Detecting and Mitigating DDoS Attacks in SDN Using Spatial-Temporal Graph Convolutional Network

With the development of data plane programmable Software-Defined Networking (SDN), Distributed Denial of Service (DDoS) attacks on the data plane increasingly become fatal. Currently, traditional attack detection methods are mainly used to detect whether a DDoS attack occurs and it is difficult to f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on dependable and secure computing Vol. 19; no. 6; pp. 3855 - 3872
Main Authors Cao, Yongyi, Jiang, Hao, Deng, Yuchuan, Wu, Jing, Zhou, Pan, Luo, Wei
Format Journal Article
LanguageEnglish
Published Washington IEEE 01.11.2022
IEEE Computer Society
Subjects
Online AccessGet full text
ISSN1545-5971
1941-0018
DOI10.1109/TDSC.2021.3108782

Cover

Abstract With the development of data plane programmable Software-Defined Networking (SDN), Distributed Denial of Service (DDoS) attacks on the data plane increasingly become fatal. Currently, traditional attack detection methods are mainly used to detect whether a DDoS attack occurs and it is difficult to find the path that the attack flow traverses the network, which makes it difficult to accurately mitigate DDoS attacks. In this article, we propose a detection method based on Spatial-Temporal Graph Convolutional Network (ST-GCN) over the data plane programmable SDN, which maps the network into a graph. It senses the state of switches through In-band Network Telemetry (INT) with sampling, inputs the network state into the spatial-temporal graph convolutional network detection model, and finally finds out the switches through which DDoS attack flows pass. Based on this, we propose a defense method combined with an enhanced whitelist and a precise dropping strategy, which can effectively mitigate DDoS attacks and minimize the impact on legitimate network traffic. The evaluation results show that our detection method can accurately detect the path that the DDoS attack flows pass through, and can effectively mitigate the DDoS attack. Compared to classic methods, our method improves the detection accuracy by nearly 10%. At the same time, the southbound interface load and CPU overhead brought by our detection and defense process are much lower than the classic methods.
AbstractList With the development of data plane programmable Software-Defined Networking (SDN), Distributed Denial of Service (DDoS) attacks on the data plane increasingly become fatal. Currently, traditional attack detection methods are mainly used to detect whether a DDoS attack occurs and it is difficult to find the path that the attack flow traverses the network, which makes it difficult to accurately mitigate DDoS attacks. In this article, we propose a detection method based on Spatial-Temporal Graph Convolutional Network (ST-GCN) over the data plane programmable SDN, which maps the network into a graph. It senses the state of switches through In-band Network Telemetry (INT) with sampling, inputs the network state into the spatial-temporal graph convolutional network detection model, and finally finds out the switches through which DDoS attack flows pass. Based on this, we propose a defense method combined with an enhanced whitelist and a precise dropping strategy, which can effectively mitigate DDoS attacks and minimize the impact on legitimate network traffic. The evaluation results show that our detection method can accurately detect the path that the DDoS attack flows pass through, and can effectively mitigate the DDoS attack. Compared to classic methods, our method improves the detection accuracy by nearly 10%. At the same time, the southbound interface load and CPU overhead brought by our detection and defense process are much lower than the classic methods.
Author Cao, Yongyi
Deng, Yuchuan
Wu, Jing
Luo, Wei
Zhou, Pan
Jiang, Hao
Author_xml – sequence: 1
  givenname: Yongyi
  orcidid: 0000-0002-1570-7979
  surname: Cao
  fullname: Cao, Yongyi
  email: caoyongyi@whu.edu.cn
  organization: Electronic Information School, Wuhan University, Wuhan, Hubei, China
– sequence: 2
  givenname: Hao
  orcidid: 0000-0002-8533-1612
  surname: Jiang
  fullname: Jiang, Hao
  email: jh@whu.edu.cn
  organization: Electronic Information School, Wuhan University, Wuhan, Hubei, China
– sequence: 3
  givenname: Yuchuan
  orcidid: 0000-0002-2141-5315
  surname: Deng
  fullname: Deng, Yuchuan
  email: dengyc@whu.edu.cn
  organization: Electronic Information School, Wuhan University, Wuhan, Hubei, China
– sequence: 4
  givenname: Jing
  orcidid: 0000-0002-6955-2087
  surname: Wu
  fullname: Wu, Jing
  email: wujing@whu.edu.cn
  organization: Electronic Information School, Wuhan University, Wuhan, Hubei, China
– sequence: 5
  givenname: Pan
  orcidid: 0000-0002-8629-4622
  surname: Zhou
  fullname: Zhou, Pan
  email: panzhou@hust.edu.cn
  organization: Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
– sequence: 6
  givenname: Wei
  surname: Luo
  fullname: Luo, Wei
  email: 171772014@qq.com
  organization: China Ship Development and Design Center, Wuhan, Hubei, China
BookMark eNp9kM1PwjAYxhuDiYD-AcbLEs_Dfm1tj4QpmqAeBuemGx0WxjrbovG_dxPiwYOn9-v5PXnzjMCgsY0G4BrBCUJQ3C2zfDbBEKMJQZAzjs_AEAmKYggRH3R9QpM4EQxdgJH3Wwgx5YIOgcx00GUwzSZSzTp6NsFs1M-YZTaPpiGocucj00R59hKtfH_J206h6nip9611qo7mTrVv0cw2H7Y-BGObbveiw6d1u0twXqna66tTHYPVw_1y9hgvXudPs-kiLrEgIUZrjTlFTAlVJYJSogmHGLJCkwKvGWeYc6iIQARqpqlgKcFFSglVRJW8KsgY3B59W2ffD9oHubUH1z3iJWYk6dxYwjoVO6pKZ713upKlCar_ODhlaomg7NOUfZqyT1Oe0uxI9Idsndkr9_Uvc3NkjNb6Vy8SzGCakm9Rt4C3
CODEN ITDSCM
CitedBy_id crossref_primary_10_3233_JHS_230142
crossref_primary_10_1016_j_future_2024_07_049
crossref_primary_10_1016_j_procs_2024_12_026
crossref_primary_10_1007_s12626_023_00139_x
crossref_primary_10_3934_mbe_2024185
crossref_primary_10_3390_electronics13040807
crossref_primary_10_1109_TKDE_2024_3523857
crossref_primary_10_1109_TDSC_2023_3301293
crossref_primary_10_1007_s10796_024_10577_9
crossref_primary_10_1109_ACCESS_2023_3277397
crossref_primary_10_3390_s24051643
crossref_primary_10_1016_j_jss_2024_112265
crossref_primary_10_1109_TIFS_2023_3314219
crossref_primary_10_3390_s22114106
crossref_primary_10_7717_peerj_cs_1674
crossref_primary_10_1016_j_eswa_2024_126280
crossref_primary_10_1109_TIFS_2023_3275768
crossref_primary_10_3390_s22218287
crossref_primary_10_1016_j_comnet_2024_110508
crossref_primary_10_1038_s41598_024_66907_z
crossref_primary_10_1371_journal_pone_0299846
crossref_primary_10_1016_j_inffus_2024_102820
crossref_primary_10_1016_j_procs_2025_01_024
crossref_primary_10_3390_a17070290
crossref_primary_10_1109_ACCESS_2023_3275789
crossref_primary_10_1109_TDSC_2024_3353548
crossref_primary_10_1109_TNSE_2024_3483216
crossref_primary_10_3390_e25081210
crossref_primary_10_32604_iasc_2023_039995
crossref_primary_10_1016_j_comnet_2024_110793
crossref_primary_10_32604_cmc_2023_038003
crossref_primary_10_1109_JIOT_2024_3413580
crossref_primary_10_1109_JIOT_2024_3471615
crossref_primary_10_1109_TIFS_2024_3385321
Cites_doi 10.1109/SECPRI.2003.1199330
10.1109/COMST.2015.2487361
10.1109/INFOCOM.2019.8737586
10.1016/j.jnca.2016.01.001
10.1016/j.icte.2019.08.005
10.1109/ANCS.2019.8901882
10.1109/APNOMS.2017.8094182
10.1109/Trustcom.2015.389
10.1007/978-3-030-34139-8_23
10.1609/aaai.v32i1.12328
10.1109/TITS.2020.2988065
10.1007/s12083-017-0630-0
10.1109/ICIN48450.2020.9059327
10.1145/3357384.3357820
10.1145/3301614
10.1002/dac.3497
10.1364/ECEOC.2012.Tu.1.D.1
10.1109/ICoAC.2014.7229711
10.1145/2656877.2656890
10.1145/3219819.3219890
10.1145/948109.948116
10.1109/ICCCN.2016.7568569
10.1145/3314148.3314357
10.1145/1355734.1355746
10.1109/CNS.2016.7860467
10.24963/ijcai.2019/614
10.1609/aaai.v33i01.3301922
10.1145/997150.997156
10.1109/TDSC.2018.2822275
10.1016/j.future.2012.12.011
10.1109/MCOM.2017.1600970
10.1145/2556610.2556621
10.1109/GLOCOM.2017.8254079
10.1109/NFV-SDN.2017.8169838
10.1007/s13369-017-2414-5
10.1016/j.jnca.2016.04.005
10.1109/WINCOM.2016.7777224
10.1109/JSAC.2018.2869997
10.1016/j.compeleceng.2016.01.012
10.1016/j.engappai.2015.01.013
10.24963/ijcai.2019/274
10.1155/2018/9804061
10.1109/WiMOB.2017.8115796
10.1109/ICCNC.2015.7069319
10.1007/978-3-319-03584-0_8
10.1504/IJAHUC.2011.038998
10.1109/ACCESS.2019.2922196
10.1109/CVPR.2017.113
10.14722/ndss.2020.24007
ContentType Journal Article
Copyright Copyright IEEE Computer Society 2022
Copyright_xml – notice: Copyright IEEE Computer Society 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
JQ2
DOI 10.1109/TDSC.2021.3108782
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore (NTUSG)
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1941-0018
EndPage 3872
ExternalDocumentID 10_1109_TDSC_2021_3108782
9527066
Genre orig-research
GrantInformation_xml – fundername: National Defense Basic Scientific Research program of China
  grantid: JCKY2018207C121
  funderid: 10.13039/501100012335
– fundername: Introduce Special Funds for Innovation from High-End Scientific Research Institutions
  grantid: 181129112748101
– fundername: National Natural Science Foundation of China
  grantid: U19B2004; 61972448
  funderid: 10.13039/501100001809
GroupedDBID .4S
.DC
0R~
29I
4.4
5GY
5VS
6IK
7WY
8FE
8FG
8FL
8R4
8R5
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJCF
ABQJQ
ABUWG
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFKRA
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
ATWAV
AZQEC
BEFXN
BENPR
BEZIV
BFFAM
BGLVJ
BGNUA
BKEBE
BPEOZ
BPHCQ
CCPQU
CS3
DU5
DWQXO
EBS
EDO
EJD
FRNLG
GNUQQ
HCIFZ
HZ~
IEDLZ
IFIPE
IPLJI
ITG
ITH
JAVBF
K60
K6V
K6~
K7-
L6V
LAI
M0C
M43
M7S
O9-
OCL
P2P
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
Q2X
RIA
RIE
RNI
RNS
RZB
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c293t-1de28417a9af59443e380207be3b2d7872880a39130e7e497632b6434a3ac8fb3
IEDL.DBID RIE
ISSN 1545-5971
IngestDate Thu Sep 25 00:44:11 EDT 2025
Wed Oct 01 03:13:20 EDT 2025
Thu Apr 24 23:02:35 EDT 2025
Wed Aug 27 02:18:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-1de28417a9af59443e380207be3b2d7872880a39130e7e497632b6434a3ac8fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8629-4622
0000-0002-6955-2087
0000-0002-8533-1612
0000-0002-1570-7979
0000-0002-2141-5315
PQID 2735380757
PQPubID 27603
PageCount 18
ParticipantIDs crossref_citationtrail_10_1109_TDSC_2021_3108782
proquest_journals_2735380757
crossref_primary_10_1109_TDSC_2021_3108782
ieee_primary_9527066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle IEEE transactions on dependable and secure computing
PublicationTitleAbbrev TDSC
PublicationYear 2022
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref57
ref13
shaojie bai (ref33) 2018
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref54
ref10
bruna (ref60) 2013
yu (ref26) 2017
kipf (ref24) 2016
niyaz (ref37) 2016
ref17
ref16
ref19
kim (ref18) 2015
ref51
ref50
park (ref29) 2019
ref46
ref45
ref48
kazemian (ref22) 2012
ref47
ref42
ref41
ref44
ref49
veli?kovi? (ref66) 2017
ref8
ref7
ref4
ref3
defferrard (ref38) 2016
niepert (ref61) 2016
ref35
john (ref55) 2009; 1
zhou (ref11) 2020
ref34
ref36
ref31
ref30
ref32
ref1
ref39
thekumparampil (ref65) 2018
fayaz (ref2) 2015
ref68
ref67
ref23
ref69
ref25
ref20
ref63
ref21
gehring (ref64) 2017
(ref40) 2020
ref28
ref27
cimpanu (ref6) 2020
scholl (ref9) 2015
swami (ref43) 2019; 52
ref62
arboleda (ref5) 2020
References_xml – ident: ref31
  doi: 10.1109/SECPRI.2003.1199330
– year: 2020
  ident: ref11
  article-title: Automating botnet detection with graph neural networks
– ident: ref7
  doi: 10.1109/COMST.2015.2487361
– ident: ref57
  doi: 10.1109/INFOCOM.2019.8737586
– year: 2016
  ident: ref37
  article-title: A deep learning based DDoS detection system in software-defined networking (SDN)
– ident: ref68
  doi: 10.1016/j.jnca.2016.01.001
– ident: ref34
  doi: 10.1016/j.icte.2019.08.005
– ident: ref52
  doi: 10.1109/ANCS.2019.8901882
– ident: ref19
  doi: 10.1109/APNOMS.2017.8094182
– ident: ref36
  doi: 10.1109/Trustcom.2015.389
– ident: ref21
  doi: 10.1007/978-3-030-34139-8_23
– ident: ref59
  doi: 10.1609/aaai.v32i1.12328
– ident: ref51
  doi: 10.1109/TITS.2020.2988065
– ident: ref49
  doi: 10.1007/s12083-017-0630-0
– ident: ref53
  doi: 10.1109/ICIN48450.2020.9059327
– year: 2019
  ident: ref29
  article-title: STGRAT: A spatio-temporal graph attention network for traffic forecasting
– ident: ref30
  doi: 10.1145/3357384.3357820
– year: 2017
  ident: ref26
  article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
– volume: 52
  start-page: 1
  year: 2019
  ident: ref43
  article-title: Software-defined networking-based DDoS defense mechanisms
  publication-title: ACM Comput Surv
  doi: 10.1145/3301614
– year: 2018
  ident: ref33
  article-title: Convolutional sequence modeling revisited
– ident: ref69
  doi: 10.1002/dac.3497
– ident: ref15
  doi: 10.1364/ECEOC.2012.Tu.1.D.1
– ident: ref45
  doi: 10.1109/ICoAC.2014.7229711
– start-page: 3844
  year: 2016
  ident: ref38
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref17
  doi: 10.1145/2656877.2656890
– start-page: 1243
  year: 2017
  ident: ref64
  article-title: Convolutional sequence to sequence learning
  publication-title: Proc 34th Int Conf Mach Learn
– year: 2020
  ident: ref5
  article-title: AWS hit by DDoS attack dragging half of web down
– ident: ref25
  doi: 10.1145/3219819.3219890
– start-page: 113
  year: 2012
  ident: ref22
  article-title: Header space analysis: Static checking for networks
  publication-title: Proc 9th USENIX Symp Netw Syst Des Implementation
– ident: ref56
  doi: 10.1145/948109.948116
– ident: ref8
  doi: 10.1109/ICCCN.2016.7568569
– ident: ref58
  doi: 10.1145/3314148.3314357
– ident: ref14
  doi: 10.1145/1355734.1355746
– ident: ref41
  doi: 10.1109/CNS.2016.7860467
– ident: ref62
  doi: 10.24963/ijcai.2019/614
– ident: ref27
  doi: 10.1609/aaai.v33i01.3301922
– year: 2020
  ident: ref6
  article-title: macOS systems abused in DDoS attacks
– volume: 1
  year: 2009
  ident: ref55
  article-title: DDoS: Survey of traceback methods
  publication-title: Int J Recent Trends Eng
– ident: ref3
  doi: 10.1145/997150.997156
– ident: ref4
  doi: 10.1109/TDSC.2018.2822275
– start-page: 1
  year: 2015
  ident: ref18
  article-title: In-band network telemetry via programmable dataplanes
  publication-title: Proc ACM Conf Special Interest Group Data Commun
– ident: ref1
  doi: 10.1016/j.future.2012.12.011
– ident: ref50
  doi: 10.1109/MCOM.2017.1600970
– year: 2016
  ident: ref24
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref16
  doi: 10.1145/2556610.2556621
– ident: ref12
  doi: 10.1109/GLOCOM.2017.8254079
– ident: ref46
  doi: 10.1109/NFV-SDN.2017.8169838
– ident: ref39
  doi: 10.1007/s13369-017-2414-5
– start-page: 2014
  year: 2016
  ident: ref61
  article-title: Learning convolutional neural networks for graphs
  publication-title: Proc Int Conf Mach Learn
– year: 2017
  ident: ref66
  article-title: Graph attention networks
– ident: ref42
  doi: 10.1016/j.jnca.2016.04.005
– ident: ref44
  doi: 10.1109/WINCOM.2016.7777224
– ident: ref13
  doi: 10.1109/JSAC.2018.2869997
– ident: ref10
  doi: 10.1016/j.compeleceng.2016.01.012
– year: 2013
  ident: ref60
  article-title: Spectral networks and locally connected networks on graphs
– start-page: 817
  year: 2015
  ident: ref2
  article-title: Bohatei: Flexible and elastic DDoS defense
  publication-title: Proc 24th USENIX Secur Symp
– ident: ref67
  doi: 10.1016/j.engappai.2015.01.013
– ident: ref28
  doi: 10.24963/ijcai.2019/274
– ident: ref20
  doi: 10.1155/2018/9804061
– year: 2018
  ident: ref65
  article-title: Attention-based graph neural network for semi-supervised learning
– ident: ref47
  doi: 10.1109/WiMOB.2017.8115796
– ident: ref35
  doi: 10.1109/ICCNC.2015.7069319
– ident: ref23
  doi: 10.1007/978-3-319-03584-0_8
– ident: ref32
  doi: 10.1504/IJAHUC.2011.038998
– ident: ref48
  doi: 10.1109/ACCESS.2019.2922196
– ident: ref63
  doi: 10.1109/CVPR.2017.113
– year: 2020
  ident: ref40
– year: 2015
  ident: ref9
  article-title: Methods and apparatus for distributed backbone internet DDoS mitigation via transit providers
– ident: ref54
  doi: 10.14722/ndss.2020.24007
SSID ssj0024894
Score 2.5204232
Snippet With the development of data plane programmable Software-Defined Networking (SDN), Distributed Denial of Service (DDoS) attacks on the data plane increasingly...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3855
SubjectTerms Artificial neural networks
Communications traffic
Computer crime
Cybersecurity
data plane programmable SDN
DDoS
Delays
Denial of service attacks
Denial-of-service attack
Distributed databases
Feature extraction
in-band network telemetry
Software-defined networking
spatial-temporal graph convolutional network
Switches
Telemetry
Whitelists
Title Detecting and Mitigating DDoS Attacks in SDN Using Spatial-Temporal Graph Convolutional Network
URI https://ieeexplore.ieee.org/document/9527066
https://www.proquest.com/docview/2735380757
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0018
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024894
  issn: 1545-5971
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3nx1xSnU3LwJHa2adqkx7GqQ9gu22C30jYpDKUT7Tz41_uSphN_IN7akkDgey_vS_Pe9wAuQ54i6WDM8aSiDvMKpiVvI4fxwMuDUCpJdYHzZBqOF-xhGSxbcL2thVFKmeQzNdCP5i5frvON_lV2EwWUY4hsQ5uLsK7V-tTVE6bpoWYEDpJkz95gem50M49nIzwJUg8PqK7ggn6JQaapyo-d2ISXuz2YNAurs0oeB5sqG-Tv3zQb_7vyfdi1PJMMa8M4gJYqD2Gv6eFArEt3IYmVvkbAAEbSUpLJqtbcwNc4Xs_IsKp0ET5ZlWQWT4lJMCC6jTGarTOvZa2eyL1WvSajdflmDRm_Tev88iNY3N3OR2PHNl1wcoz8lcFMMA8hTIsgYsxXvkBKyTPlZ1Sie1P0-NSPMPYprhiyGZ9mSGtY6qe5KDL_GDrlulQnQLhyJdKnwhcSSUTkCYEH4jAtQiSVEreaHrgNDEluFcl1Y4ynxJxM3CjRyCUaucQi14Or7ZTnWo7jr8FdjcR2oAWhB_0G68Q67GuCLC7Q2vsBP_191hnsUF35YMoQ-9CpXjbqHPlIlV0YQ_wAzPbY4g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHODCjiirD5wQKYljJ84RNUBZ2kuLxM1KYkeqQCmClANfz9hxi1iEuCWRLVl6M57neOYNwHEUZ0g6GPMCpanHgpIZydvEYzEPCh4pragpcO71o-49u3ngD3NwOquF0Vrb5DPdNo_2Ll-Ni4n5VXaWcBpjiJyHRc4Y40211qeynrBtDw0n8JAmB-4OM_CTs2E66OBZkAZ4RPVFLOiXKGTbqvzYi22AuVyF3nRpTV7JY3tS5-3i_Ztq43_XvgYrjmmS88Y01mFOVxuwOu3iQJxTb4JMtblIwBBGskqR3qhR3cDXNB0PyHldmzJ8MqrIIO0Tm2JATCNjNFxv2AhbPZEro3tNOuPqzZkyfus3GeZbcH95Mex0Pdd2wSsw9tcWNcECBDErecJYqEOBpDLOdZhThQ5O0eezMMHop2PNkM-ENEdiw7IwK0SZh9uwUI0rvQMk1r5CAlWGQiGNSAIh8EgcZWWEtFLhZtMCfwqDLJwmuWmN8STt2cRPpEFOGuSkQ64FJ7Mpz40gx1-DNw0Ss4EOhBbsT7GWzmVfJfI4btT3ebz7-6wjWOoOe3fy7rp_uwfL1NRB2KLEfVioXyb6ANlJnR9ao_wAVBrcLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+and+Mitigating+DDoS+Attacks+in+SDN+Using+Spatial-Temporal+Graph+Convolutional+Network&rft.jtitle=IEEE+transactions+on+dependable+and+secure+computing&rft.au=Cao%2C+Yongyi&rft.au=Jiang%2C+Hao&rft.au=Deng%2C+Yuchuan&rft.au=Wu%2C+Jing&rft.date=2022-11-01&rft.pub=IEEE+Computer+Society&rft.issn=1545-5971&rft.eissn=1941-0018&rft.volume=19&rft.issue=6&rft.spage=3855&rft_id=info:doi/10.1109%2FTDSC.2021.3108782&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5971&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5971&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5971&client=summon