Direct Torque Control With Variable Flux for an SRM Based on Hybrid Optimization Algorithm

This article presents an optimal direct torque control (DTC) strategy with variable flux for a switched reluctance motor using the improved linear active disturbance rejection control (LADRC) plus the hybrid optimization algorithm (HOA). First, the constant flux amplitude is substituted by the varia...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 37; no. 6; pp. 6688 - 6697
Main Authors Feng, Liyun, Sun, Xiaodong, Tian, Xiang, Diao, Kaikai
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8993
1941-0107
DOI10.1109/TPEL.2022.3145873

Cover

More Information
Summary:This article presents an optimal direct torque control (DTC) strategy with variable flux for a switched reluctance motor using the improved linear active disturbance rejection control (LADRC) plus the hybrid optimization algorithm (HOA). First, the constant flux amplitude is substituted by the variable flux DTC (VF-DTC) to reduce the torque ripple. Then, the LADRC with the improved extended state observer applied in speed controller is utilized instead of the conventional PI control to improve the speed of the observer, antidisturbance ability, and robustness. Moreover, the HOA is employed to search for the optimal control parameters and acquire satisfactory dynamic performances. Finally, the optimal VF-DTC system is implemented on a 12/8 SRM. Simulation and experimental results are carried out to compare the performances of the conventional DTC, the VF-DTC with LADRC, the VF-DTC with PI using HOA, and the proposed optimal VF-DTC using HOA. The results show that the proposed control method has a faster speed response, superior antidisturbance ability, and lower torque ripples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2022.3145873