Detecting and Mitigating DDoS Attacks in SDN Using Spatial-Temporal Graph Convolutional Network
With the development of data plane programmable Software-Defined Networking (SDN), Distributed Denial of Service (DDoS) attacks on the data plane increasingly become fatal. Currently, traditional attack detection methods are mainly used to detect whether a DDoS attack occurs and it is difficult to f...
        Saved in:
      
    
          | Published in | IEEE transactions on dependable and secure computing Vol. 19; no. 6; pp. 3855 - 3872 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Washington
          IEEE
    
        01.11.2022
     IEEE Computer Society  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1545-5971 1941-0018  | 
| DOI | 10.1109/TDSC.2021.3108782 | 
Cover
| Abstract | With the development of data plane programmable Software-Defined Networking (SDN), Distributed Denial of Service (DDoS) attacks on the data plane increasingly become fatal. Currently, traditional attack detection methods are mainly used to detect whether a DDoS attack occurs and it is difficult to find the path that the attack flow traverses the network, which makes it difficult to accurately mitigate DDoS attacks. In this article, we propose a detection method based on Spatial-Temporal Graph Convolutional Network (ST-GCN) over the data plane programmable SDN, which maps the network into a graph. It senses the state of switches through In-band Network Telemetry (INT) with sampling, inputs the network state into the spatial-temporal graph convolutional network detection model, and finally finds out the switches through which DDoS attack flows pass. Based on this, we propose a defense method combined with an enhanced whitelist and a precise dropping strategy, which can effectively mitigate DDoS attacks and minimize the impact on legitimate network traffic. The evaluation results show that our detection method can accurately detect the path that the DDoS attack flows pass through, and can effectively mitigate the DDoS attack. Compared to classic methods, our method improves the detection accuracy by nearly 10%. At the same time, the southbound interface load and CPU overhead brought by our detection and defense process are much lower than the classic methods. | 
    
|---|---|
| AbstractList | With the development of data plane programmable Software-Defined Networking (SDN), Distributed Denial of Service (DDoS) attacks on the data plane increasingly become fatal. Currently, traditional attack detection methods are mainly used to detect whether a DDoS attack occurs and it is difficult to find the path that the attack flow traverses the network, which makes it difficult to accurately mitigate DDoS attacks. In this article, we propose a detection method based on Spatial-Temporal Graph Convolutional Network (ST-GCN) over the data plane programmable SDN, which maps the network into a graph. It senses the state of switches through In-band Network Telemetry (INT) with sampling, inputs the network state into the spatial-temporal graph convolutional network detection model, and finally finds out the switches through which DDoS attack flows pass. Based on this, we propose a defense method combined with an enhanced whitelist and a precise dropping strategy, which can effectively mitigate DDoS attacks and minimize the impact on legitimate network traffic. The evaluation results show that our detection method can accurately detect the path that the DDoS attack flows pass through, and can effectively mitigate the DDoS attack. Compared to classic methods, our method improves the detection accuracy by nearly 10%. At the same time, the southbound interface load and CPU overhead brought by our detection and defense process are much lower than the classic methods. | 
    
| Author | Cao, Yongyi Deng, Yuchuan Wu, Jing Luo, Wei Zhou, Pan Jiang, Hao  | 
    
| Author_xml | – sequence: 1 givenname: Yongyi orcidid: 0000-0002-1570-7979 surname: Cao fullname: Cao, Yongyi email: caoyongyi@whu.edu.cn organization: Electronic Information School, Wuhan University, Wuhan, Hubei, China – sequence: 2 givenname: Hao orcidid: 0000-0002-8533-1612 surname: Jiang fullname: Jiang, Hao email: jh@whu.edu.cn organization: Electronic Information School, Wuhan University, Wuhan, Hubei, China – sequence: 3 givenname: Yuchuan orcidid: 0000-0002-2141-5315 surname: Deng fullname: Deng, Yuchuan email: dengyc@whu.edu.cn organization: Electronic Information School, Wuhan University, Wuhan, Hubei, China – sequence: 4 givenname: Jing orcidid: 0000-0002-6955-2087 surname: Wu fullname: Wu, Jing email: wujing@whu.edu.cn organization: Electronic Information School, Wuhan University, Wuhan, Hubei, China – sequence: 5 givenname: Pan orcidid: 0000-0002-8629-4622 surname: Zhou fullname: Zhou, Pan email: panzhou@hust.edu.cn organization: Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China – sequence: 6 givenname: Wei surname: Luo fullname: Luo, Wei email: 171772014@qq.com organization: China Ship Development and Design Center, Wuhan, Hubei, China  | 
    
| BookMark | eNp9kM1PwjAYxhuDiYD-AcbLEs_Dfm1tj4QpmqAeBuemGx0WxjrbovG_dxPiwYOn9-v5PXnzjMCgsY0G4BrBCUJQ3C2zfDbBEKMJQZAzjs_AEAmKYggRH3R9QpM4EQxdgJH3Wwgx5YIOgcx00GUwzSZSzTp6NsFs1M-YZTaPpiGocucj00R59hKtfH_J206h6nip9611qo7mTrVv0cw2H7Y-BGObbveiw6d1u0twXqna66tTHYPVw_1y9hgvXudPs-kiLrEgIUZrjTlFTAlVJYJSogmHGLJCkwKvGWeYc6iIQARqpqlgKcFFSglVRJW8KsgY3B59W2ffD9oHubUH1z3iJWYk6dxYwjoVO6pKZ713upKlCar_ODhlaomg7NOUfZqyT1Oe0uxI9Idsndkr9_Uvc3NkjNb6Vy8SzGCakm9Rt4C3 | 
    
| CODEN | ITDSCM | 
    
| CitedBy_id | crossref_primary_10_3233_JHS_230142 crossref_primary_10_1016_j_future_2024_07_049 crossref_primary_10_1016_j_procs_2024_12_026 crossref_primary_10_1007_s12626_023_00139_x crossref_primary_10_3934_mbe_2024185 crossref_primary_10_3390_electronics13040807 crossref_primary_10_1109_TKDE_2024_3523857 crossref_primary_10_1109_TDSC_2023_3301293 crossref_primary_10_1007_s10796_024_10577_9 crossref_primary_10_1109_ACCESS_2023_3277397 crossref_primary_10_3390_s24051643 crossref_primary_10_1016_j_jss_2024_112265 crossref_primary_10_1109_TIFS_2023_3314219 crossref_primary_10_3390_s22114106 crossref_primary_10_7717_peerj_cs_1674 crossref_primary_10_1016_j_eswa_2024_126280 crossref_primary_10_1109_TIFS_2023_3275768 crossref_primary_10_3390_s22218287 crossref_primary_10_1016_j_comnet_2024_110508 crossref_primary_10_1038_s41598_024_66907_z crossref_primary_10_1371_journal_pone_0299846 crossref_primary_10_1016_j_inffus_2024_102820 crossref_primary_10_1016_j_procs_2025_01_024 crossref_primary_10_3390_a17070290 crossref_primary_10_1109_ACCESS_2023_3275789 crossref_primary_10_1109_TDSC_2024_3353548 crossref_primary_10_1109_TNSE_2024_3483216 crossref_primary_10_3390_e25081210 crossref_primary_10_32604_iasc_2023_039995 crossref_primary_10_1016_j_comnet_2024_110793 crossref_primary_10_32604_cmc_2023_038003 crossref_primary_10_1109_JIOT_2024_3413580 crossref_primary_10_1109_JIOT_2024_3471615 crossref_primary_10_1109_TIFS_2024_3385321  | 
    
| Cites_doi | 10.1109/SECPRI.2003.1199330 10.1109/COMST.2015.2487361 10.1109/INFOCOM.2019.8737586 10.1016/j.jnca.2016.01.001 10.1016/j.icte.2019.08.005 10.1109/ANCS.2019.8901882 10.1109/APNOMS.2017.8094182 10.1109/Trustcom.2015.389 10.1007/978-3-030-34139-8_23 10.1609/aaai.v32i1.12328 10.1109/TITS.2020.2988065 10.1007/s12083-017-0630-0 10.1109/ICIN48450.2020.9059327 10.1145/3357384.3357820 10.1145/3301614 10.1002/dac.3497 10.1364/ECEOC.2012.Tu.1.D.1 10.1109/ICoAC.2014.7229711 10.1145/2656877.2656890 10.1145/3219819.3219890 10.1145/948109.948116 10.1109/ICCCN.2016.7568569 10.1145/3314148.3314357 10.1145/1355734.1355746 10.1109/CNS.2016.7860467 10.24963/ijcai.2019/614 10.1609/aaai.v33i01.3301922 10.1145/997150.997156 10.1109/TDSC.2018.2822275 10.1016/j.future.2012.12.011 10.1109/MCOM.2017.1600970 10.1145/2556610.2556621 10.1109/GLOCOM.2017.8254079 10.1109/NFV-SDN.2017.8169838 10.1007/s13369-017-2414-5 10.1016/j.jnca.2016.04.005 10.1109/WINCOM.2016.7777224 10.1109/JSAC.2018.2869997 10.1016/j.compeleceng.2016.01.012 10.1016/j.engappai.2015.01.013 10.24963/ijcai.2019/274 10.1155/2018/9804061 10.1109/WiMOB.2017.8115796 10.1109/ICCNC.2015.7069319 10.1007/978-3-319-03584-0_8 10.1504/IJAHUC.2011.038998 10.1109/ACCESS.2019.2922196 10.1109/CVPR.2017.113 10.14722/ndss.2020.24007  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright IEEE Computer Society 2022 | 
    
| Copyright_xml | – notice: Copyright IEEE Computer Society 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION JQ2  | 
    
| DOI | 10.1109/TDSC.2021.3108782 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore (NTUSG) CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitle | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | ProQuest Computer Science Collection  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1941-0018 | 
    
| EndPage | 3872 | 
    
| ExternalDocumentID | 10_1109_TDSC_2021_3108782 9527066  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Defense Basic Scientific Research program of China grantid: JCKY2018207C121 funderid: 10.13039/501100012335 – fundername: Introduce Special Funds for Innovation from High-End Scientific Research Institutions grantid: 181129112748101 – fundername: National Natural Science Foundation of China grantid: U19B2004; 61972448 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | .4S .DC 0R~ 29I 4.4 5GY 5VS 6IK 7WY 8FE 8FG 8FL 8R4 8R5 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJCF ABQJQ ABUWG ABVLG ACGFO ACIWK AENEX AETIX AFKRA AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS ATWAV AZQEC BEFXN BENPR BEZIV BFFAM BGLVJ BGNUA BKEBE BPEOZ BPHCQ CCPQU CS3 DU5 DWQXO EBS EDO EJD FRNLG GNUQQ HCIFZ HZ~ IEDLZ IFIPE IPLJI ITG ITH JAVBF K60 K6V K6~ K7- L6V LAI M0C M43 M7S O9- OCL P2P P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PUEGO Q2X RIA RIE RNI RNS RZB AAYXX CITATION JQ2  | 
    
| ID | FETCH-LOGICAL-c293t-1de28417a9af59443e380207be3b2d7872880a39130e7e497632b6434a3ac8fb3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1545-5971 | 
    
| IngestDate | Thu Sep 25 00:44:11 EDT 2025 Wed Oct 01 03:13:20 EDT 2025 Thu Apr 24 23:02:35 EDT 2025 Wed Aug 27 02:18:48 EDT 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c293t-1de28417a9af59443e380207be3b2d7872880a39130e7e497632b6434a3ac8fb3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8629-4622 0000-0002-6955-2087 0000-0002-8533-1612 0000-0002-1570-7979 0000-0002-2141-5315  | 
    
| PQID | 2735380757 | 
    
| PQPubID | 27603 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TDSC_2021_3108782 proquest_journals_2735380757 crossref_primary_10_1109_TDSC_2021_3108782 ieee_primary_9527066  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-11-01 | 
    
| PublicationDateYYYYMMDD | 2022-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Washington | 
    
| PublicationPlace_xml | – name: Washington | 
    
| PublicationTitle | IEEE transactions on dependable and secure computing | 
    
| PublicationTitleAbbrev | TDSC | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE IEEE Computer Society  | 
    
| Publisher_xml | – name: IEEE – name: IEEE Computer Society  | 
    
| References | ref57 ref13 shaojie bai (ref33) 2018 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref54 ref10 bruna (ref60) 2013 yu (ref26) 2017 kipf (ref24) 2016 niyaz (ref37) 2016 ref17 ref16 ref19 kim (ref18) 2015 ref51 ref50 park (ref29) 2019 ref46 ref45 ref48 kazemian (ref22) 2012 ref47 ref42 ref41 ref44 ref49 veli?kovi? (ref66) 2017 ref8 ref7 ref4 ref3 defferrard (ref38) 2016 niepert (ref61) 2016 ref35 john (ref55) 2009; 1 zhou (ref11) 2020 ref34 ref36 ref31 ref30 ref32 ref1 ref39 thekumparampil (ref65) 2018 fayaz (ref2) 2015 ref68 ref67 ref23 ref69 ref25 ref20 ref63 ref21 gehring (ref64) 2017 (ref40) 2020 ref28 ref27 cimpanu (ref6) 2020 scholl (ref9) 2015 swami (ref43) 2019; 52 ref62 arboleda (ref5) 2020  | 
    
| References_xml | – ident: ref31 doi: 10.1109/SECPRI.2003.1199330 – year: 2020 ident: ref11 article-title: Automating botnet detection with graph neural networks – ident: ref7 doi: 10.1109/COMST.2015.2487361 – ident: ref57 doi: 10.1109/INFOCOM.2019.8737586 – year: 2016 ident: ref37 article-title: A deep learning based DDoS detection system in software-defined networking (SDN) – ident: ref68 doi: 10.1016/j.jnca.2016.01.001 – ident: ref34 doi: 10.1016/j.icte.2019.08.005 – ident: ref52 doi: 10.1109/ANCS.2019.8901882 – ident: ref19 doi: 10.1109/APNOMS.2017.8094182 – ident: ref36 doi: 10.1109/Trustcom.2015.389 – ident: ref21 doi: 10.1007/978-3-030-34139-8_23 – ident: ref59 doi: 10.1609/aaai.v32i1.12328 – ident: ref51 doi: 10.1109/TITS.2020.2988065 – ident: ref49 doi: 10.1007/s12083-017-0630-0 – ident: ref53 doi: 10.1109/ICIN48450.2020.9059327 – year: 2019 ident: ref29 article-title: STGRAT: A spatio-temporal graph attention network for traffic forecasting – ident: ref30 doi: 10.1145/3357384.3357820 – year: 2017 ident: ref26 article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting – volume: 52 start-page: 1 year: 2019 ident: ref43 article-title: Software-defined networking-based DDoS defense mechanisms publication-title: ACM Comput Surv doi: 10.1145/3301614 – year: 2018 ident: ref33 article-title: Convolutional sequence modeling revisited – ident: ref69 doi: 10.1002/dac.3497 – ident: ref15 doi: 10.1364/ECEOC.2012.Tu.1.D.1 – ident: ref45 doi: 10.1109/ICoAC.2014.7229711 – start-page: 3844 year: 2016 ident: ref38 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Proc Int Conf Neural Inf Process – ident: ref17 doi: 10.1145/2656877.2656890 – start-page: 1243 year: 2017 ident: ref64 article-title: Convolutional sequence to sequence learning publication-title: Proc 34th Int Conf Mach Learn – year: 2020 ident: ref5 article-title: AWS hit by DDoS attack dragging half of web down – ident: ref25 doi: 10.1145/3219819.3219890 – start-page: 113 year: 2012 ident: ref22 article-title: Header space analysis: Static checking for networks publication-title: Proc 9th USENIX Symp Netw Syst Des Implementation – ident: ref56 doi: 10.1145/948109.948116 – ident: ref8 doi: 10.1109/ICCCN.2016.7568569 – ident: ref58 doi: 10.1145/3314148.3314357 – ident: ref14 doi: 10.1145/1355734.1355746 – ident: ref41 doi: 10.1109/CNS.2016.7860467 – ident: ref62 doi: 10.24963/ijcai.2019/614 – ident: ref27 doi: 10.1609/aaai.v33i01.3301922 – year: 2020 ident: ref6 article-title: macOS systems abused in DDoS attacks – volume: 1 year: 2009 ident: ref55 article-title: DDoS: Survey of traceback methods publication-title: Int J Recent Trends Eng – ident: ref3 doi: 10.1145/997150.997156 – ident: ref4 doi: 10.1109/TDSC.2018.2822275 – start-page: 1 year: 2015 ident: ref18 article-title: In-band network telemetry via programmable dataplanes publication-title: Proc ACM Conf Special Interest Group Data Commun – ident: ref1 doi: 10.1016/j.future.2012.12.011 – ident: ref50 doi: 10.1109/MCOM.2017.1600970 – year: 2016 ident: ref24 article-title: Semi-supervised classification with graph convolutional networks – ident: ref16 doi: 10.1145/2556610.2556621 – ident: ref12 doi: 10.1109/GLOCOM.2017.8254079 – ident: ref46 doi: 10.1109/NFV-SDN.2017.8169838 – ident: ref39 doi: 10.1007/s13369-017-2414-5 – start-page: 2014 year: 2016 ident: ref61 article-title: Learning convolutional neural networks for graphs publication-title: Proc Int Conf Mach Learn – year: 2017 ident: ref66 article-title: Graph attention networks – ident: ref42 doi: 10.1016/j.jnca.2016.04.005 – ident: ref44 doi: 10.1109/WINCOM.2016.7777224 – ident: ref13 doi: 10.1109/JSAC.2018.2869997 – ident: ref10 doi: 10.1016/j.compeleceng.2016.01.012 – year: 2013 ident: ref60 article-title: Spectral networks and locally connected networks on graphs – start-page: 817 year: 2015 ident: ref2 article-title: Bohatei: Flexible and elastic DDoS defense publication-title: Proc 24th USENIX Secur Symp – ident: ref67 doi: 10.1016/j.engappai.2015.01.013 – ident: ref28 doi: 10.24963/ijcai.2019/274 – ident: ref20 doi: 10.1155/2018/9804061 – year: 2018 ident: ref65 article-title: Attention-based graph neural network for semi-supervised learning – ident: ref47 doi: 10.1109/WiMOB.2017.8115796 – ident: ref35 doi: 10.1109/ICCNC.2015.7069319 – ident: ref23 doi: 10.1007/978-3-319-03584-0_8 – ident: ref32 doi: 10.1504/IJAHUC.2011.038998 – ident: ref48 doi: 10.1109/ACCESS.2019.2922196 – ident: ref63 doi: 10.1109/CVPR.2017.113 – year: 2020 ident: ref40 – year: 2015 ident: ref9 article-title: Methods and apparatus for distributed backbone internet DDoS mitigation via transit providers – ident: ref54 doi: 10.14722/ndss.2020.24007  | 
    
| SSID | ssj0024894 | 
    
| Score | 2.5204232 | 
    
| Snippet | With the development of data plane programmable Software-Defined Networking (SDN), Distributed Denial of Service (DDoS) attacks on the data plane increasingly... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3855 | 
    
| SubjectTerms | Artificial neural networks Communications traffic Computer crime Cybersecurity data plane programmable SDN DDoS Delays Denial of service attacks Denial-of-service attack Distributed databases Feature extraction in-band network telemetry Software-defined networking spatial-temporal graph convolutional network Switches Telemetry Whitelists  | 
    
| Title | Detecting and Mitigating DDoS Attacks in SDN Using Spatial-Temporal Graph Convolutional Network | 
    
| URI | https://ieeexplore.ieee.org/document/9527066 https://www.proquest.com/docview/2735380757  | 
    
| Volume | 19 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0018 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024894 issn: 1545-5971 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3nx1xSnU3LwJHa2adqkx7GqQ9gu22C30jYpDKUT7Tz41_uSphN_IN7akkDgey_vS_Pe9wAuQ54i6WDM8aSiDvMKpiVvI4fxwMuDUCpJdYHzZBqOF-xhGSxbcL2thVFKmeQzNdCP5i5frvON_lV2EwWUY4hsQ5uLsK7V-tTVE6bpoWYEDpJkz95gem50M49nIzwJUg8PqK7ggn6JQaapyo-d2ISXuz2YNAurs0oeB5sqG-Tv3zQb_7vyfdi1PJMMa8M4gJYqD2Gv6eFArEt3IYmVvkbAAEbSUpLJqtbcwNc4Xs_IsKp0ET5ZlWQWT4lJMCC6jTGarTOvZa2eyL1WvSajdflmDRm_Tev88iNY3N3OR2PHNl1wcoz8lcFMMA8hTIsgYsxXvkBKyTPlZ1Sie1P0-NSPMPYprhiyGZ9mSGtY6qe5KDL_GDrlulQnQLhyJdKnwhcSSUTkCYEH4jAtQiSVEreaHrgNDEluFcl1Y4ynxJxM3CjRyCUaucQi14Or7ZTnWo7jr8FdjcR2oAWhB_0G68Q67GuCLC7Q2vsBP_191hnsUF35YMoQ-9CpXjbqHPlIlV0YQ_wAzPbY4g | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHODCjiirD5wQKYljJ84RNUBZ2kuLxM1KYkeqQCmClANfz9hxi1iEuCWRLVl6M57neOYNwHEUZ0g6GPMCpanHgpIZydvEYzEPCh4pragpcO71o-49u3ngD3NwOquF0Vrb5DPdNo_2Ll-Ni4n5VXaWcBpjiJyHRc4Y40211qeynrBtDw0n8JAmB-4OM_CTs2E66OBZkAZ4RPVFLOiXKGTbqvzYi22AuVyF3nRpTV7JY3tS5-3i_Ztq43_XvgYrjmmS88Y01mFOVxuwOu3iQJxTb4JMtblIwBBGskqR3qhR3cDXNB0PyHldmzJ8MqrIIO0Tm2JATCNjNFxv2AhbPZEro3tNOuPqzZkyfus3GeZbcH95Mex0Pdd2wSsw9tcWNcECBDErecJYqEOBpDLOdZhThQ5O0eezMMHop2PNkM-ENEdiw7IwK0SZh9uwUI0rvQMk1r5CAlWGQiGNSAIh8EgcZWWEtFLhZtMCfwqDLJwmuWmN8STt2cRPpEFOGuSkQ64FJ7Mpz40gx1-DNw0Ss4EOhBbsT7GWzmVfJfI4btT3ebz7-6wjWOoOe3fy7rp_uwfL1NRB2KLEfVioXyb6ANlJnR9ao_wAVBrcLw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+and+Mitigating+DDoS+Attacks+in+SDN+Using+Spatial-Temporal+Graph+Convolutional+Network&rft.jtitle=IEEE+transactions+on+dependable+and+secure+computing&rft.au=Cao%2C+Yongyi&rft.au=Jiang%2C+Hao&rft.au=Deng%2C+Yuchuan&rft.au=Wu%2C+Jing&rft.date=2022-11-01&rft.pub=IEEE+Computer+Society&rft.issn=1545-5971&rft.eissn=1941-0018&rft.volume=19&rft.issue=6&rft.spage=3855&rft_id=info:doi/10.1109%2FTDSC.2021.3108782&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5971&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5971&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5971&client=summon |