk56a5PJ8SlO9mFrNp_Zt8BclmS5qykzIGoTApsUeSWMkwmd8RVVB8QKrNIE3nJKnzEt_f5FFCXhWxK-ZcC3Ax_XVW5b0o7nCu8SXuuCAaoOHKxGRBmm9aIk4qwERUsh3_271nvYjknuexvNAWw1d0t7iFpLUx354XoPF33p0Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N7QF4gMGYVtiGH3hCuHMSu0keq7Gqg2Ug6MTeIsext4rSTmvKA38CfzV3jttNY0K8RPlhW1bO9n0-330H8AZlXDtVp9zmwnHZ04LntZDcSi3rWJvUZhScXJz2hmfyw7k6X4N3q1gYa613PrNduvVn-fXMLMhUdpAmxBaePoANJaVUbbTWDbNe5i0qhAm4ypUKZ5iRyA9G_a9H5MbV6xJDV0Rxfbe0kE-r8tda7BXM4CkUy661fiXfu4um6ppfd1gb_7fvm_AkIE3Wb4fGM1iz0-fw-Bb_4Bb87tf6itY7NtCLScNHs4lF3dUw1GCGbOjssPVkZwhtWXFcfGLvx7jOINDmFDvCAt85-znW7Iv1JKzG2xtZ4G29YP3Jxex63Fz-YN_wiu_n85uPnzX5hhHB5ws4GxyNDoc8JGfgBhFCwxMd4d7HJNo6opyx-Pdd3dPKmEgZoU1scKarWFgZu0zllYmsk97eZDJ8ipNtWJ_OpnYHmEuTNHM15QZEPCGwSZFVwjiZ0ClfXnVALIVVmsBcTgk0JqXfwYi8JPmWJN8yyLcDb1dVrlrajn8V3iJ5rQoGUXVgdzkiyjCx5yVRZyWoXHL58v5ar-HhcFSclCfHpx9fwaOYUIC32OzCenO9sHuIYZpq3w_dP3pJ7R4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Fault-Tolerant+Tracking+Control+for+MIMO+Discrete-Time+Systems+via+Reinforcement+Learning+Algorithm+With+Less+Learning+Parameters&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Liu%2C+Lei&rft.au=Wang%2C+Zhanshan&rft.au=Zhang%2C+Huaguang&rft.date=2017-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=14&rft.issue=1&rft.spage=299&rft_id=info:doi/10.1109%2FTASE.2016.2517155&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4298204651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon