Design of Hybrid Artificial Bee Colony Algorithm and Semi-Supervised Extreme Learning Machine for PV Fault Diagnoses by Considering Dust Impact

Photovoltaic (PV) systems operating in the outdoor environment are vulnerable to various factors, especially dust impact. Abnormal operations lead to massive power losses, and severe faults as short circuit may cause safety problems and fire hazards. Therefore, monitoring the operation status of PV...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 35; no. 7; pp. 7086 - 7099
Main Authors Huang, Jun-Ming, Wai, Rong-Jong, Yang, Geng-Jie
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8993
1941-0107
DOI10.1109/TPEL.2019.2956812

Cover

Abstract Photovoltaic (PV) systems operating in the outdoor environment are vulnerable to various factors, especially dust impact. Abnormal operations lead to massive power losses, and severe faults as short circuit may cause safety problems and fire hazards. Therefore, monitoring the operation status of PV systems for timely troubleshooting potential failure and effective cleaning scheme are the focus of current research works. In this study, I-V characteristics of PV strings under various fault states are analyzed, especially soiling condition. Because labeled data for PV systems with specific faults are challenging to record, especially in the large-scale ones, a novel algorithm combining artificial bee colony algorithm and semi-supervised extreme learning machine is proposed to handle this problem. The proposed algorithm can diagnose PV faults using a small amount of simulated labeled data and historical unlabeled data, which greatly reduces labor cost and time-consuming. Moreover, the monitoring of dust accumulation can warn power plant owners to clean PV modules in time and increase the power generation benefits. PV systems of 3.51 and 3.9 kWp are used to verify the proposed diagnosis method. Both numerical simulations and experimental results show the accuracy and reliability of the proposed PV diagnostic technology.
AbstractList Photovoltaic (PV) systems operating in the outdoor environment are vulnerable to various factors, especially dust impact. Abnormal operations lead to massive power losses, and severe faults as short circuit may cause safety problems and fire hazards. Therefore, monitoring the operation status of PV systems for timely troubleshooting potential failure and effective cleaning scheme are the focus of current research works. In this study, I–V characteristics of PV strings under various fault states are analyzed, especially soiling condition. Because labeled data for PV systems with specific faults are challenging to record, especially in the large-scale ones, a novel algorithm combining artificial bee colony algorithm and semi-supervised extreme learning machine is proposed to handle this problem. The proposed algorithm can diagnose PV faults using a small amount of simulated labeled data and historical unlabeled data, which greatly reduces labor cost and time-consuming. Moreover, the monitoring of dust accumulation can warn power plant owners to clean PV modules in time and increase the power generation benefits. PV systems of 3.51 and 3.9 kWp are used to verify the proposed diagnosis method. Both numerical simulations and experimental results show the accuracy and reliability of the proposed PV diagnostic technology.
Photovoltaic (PV) systems operating in the outdoor environment are vulnerable to various factors, especially dust impact. Abnormal operations lead to massive power losses, and severe faults as short circuit may cause safety problems and fire hazards. Therefore, monitoring the operation status of PV systems for timely troubleshooting potential failure and effective cleaning scheme are the focus of current research works. In this study, I-V characteristics of PV strings under various fault states are analyzed, especially soiling condition. Because labeled data for PV systems with specific faults are challenging to record, especially in the large-scale ones, a novel algorithm combining artificial bee colony algorithm and semi-supervised extreme learning machine is proposed to handle this problem. The proposed algorithm can diagnose PV faults using a small amount of simulated labeled data and historical unlabeled data, which greatly reduces labor cost and time-consuming. Moreover, the monitoring of dust accumulation can warn power plant owners to clean PV modules in time and increase the power generation benefits. PV systems of 3.51 and 3.9 kWp are used to verify the proposed diagnosis method. Both numerical simulations and experimental results show the accuracy and reliability of the proposed PV diagnostic technology.
Author Yang, Geng-Jie
Wai, Rong-Jong
Huang, Jun-Ming
Author_xml – sequence: 1
  givenname: Jun-Ming
  orcidid: 0000-0002-2304-8029
  surname: Huang
  fullname: Huang, Jun-Ming
  email: 994809688@qq.com
  organization: College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China
– sequence: 2
  givenname: Rong-Jong
  orcidid: 0000-0001-5483-7445
  surname: Wai
  fullname: Wai, Rong-Jong
  email: rjwai@mail.ntust.edu.tw
  organization: Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
– sequence: 3
  givenname: Geng-Jie
  surname: Yang
  fullname: Yang, Geng-Jie
  email: ygj23802@126.com
  organization: College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China
BookMark eNp9kM1qGzEUhUVJoU6aBwjdCLoeV1eaH2np2k4TcGkgP9tBo7lyFGYkV9KE-in6yrVx6KKLrs7mfOfAd07OfPBIyBWwOQBTXx7u1ps5Z6DmXFW1BP6OzECVUDBgzRmZMSmrQiolPpDzlF4Yg7JiMCO_V5jc1tNg6c2-i66ni5iddcbpgX5FpMswBL-ni2EbosvPI9W-p_c4uuJ-2mF8dQl7uv6VI45IN6ijd35Lv2vz7DxSGyK9e6LXehoyXTm99SFhot3-sOuT6zEe26spZXo77rTJH8l7q4eEl295QR6v1w_Lm2Lz49vtcrEpDFciF1B32GBt0ZqqbIy2vdFYN5LVvOFVwzsuS9uhLTsjrOqwL2uNPZMMhOw1N-KCfD7t7mL4OWHK7UuYoj9ctlw0StRc1XBowallYkgpom130Y067ltg7dF7e_TeHr23b94PTPMPY1zW2QWfo3bDf8lPJ9Ih4t8nqUACCPEHMcCUfA
CODEN ITPEE8
CitedBy_id crossref_primary_10_3390_en15124303
crossref_primary_10_1016_j_renene_2021_11_125
crossref_primary_10_1016_j_enconman_2021_114603
crossref_primary_10_1016_j_solener_2025_113288
crossref_primary_10_1109_TNSE_2022_3150182
crossref_primary_10_1016_j_solener_2022_11_017
crossref_primary_10_1109_ACCESS_2021_3105796
crossref_primary_10_1109_TPEL_2024_3427649
crossref_primary_10_1109_TPEL_2021_3131293
crossref_primary_10_1016_j_asoc_2024_111966
crossref_primary_10_3390_en17174263
crossref_primary_10_1109_JSYST_2021_3128213
crossref_primary_10_1016_j_energy_2022_125539
crossref_primary_10_1049_rpg2_12458
crossref_primary_10_61186_crpase_9_3_2860
crossref_primary_10_1109_TII_2021_3123823
crossref_primary_10_1016_j_enconman_2023_116742
crossref_primary_10_1109_JPHOTOV_2020_3038335
crossref_primary_10_1016_j_jclepro_2022_132701
crossref_primary_10_1109_ACCESS_2020_3020296
crossref_primary_10_1016_j_energy_2025_135284
crossref_primary_10_1016_j_ijepes_2021_107248
crossref_primary_10_1016_j_asoc_2020_106799
crossref_primary_10_1016_j_egyr_2022_04_043
crossref_primary_10_1109_JPHOTOV_2022_3173723
crossref_primary_10_1109_TII_2020_3041516
crossref_primary_10_3390_en17174323
crossref_primary_10_3390_en14154690
crossref_primary_10_1007_s42235_024_00553_z
crossref_primary_10_1109_ACCESS_2022_3177735
crossref_primary_10_1109_MPEL_2020_3047506
crossref_primary_10_3390_en15186567
crossref_primary_10_1049_rpg2_12755
crossref_primary_10_1016_j_energy_2024_133533
crossref_primary_10_1080_03772063_2022_2143439
crossref_primary_10_3390_en14196316
crossref_primary_10_1109_TPEL_2023_3332959
crossref_primary_10_1002_pip_3859
crossref_primary_10_23919_PCMP_2023_000583
crossref_primary_10_1016_j_psep_2024_11_135
crossref_primary_10_1016_j_seta_2021_101785
crossref_primary_10_1109_TIE_2023_3312431
crossref_primary_10_1016_j_solener_2023_112300
crossref_primary_10_1016_j_apenergy_2023_122252
crossref_primary_10_1016_j_rser_2023_114039
crossref_primary_10_1109_TPEL_2021_3105571
crossref_primary_10_3390_pr9081359
crossref_primary_10_1016_j_ijepes_2023_109298
crossref_primary_10_1109_TPEL_2023_3335268
crossref_primary_10_1016_j_energy_2024_131480
crossref_primary_10_3390_app11010314
crossref_primary_10_1016_j_energy_2025_134490
Cites_doi 10.1016/j.renene.2016.01.036
10.1109/TII.2019.2908992
10.1109/JPHOTOV.2015.2397599
10.1109/TIE.2013.2290776
10.1109/TCYB.2014.2307349
10.1109/18.661502
10.1145/1143844.1143868
10.1109/TIE.2017.2703681
10.1016/j.solener.2018.12.048
10.1155/2017/4903613
10.1109/PVSC.2018.8547740
10.1016/j.rser.2018.03.082
10.1109/JPHOTOV.2015.2463745
10.1109/ACCESS.2019.2919337
10.1109/TPEL.2018.2884292
10.1016/j.enconman.2018.10.040
10.1016/j.solener.2014.12.003
10.1016/j.neucom.2012.08.010
10.1016/j.renene.2019.07.156
10.1109/JPHOTOV.2017.2770159
10.1016/j.amc.2009.03.090
10.1109/JPHOTOV.2015.2495208
10.1016/j.apenergy.2017.05.034
10.1109/TSMCB.2011.2168604
10.1109/TIE.2012.2205355
10.1109/JPHOTOV.2016.2567100
10.1016/j.renene.2018.05.008
10.1109/TPEL.2017.2755592
10.1109/IECON.2018.8591616
10.1016/j.renene.2017.05.084
10.1109/TSG.2016.2587244
10.1016/j.renene.2017.10.066
10.1109/TPEL.2014.2364203
10.1109/JSEN.2019.2896236
10.1016/j.solener.2018.10.054
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
DOI 10.1109/TPEL.2019.2956812
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0107
EndPage 7099
ExternalDocumentID 10_1109_TPEL_2019_2956812
8918113
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 108-2221-E-011-080-MY3
  funderid: 10.13039/501100004663
GroupedDBID -~X
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
ID FETCH-LOGICAL-c293t-16be7e6fefc547cafdcae67806272572b284fbef4bc3f9bed46aed080138da2c3
IEDL.DBID RIE
ISSN 0885-8993
IngestDate Mon Jun 30 02:30:29 EDT 2025
Thu Apr 24 22:57:31 EDT 2025
Wed Oct 01 03:20:03 EDT 2025
Wed Aug 27 02:36:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-16be7e6fefc547cafdcae67806272572b284fbef4bc3f9bed46aed080138da2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5483-7445
0000-0002-2304-8029
PQID 2379362961
PQPubID 37080
PageCount 14
ParticipantIDs proquest_journals_2379362961
ieee_primary_8918113
crossref_citationtrail_10_1109_TPEL_2019_2956812
crossref_primary_10_1109_TPEL_2019_2956812
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power electronics
PublicationTitleAbbrev TPEL
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
zhou (ref31) 2003
ref34
ref12
ref37
ref15
ref14
ref30
ref33
ref11
joachims (ref29) 1999
ref32
ref10
zhu (ref25) 2018; 176
ref2
ref1
ref17
ref38
ref16
ref19
ref18
ref24
ref23
ref26
ref20
ref22
ref21
karaboga (ref36) 2005
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1016/j.renene.2016.01.036
– ident: ref28
  doi: 10.1109/TII.2019.2908992
– ident: ref1
  doi: 10.1109/JPHOTOV.2015.2397599
– ident: ref34
  doi: 10.1109/TIE.2013.2290776
– ident: ref32
  doi: 10.1109/TCYB.2014.2307349
– ident: ref38
  doi: 10.1109/18.661502
– ident: ref30
  doi: 10.1145/1143844.1143868
– ident: ref20
  doi: 10.1109/TIE.2017.2703681
– ident: ref16
  doi: 10.1016/j.solener.2018.12.048
– ident: ref24
  doi: 10.1155/2017/4903613
– ident: ref12
  doi: 10.1109/PVSC.2018.8547740
– ident: ref2
  doi: 10.1016/j.rser.2018.03.082
– ident: ref3
  doi: 10.1109/JPHOTOV.2015.2463745
– ident: ref10
  doi: 10.1109/ACCESS.2019.2919337
– ident: ref15
  doi: 10.1109/TPEL.2018.2884292
– ident: ref19
  doi: 10.1016/j.enconman.2018.10.040
– ident: ref4
  doi: 10.1016/j.solener.2014.12.003
– ident: ref35
  doi: 10.1016/j.neucom.2012.08.010
– ident: ref14
  doi: 10.1016/j.renene.2019.07.156
– ident: ref17
  doi: 10.1109/JPHOTOV.2017.2770159
– ident: ref37
  doi: 10.1016/j.amc.2009.03.090
– ident: ref6
  doi: 10.1109/JPHOTOV.2015.2495208
– start-page: 200
  year: 1999
  ident: ref29
  article-title: Transductive inference for text classification using support vector machines
  publication-title: Proc 16th Int Conf Mach Learn
– year: 2005
  ident: ref36
  article-title: An idea based on honey bee swarm for numerical optimization
– ident: ref9
  doi: 10.1016/j.apenergy.2017.05.034
– ident: ref33
  doi: 10.1109/TSMCB.2011.2168604
– ident: ref7
  doi: 10.1109/TIE.2012.2205355
– ident: ref5
  doi: 10.1109/JPHOTOV.2016.2567100
– ident: ref22
  doi: 10.1016/j.renene.2018.05.008
– start-page: 321
  year: 2003
  ident: ref31
  article-title: Learning with local and global consistency
  publication-title: Proc 16th Adv Neural Inf Process Syst
– ident: ref13
  doi: 10.1109/TPEL.2017.2755592
– ident: ref11
  doi: 10.1109/IECON.2018.8591616
– ident: ref18
  doi: 10.1016/j.renene.2017.05.084
– ident: ref21
  doi: 10.1109/TSG.2016.2587244
– ident: ref23
  doi: 10.1016/j.renene.2017.10.066
– ident: ref27
  doi: 10.1109/TPEL.2014.2364203
– ident: ref26
  doi: 10.1109/JSEN.2019.2896236
– volume: 176
  start-page: 395
  year: 2018
  ident: ref25
  article-title: Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.10.054
SSID ssj0014501
Score 2.5508196
Snippet Photovoltaic (PV) systems operating in the outdoor environment are vulnerable to various factors, especially dust impact. Abnormal operations lead to massive...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7086
SubjectTerms Aging
Artificial bee colony (ABC) algorithm
Artificial neural networks
Circuit faults
Cleaning
Computer simulation
Diagnostic systems
Dust
dust impact
Electric power generation
Fault diagnosis
Fire hazards
Machine learning
Monitoring
Operational hazards
Optimization algorithms
photovoltaic (PV)
Photovoltaic cells
Power consumption
Power generation
Power loss
Search algorithms
semi-supervised extreme learning. machine
Semisupervised learning
Short circuits
Supervised learning
Swarm intelligence
System effectiveness
Troubleshooting
Title Design of Hybrid Artificial Bee Colony Algorithm and Semi-Supervised Extreme Learning Machine for PV Fault Diagnoses by Considering Dust Impact
URI https://ieeexplore.ieee.org/document/8918113
https://www.proquest.com/docview/2379362961
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014501
  issn: 0885-8993
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELaAU3vgUYpIodUceqrYsA-vHR8pSZRWDUICKm4rP8aAGjaI7EpN_wR_ubZ3EwFFqLc9jFeWZjwz9nzzDSGfTaY4Su7Ot2Q0ojKWkcuKWCSzns2ZVCYJRNrjEza6oN8v88sVcrDshUHEAD7Drv8MtXwz1bV_KjvsCReP_IjaVd5jTa_WsmJA8zDq2B2aPHJ3iKytYCaxODw_HfzwIC7RTUXg23oSg8JQlX88cQgvww0yXmysQZX86taV6uo_zzgb_3fnm2S9zTPhqDGMLbKC5Tvy9hH74DZ56Af0BkwtjOa-cStIN4wS8BURjp1jLOdwNLma3t9U17cgSwNneHsTndV33sfM0MDgd-WfGKElar2CcYBnIrhsGE5_wlDWkwr6DaIPZ6DmsBgS6qX79ayCb6FV8z25GA7Oj0dRO58h0i5JqKKEKeTILFqdU66lNVqiC36e-dh5glS50GcVWqp0ZoVCQ5lE41LUJOsZmepsh6yV0xJ3CXBreS4SlSCLqVRcxkK7v3FhGKOY6A6JFxordEte7mdoTIpwiYlF4ZVceCUXrZI75MtyyV3D3PGa8LZX2lKw1VeH7C_MomjP9qxIM-fTWCpY8uHlVXvkTepv5QHUu0_WqvsaP7rUpVKfgs3-BW8T7Nc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELYQHGgPBUorUqDMoaeqG_bh9cZHShKFNkFIhIrbyo8xIMIGkV2J9E_0L9f2bqIWKtTbHsYrSzOeGXu--YaQTzqRGYrMnm_BaEBFKAKbFbFAJB2TMiF15Im0R6dscEG_XaaXK-TLshcGET34DNvu09fy9VRV7qnssMNtPHIjatdSSmlad2stawY09cOO7bFJA3uLSJoaZhTyw_FZb-hgXLwdc8-49VcU8mNVnvliH2D6G2S02FqNK7ltV6Vsq59PWBv_d--b5E2TacJRbRpbZAWLt-T1H_yD2-RX1-M3YGpgMHetW1665pSAr4hwbF1jMYejydX04aa8vgNRaDjHu5vgvLp3XmaGGnqPpXtkhIaq9QpGHqCJYPNhOPsBfVFNSujWmD6cgZzDYkyok-5WsxJOfLPmO3LR742PB0EzoSFQNk0og4hJzJAZNCqlmRJGK4E2_DnuY-sLYmmDn5FoqFSJ4RI1ZQK1TVKjpKNFrJL3ZLWYFrhDIDMmS3kkI2QhFTITIVf2bxnXjFGMVIuEC43lqqEvd1M0Jrm_xoQ8d0rOnZLzRskt8nm55L7m7nhJeNspbSnY6KtF9hZmkTene5bHifVqLOYs-vDvVQdkfTAeDfPhyen3XfIqdnd0D_HdI6vlQ4X7NpEp5Udvv78B93jwJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Hybrid+Artificial+Bee+Colony+Algorithm+and+Semi-Supervised+Extreme+Learning+Machine+for+PV+Fault+Diagnoses+by+Considering+Dust+Impact&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Huang%2C+Jun-Ming&rft.au=Wai%2C+Rong-Jong&rft.au=Yang%2C+Geng-Jie&rft.date=2020-07-01&rft.issn=0885-8993&rft.eissn=1941-0107&rft.volume=35&rft.issue=7&rft.spage=7086&rft.epage=7099&rft_id=info:doi/10.1109%2FTPEL.2019.2956812&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPEL_2019_2956812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon