Non-Invasive Localization Using Software-Defined Radios
Non-invasive indoor human activity detection using radio waves has attracted the interest of researchers, contributing to a range of new applications including smart healthcare. Localisation of activities can assist in developing advanced healthcare systems able to identify the location of patients....
Saved in:
Published in | IEEE sensors journal Vol. 22; no. 9; pp. 9018 - 9026 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2022.3160796 |
Cover
Abstract | Non-invasive indoor human activity detection using radio waves has attracted the interest of researchers, contributing to a range of new applications including smart healthcare. Localisation of activities can assist in developing advanced healthcare systems able to identify the location of patients. Radio frequencies have been shown in numerous studies as a non-invasive method to identify human activity. This is achieved by observing the signal propagation described in the Channel State Information (CSI). This paper presents experimental results using Universal Software-Defined Radio Peripheral (USRP) devices to identify and localise a single human subject performing activities by utilizing the CSI of radio frequencies. The experiments are carried out to retrieve CSI samples observing a single subject perform no-activity, sitting, standing, and leaning forward actions in various positions in a room. Additional CSI is captured for the subject walking in two directions across the observed area. Giving a total of 6 activities spanning the monitored area. CSI is also collected while the monitored area is empty for further comparison. Artificial intelligence is used to make classifications on collected CSI. The proposed approach uses a Super Learner (SL) algorithm that can identify the location of different activities with 96% accuracy, outperforming existing benchmark approaches. |
---|---|
AbstractList | Non-invasive indoor human activity detection using radio waves has attracted the interest of researchers, contributing to a range of new applications including smart healthcare. Localisation of activities can assist in developing advanced healthcare systems able to identify the location of patients. Radio frequencies have been shown in numerous studies as a non-invasive method to identify human activity. This is achieved by observing the signal propagation described in the Channel State Information (CSI). This paper presents experimental results using Universal Software-Defined Radio Peripheral (USRP) devices to identify and localise a single human subject performing activities by utilizing the CSI of radio frequencies. The experiments are carried out to retrieve CSI samples observing a single subject perform no-activity, sitting, standing, and leaning forward actions in various positions in a room. Additional CSI is captured for the subject walking in two directions across the observed area. Giving a total of 6 activities spanning the monitored area. CSI is also collected while the monitored area is empty for further comparison. Artificial intelligence is used to make classifications on collected CSI. The proposed approach uses a Super Learner (SL) algorithm that can identify the location of different activities with 96% accuracy, outperforming existing benchmark approaches. |
Author | Taha, Ahmad Khan, Muhammad Zakir Taylor, William Imran, Muhammad Ali Abbasi, Qammer H. |
Author_xml | – sequence: 1 givenname: Muhammad Zakir orcidid: 0000-0003-2405-3222 surname: Khan fullname: Khan, Muhammad Zakir email: m.khan.6@research.gla.ac.uk organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K – sequence: 2 givenname: Ahmad orcidid: 0000-0003-1246-8981 surname: Taha fullname: Taha, Ahmad email: ahmad.taha@glasgow.ac.uk organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K – sequence: 3 givenname: William surname: Taylor fullname: Taylor, William email: 2536400t@student.gla.ac.uk organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K – sequence: 4 givenname: Muhammad Ali orcidid: 0000-0003-4743-9136 surname: Imran fullname: Imran, Muhammad Ali email: muhammad.imran@glasgow.ac.uk organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K – sequence: 5 givenname: Qammer H. orcidid: 0000-0002-7097-9969 surname: Abbasi fullname: Abbasi, Qammer H. email: qammer.abbasi@glasgow.ac.uk organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K |
BookMark | eNp9kE1LAzEQhoNUsK3-APGy4HnXfGw2yVFq1UqpYC14C2k2kZSa1GRb0V_vri0ePHiaGXifGeYZgJ4P3gBwjmCBEBRXD_PxrMAQ44KgCjJRHYE-opTniJW81_UE5iVhLydgkNIKQiQYZX3AZsHnE79Tye1MNg1ard2Xalzw2SI5_5rNg20-VDT5jbHOmzp7UrUL6RQcW7VO5uxQh2BxO34e3efTx7vJ6HqaayxIk2MNsarrpTUIVhYLbcqlhopxxhillmpeUoERFyWnBtY1ZlU7EbSklCLNLBmCy_3eTQzvW5MauQrb6NuTEldUkJZr80OA9ikdQ0rRWLmJ7k3FT4mg7PzIzo_s_MiDn5Zhfxjtmp_Pm6jc-l_yYk86Y8zvJcEIr1rN3_nvczk |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_3389_frcmn_2022_1010228 crossref_primary_10_1016_j_aej_2023_11_075 crossref_primary_10_1002_ail2_104 crossref_primary_10_1109_JSEN_2023_3320131 crossref_primary_10_1109_JSEN_2023_3265867 |
Cites_doi | 10.1088/1742-6596/1437/1/012014 10.18203/2394-6040.ijcmph20175306 10.1109/UBMK.2018.8566532 10.1145/3382770 10.1109/ACCESS.2018.2871960 10.1109/TVT.2018.2810307 10.1007/978-3-319-27024-1 10.1145/3377165 10.3102/1076998619832248 10.1109/HealthCom.2017.8210800 10.1049/PBTE065E 10.3390/s19204507 10.1145/2500423.2500436 10.1145/3290605.3300766 10.3390/s18041155 10.1109/PERCOMW.2016.7457075 10.1109/TTHZ.2016.2599075 10.1109/ACCESS.2019.2940386 10.1016/j.compeleceng.2019.02.011 10.1109/IEEECONF35879.2020.9330027 10.3390/s140100927 10.1145/2543581.2543592 10.1109/WF-IoT.2016.7845478 10.3390/s20092653 10.1109/ICIRCA51532.2021.9544975 10.1007/978-3-030-95593-9_2 10.1109/VTCSpring.2018.8417859 10.1145/3117811.3117821 10.1109/TMC.2016.2517630 10.1145/2676430 10.1109/CCWC47524.2020.9031214 10.1016/j.measurement.2020.108245 10.1109/ICACCS.2017.8014658 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2022.3160796 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 9026 |
ExternalDocumentID | 10_1109_JSEN_2022_3160796 9738615 |
Genre | orig-research |
GrantInformation_xml | – fundername: Begum Akhter Rukhsana Memorial Trust (BARMT), Pakistan – fundername: Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/T021020/1; EP/T021063/1 funderid: 10.13039/501100000266 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-2c02addbfe106f29ce4bc0a7877755f5c84592189485e0dd27621831b5551c7f3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:10:25 EDT 2025 Tue Jul 01 04:26:49 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Wed Aug 27 02:40:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-2c02addbfe106f29ce4bc0a7877755f5c84592189485e0dd27621831b5551c7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2405-3222 0000-0003-1246-8981 0000-0003-4743-9136 0000-0002-7097-9969 |
PQID | 2659348518 |
PQPubID | 75733 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2022_3160796 proquest_journals_2659348518 crossref_citationtrail_10_1109_JSEN_2022_3160796 ieee_primary_9738615 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref34 ref15 ref14 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Adib (ref33) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 ref7 Jaén (ref12); 18 ref9 ref4 ref3 ref6 ref5 Wang (ref28) 2016; 15 |
References_xml | – ident: ref5 doi: 10.1088/1742-6596/1437/1/012014 – ident: ref8 doi: 10.18203/2394-6040.ijcmph20175306 – ident: ref14 doi: 10.1109/UBMK.2018.8566532 – ident: ref27 doi: 10.1145/3382770 – ident: ref15 doi: 10.1109/ACCESS.2018.2871960 – ident: ref22 doi: 10.1109/TVT.2018.2810307 – ident: ref10 doi: 10.1007/978-3-319-27024-1 – ident: ref20 doi: 10.1145/3377165 – ident: ref35 doi: 10.3102/1076998619832248 – ident: ref2 doi: 10.1109/HealthCom.2017.8210800 – ident: ref6 doi: 10.1049/PBTE065E – ident: ref3 doi: 10.3390/s19204507 – ident: ref30 doi: 10.1145/2500423.2500436 – ident: ref17 doi: 10.1145/3290605.3300766 – ident: ref9 doi: 10.3390/s18041155 – ident: ref26 doi: 10.1109/PERCOMW.2016.7457075 – volume: 18 start-page: 21 volume-title: Proc. Int. Conf. Indoor Positioning Indoor Navigat. ident: ref12 article-title: Room-level indoor positioning based on acoustic impulse response identification – ident: ref19 doi: 10.1109/TTHZ.2016.2599075 – ident: ref29 doi: 10.1109/ACCESS.2019.2940386 – ident: ref7 doi: 10.1016/j.compeleceng.2019.02.011 – ident: ref23 doi: 10.1109/IEEECONF35879.2020.9330027 – ident: ref11 doi: 10.3390/s140100927 – ident: ref18 doi: 10.1145/2543581.2543592 – ident: ref16 doi: 10.1109/WF-IoT.2016.7845478 – ident: ref21 doi: 10.3390/s20092653 – ident: ref4 doi: 10.1109/ICIRCA51532.2021.9544975 – ident: ref24 doi: 10.1007/978-3-030-95593-9_2 – ident: ref25 doi: 10.1109/VTCSpring.2018.8417859 – start-page: 279 volume-title: Proc. 12th USENIX Symp. Netw. Syst. Design Implement. (NSDI) ident: ref33 article-title: Multi-person localization via RF body reflections – ident: ref13 doi: 10.1145/3117811.3117821 – volume: 15 start-page: 2907 issue: 11 year: 2016 ident: ref28 article-title: We can hear you with Wi-Fi! publication-title: IEEE Trans. Mobile Comput. doi: 10.1109/TMC.2016.2517630 – ident: ref1 doi: 10.1145/2676430 – ident: ref32 doi: 10.1109/CCWC47524.2020.9031214 – ident: ref31 doi: 10.1016/j.measurement.2020.108245 – ident: ref34 doi: 10.1109/ICACCS.2017.8014658 |
SSID | ssj0019757 |
Score | 2.4139826 |
Snippet | Non-invasive indoor human activity detection using radio waves has attracted the interest of researchers, contributing to a range of new applications including... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9018 |
SubjectTerms | Algorithms Artificial intelligence Classification algorithms Health care Human activity detection Human motion Human performance Identification methods indoor positioning localisation Localization Monitoring occupancy monitoring OFDM Performance evaluation Radio frequency Radio waves Radiofrequency identification Radios Sensors Software radio Wireless fidelity |
Title | Non-Invasive Localization Using Software-Defined Radios |
URI | https://ieeexplore.ieee.org/document/9738615 https://www.proquest.com/docview/2659348518 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gF_XgAzSiaPbgybhQus8ejUKQCAeRhNum20c0msXw0Oivd7pbCFFjvO2h7XZn2vk625lvAM55jM5_YGhDY05cv8WlyyXRrvCkUAhASnCT4NwfhN2R3xsH4xJcrnJhlFJ58JlqmMf8Ll9OxML8KmsyU6HSZJRv4DIrcrVWNwYsylk9cQPjK71obG8wW4Q1e8P2AD1BStFBDUlk-PnXMCgvqvLDEufw0tmF_nJiRVTJc2MxTxvi8xtn439nvgc79pzpXBULYx9KKqvA9hr7YAU2bQH0x48qRINJ5t5mb9xEszt3BuBsgqaTBxU4QzTX73yq3BulcQjp3HP5NJkdwKjTfrjuuramgisQ2OcuFYSiSUu1Ql9QUyaUnwrCI0MLGAQ6ELEfMIR9QxqjiJQUjSXu-lYa4NFKRNo7hHI2ydQROEx6oU-U9BDRfI-HTKN3QyXViHl-rEkNyFLKibCE46buxUuSOx6EJUYxiVFMYhVTg4tVl9eCbeOvxlUj6FVDK-Ma1JeqTOx-nCU0DJiHn9SKj3_vdQJbZuwilLEO5fl0oU7xuDFPz_J19gVdi86S |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VMAADb0ShQAYmRIrrxEk8Ih5qS9uBh9QtcvwQCJSiPkDw6zknblUBQmwZ7Ni5s-_zxXffARyLBJ1_ZmlDE0H8sCGULxQxvgyU1AhAWgqb4NztRc2HsN1n_QqcznJhtNZF8Jmu28fiLl8N5MT-KjvjtkKlzShfZOhVJGW21uzOgMcFryduYRw0iPvuDrNB-Fn77qqHviCl6KJGJLYM_XMoVJRV-WGLC4C5XoPudGplXMlzfTLO6vLzG2vjf-e-DqvupOmdl0tjAyo634SVOf7BTVhyJdAfP7Yg7g1yv5W_CRvP7nUsxLkUTa8IK_Du0GC_i6H2L7XBVyjvVqinwWgbHq6v7i-avquq4EuE9rFPJaFo1DKj0Rs0lEsdZpKI2BIDMmaYTELGEfgtbYwmSlE0l7jvGxnDw5WMTbADC_kg17vgcRVEIdEqQEwLAxFxg_4NVdQg6oWJIVUgUymn0lGO28oXL2nhehCeWsWkVjGpU0wVTmZdXku-jb8ab1lBzxo6GVehNlVl6nbkKKUR4wF-UiPZ-73XESw177udtNPq3ezDsh2nDGyswcJ4ONEHePgYZ4fFmvsCbN_R5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Invasive+Localization+Using+Software-Defined+Radios&rft.jtitle=IEEE+sensors+journal&rft.au=Khan%2C+Muhammad+Zakir&rft.au=Taha%2C+Ahmad&rft.au=Taylor%2C+William&rft.au=Imran%2C+Muhammad+Ali&rft.date=2022-05-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=9&rft.spage=9018&rft.epage=9026&rft_id=info:doi/10.1109%2FJSEN.2022.3160796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3160796 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |