Design of Hybrid Artificial Bee Colony Algorithm and Semi-Supervised Extreme Learning Machine for PV Fault Diagnoses by Considering Dust Impact
Photovoltaic (PV) systems operating in the outdoor environment are vulnerable to various factors, especially dust impact. Abnormal operations lead to massive power losses, and severe faults as short circuit may cause safety problems and fire hazards. Therefore, monitoring the operation status of PV...
        Saved in:
      
    
          | Published in | IEEE transactions on power electronics Vol. 35; no. 7; pp. 7086 - 7099 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.07.2020
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0885-8993 1941-0107  | 
| DOI | 10.1109/TPEL.2019.2956812 | 
Cover
| Abstract | Photovoltaic (PV) systems operating in the outdoor environment are vulnerable to various factors, especially dust impact. Abnormal operations lead to massive power losses, and severe faults as short circuit may cause safety problems and fire hazards. Therefore, monitoring the operation status of PV systems for timely troubleshooting potential failure and effective cleaning scheme are the focus of current research works. In this study, I-V characteristics of PV strings under various fault states are analyzed, especially soiling condition. Because labeled data for PV systems with specific faults are challenging to record, especially in the large-scale ones, a novel algorithm combining artificial bee colony algorithm and semi-supervised extreme learning machine is proposed to handle this problem. The proposed algorithm can diagnose PV faults using a small amount of simulated labeled data and historical unlabeled data, which greatly reduces labor cost and time-consuming. Moreover, the monitoring of dust accumulation can warn power plant owners to clean PV modules in time and increase the power generation benefits. PV systems of 3.51 and 3.9 kWp are used to verify the proposed diagnosis method. Both numerical simulations and experimental results show the accuracy and reliability of the proposed PV diagnostic technology. | 
    
|---|---|
| AbstractList | Photovoltaic (PV) systems operating in the outdoor environment are vulnerable to various factors, especially dust impact. Abnormal operations lead to massive power losses, and severe faults as short circuit may cause safety problems and fire hazards. Therefore, monitoring the operation status of PV systems for timely troubleshooting potential failure and effective cleaning scheme are the focus of current research works. In this study, I–V characteristics of PV strings under various fault states are analyzed, especially soiling condition. Because labeled data for PV systems with specific faults are challenging to record, especially in the large-scale ones, a novel algorithm combining artificial bee colony algorithm and semi-supervised extreme learning machine is proposed to handle this problem. The proposed algorithm can diagnose PV faults using a small amount of simulated labeled data and historical unlabeled data, which greatly reduces labor cost and time-consuming. Moreover, the monitoring of dust accumulation can warn power plant owners to clean PV modules in time and increase the power generation benefits. PV systems of 3.51 and 3.9 kWp are used to verify the proposed diagnosis method. Both numerical simulations and experimental results show the accuracy and reliability of the proposed PV diagnostic technology. Photovoltaic (PV) systems operating in the outdoor environment are vulnerable to various factors, especially dust impact. Abnormal operations lead to massive power losses, and severe faults as short circuit may cause safety problems and fire hazards. Therefore, monitoring the operation status of PV systems for timely troubleshooting potential failure and effective cleaning scheme are the focus of current research works. In this study, I-V characteristics of PV strings under various fault states are analyzed, especially soiling condition. Because labeled data for PV systems with specific faults are challenging to record, especially in the large-scale ones, a novel algorithm combining artificial bee colony algorithm and semi-supervised extreme learning machine is proposed to handle this problem. The proposed algorithm can diagnose PV faults using a small amount of simulated labeled data and historical unlabeled data, which greatly reduces labor cost and time-consuming. Moreover, the monitoring of dust accumulation can warn power plant owners to clean PV modules in time and increase the power generation benefits. PV systems of 3.51 and 3.9 kWp are used to verify the proposed diagnosis method. Both numerical simulations and experimental results show the accuracy and reliability of the proposed PV diagnostic technology.  | 
    
| Author | Yang, Geng-Jie Wai, Rong-Jong Huang, Jun-Ming  | 
    
| Author_xml | – sequence: 1 givenname: Jun-Ming orcidid: 0000-0002-2304-8029 surname: Huang fullname: Huang, Jun-Ming email: 994809688@qq.com organization: College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China – sequence: 2 givenname: Rong-Jong orcidid: 0000-0001-5483-7445 surname: Wai fullname: Wai, Rong-Jong email: rjwai@mail.ntust.edu.tw organization: Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan – sequence: 3 givenname: Geng-Jie surname: Yang fullname: Yang, Geng-Jie email: ygj23802@126.com organization: College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China  | 
    
| BookMark | eNp9kM1qGzEUhUVJoU6aBwjdCLoeV1eaH2np2k4TcGkgP9tBo7lyFGYkV9KE-in6yrVx6KKLrs7mfOfAd07OfPBIyBWwOQBTXx7u1ps5Z6DmXFW1BP6OzECVUDBgzRmZMSmrQiolPpDzlF4Yg7JiMCO_V5jc1tNg6c2-i66ni5iddcbpgX5FpMswBL-ni2EbosvPI9W-p_c4uuJ-2mF8dQl7uv6VI45IN6ijd35Lv2vz7DxSGyK9e6LXehoyXTm99SFhot3-sOuT6zEe26spZXo77rTJH8l7q4eEl295QR6v1w_Lm2Lz49vtcrEpDFciF1B32GBt0ZqqbIy2vdFYN5LVvOFVwzsuS9uhLTsjrOqwL2uNPZMMhOw1N-KCfD7t7mL4OWHK7UuYoj9ctlw0StRc1XBowallYkgpom130Y067ltg7dF7e_TeHr23b94PTPMPY1zW2QWfo3bDf8lPJ9Ih4t8nqUACCPEHMcCUfA | 
    
| CODEN | ITPEE8 | 
    
| CitedBy_id | crossref_primary_10_3390_en15124303 crossref_primary_10_1016_j_renene_2021_11_125 crossref_primary_10_1016_j_enconman_2021_114603 crossref_primary_10_1016_j_solener_2025_113288 crossref_primary_10_1109_TNSE_2022_3150182 crossref_primary_10_1016_j_solener_2022_11_017 crossref_primary_10_1109_ACCESS_2021_3105796 crossref_primary_10_1109_TPEL_2024_3427649 crossref_primary_10_1109_TPEL_2021_3131293 crossref_primary_10_1016_j_asoc_2024_111966 crossref_primary_10_3390_en17174263 crossref_primary_10_1109_JSYST_2021_3128213 crossref_primary_10_1016_j_energy_2022_125539 crossref_primary_10_1049_rpg2_12458 crossref_primary_10_61186_crpase_9_3_2860 crossref_primary_10_1109_TII_2021_3123823 crossref_primary_10_1016_j_enconman_2023_116742 crossref_primary_10_1109_JPHOTOV_2020_3038335 crossref_primary_10_1016_j_jclepro_2022_132701 crossref_primary_10_1109_ACCESS_2020_3020296 crossref_primary_10_1016_j_energy_2025_135284 crossref_primary_10_1016_j_ijepes_2021_107248 crossref_primary_10_1016_j_asoc_2020_106799 crossref_primary_10_1016_j_egyr_2022_04_043 crossref_primary_10_1109_JPHOTOV_2022_3173723 crossref_primary_10_1109_TII_2020_3041516 crossref_primary_10_3390_en17174323 crossref_primary_10_3390_en14154690 crossref_primary_10_1007_s42235_024_00553_z crossref_primary_10_1109_ACCESS_2022_3177735 crossref_primary_10_1109_MPEL_2020_3047506 crossref_primary_10_3390_en15186567 crossref_primary_10_1049_rpg2_12755 crossref_primary_10_1016_j_energy_2024_133533 crossref_primary_10_1080_03772063_2022_2143439 crossref_primary_10_3390_en14196316 crossref_primary_10_1109_TPEL_2023_3332959 crossref_primary_10_1002_pip_3859 crossref_primary_10_23919_PCMP_2023_000583 crossref_primary_10_1016_j_psep_2024_11_135 crossref_primary_10_1016_j_seta_2021_101785 crossref_primary_10_1109_TIE_2023_3312431 crossref_primary_10_1016_j_solener_2023_112300 crossref_primary_10_1016_j_apenergy_2023_122252 crossref_primary_10_1016_j_rser_2023_114039 crossref_primary_10_1109_TPEL_2021_3105571 crossref_primary_10_3390_pr9081359 crossref_primary_10_1016_j_ijepes_2023_109298 crossref_primary_10_1109_TPEL_2023_3335268 crossref_primary_10_1016_j_energy_2024_131480 crossref_primary_10_3390_app11010314 crossref_primary_10_1016_j_energy_2025_134490  | 
    
| Cites_doi | 10.1016/j.renene.2016.01.036 10.1109/TII.2019.2908992 10.1109/JPHOTOV.2015.2397599 10.1109/TIE.2013.2290776 10.1109/TCYB.2014.2307349 10.1109/18.661502 10.1145/1143844.1143868 10.1109/TIE.2017.2703681 10.1016/j.solener.2018.12.048 10.1155/2017/4903613 10.1109/PVSC.2018.8547740 10.1016/j.rser.2018.03.082 10.1109/JPHOTOV.2015.2463745 10.1109/ACCESS.2019.2919337 10.1109/TPEL.2018.2884292 10.1016/j.enconman.2018.10.040 10.1016/j.solener.2014.12.003 10.1016/j.neucom.2012.08.010 10.1016/j.renene.2019.07.156 10.1109/JPHOTOV.2017.2770159 10.1016/j.amc.2009.03.090 10.1109/JPHOTOV.2015.2495208 10.1016/j.apenergy.2017.05.034 10.1109/TSMCB.2011.2168604 10.1109/TIE.2012.2205355 10.1109/JPHOTOV.2016.2567100 10.1016/j.renene.2018.05.008 10.1109/TPEL.2017.2755592 10.1109/IECON.2018.8591616 10.1016/j.renene.2017.05.084 10.1109/TSG.2016.2587244 10.1016/j.renene.2017.10.066 10.1109/TPEL.2014.2364203 10.1109/JSEN.2019.2896236 10.1016/j.solener.2018.10.054  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 JQ2 KR7 L7M  | 
    
| DOI | 10.1109/TPEL.2019.2956812 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Engineering Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1941-0107 | 
    
| EndPage | 7099 | 
    
| ExternalDocumentID | 10_1109_TPEL_2019_2956812 8918113  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 108-2221-E-011-080-MY3 funderid: 10.13039/501100004663  | 
    
| GroupedDBID | -~X 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TAF TN5 VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 JQ2 KR7 L7M  | 
    
| ID | FETCH-LOGICAL-c293t-16be7e6fefc547cafdcae67806272572b284fbef4bc3f9bed46aed080138da2c3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0885-8993 | 
    
| IngestDate | Mon Jun 30 02:30:29 EDT 2025 Thu Apr 24 22:57:31 EDT 2025 Wed Oct 01 03:20:03 EDT 2025 Wed Aug 27 02:36:27 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c293t-16be7e6fefc547cafdcae67806272572b284fbef4bc3f9bed46aed080138da2c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-5483-7445 0000-0002-2304-8029  | 
    
| PQID | 2379362961 | 
    
| PQPubID | 37080 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_journals_2379362961 ieee_primary_8918113 crossref_citationtrail_10_1109_TPEL_2019_2956812 crossref_primary_10_1109_TPEL_2019_2956812  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-07-01 | 
    
| PublicationDateYYYYMMDD | 2020-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on power electronics | 
    
| PublicationTitleAbbrev | TPEL | 
    
| PublicationYear | 2020 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref35 ref13 zhou (ref31) 2003 ref34 ref12 ref37 ref15 ref14 ref30 ref33 ref11 joachims (ref29) 1999 ref32 ref10 zhu (ref25) 2018; 176 ref2 ref1 ref17 ref38 ref16 ref19 ref18 ref24 ref23 ref26 ref20 ref22 ref21 karaboga (ref36) 2005 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref8 doi: 10.1016/j.renene.2016.01.036 – ident: ref28 doi: 10.1109/TII.2019.2908992 – ident: ref1 doi: 10.1109/JPHOTOV.2015.2397599 – ident: ref34 doi: 10.1109/TIE.2013.2290776 – ident: ref32 doi: 10.1109/TCYB.2014.2307349 – ident: ref38 doi: 10.1109/18.661502 – ident: ref30 doi: 10.1145/1143844.1143868 – ident: ref20 doi: 10.1109/TIE.2017.2703681 – ident: ref16 doi: 10.1016/j.solener.2018.12.048 – ident: ref24 doi: 10.1155/2017/4903613 – ident: ref12 doi: 10.1109/PVSC.2018.8547740 – ident: ref2 doi: 10.1016/j.rser.2018.03.082 – ident: ref3 doi: 10.1109/JPHOTOV.2015.2463745 – ident: ref10 doi: 10.1109/ACCESS.2019.2919337 – ident: ref15 doi: 10.1109/TPEL.2018.2884292 – ident: ref19 doi: 10.1016/j.enconman.2018.10.040 – ident: ref4 doi: 10.1016/j.solener.2014.12.003 – ident: ref35 doi: 10.1016/j.neucom.2012.08.010 – ident: ref14 doi: 10.1016/j.renene.2019.07.156 – ident: ref17 doi: 10.1109/JPHOTOV.2017.2770159 – ident: ref37 doi: 10.1016/j.amc.2009.03.090 – ident: ref6 doi: 10.1109/JPHOTOV.2015.2495208 – start-page: 200 year: 1999 ident: ref29 article-title: Transductive inference for text classification using support vector machines publication-title: Proc 16th Int Conf Mach Learn – year: 2005 ident: ref36 article-title: An idea based on honey bee swarm for numerical optimization – ident: ref9 doi: 10.1016/j.apenergy.2017.05.034 – ident: ref33 doi: 10.1109/TSMCB.2011.2168604 – ident: ref7 doi: 10.1109/TIE.2012.2205355 – ident: ref5 doi: 10.1109/JPHOTOV.2016.2567100 – ident: ref22 doi: 10.1016/j.renene.2018.05.008 – start-page: 321 year: 2003 ident: ref31 article-title: Learning with local and global consistency publication-title: Proc 16th Adv Neural Inf Process Syst – ident: ref13 doi: 10.1109/TPEL.2017.2755592 – ident: ref11 doi: 10.1109/IECON.2018.8591616 – ident: ref18 doi: 10.1016/j.renene.2017.05.084 – ident: ref21 doi: 10.1109/TSG.2016.2587244 – ident: ref23 doi: 10.1016/j.renene.2017.10.066 – ident: ref27 doi: 10.1109/TPEL.2014.2364203 – ident: ref26 doi: 10.1109/JSEN.2019.2896236 – volume: 176 start-page: 395 year: 2018 ident: ref25 article-title: Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model publication-title: Sol Energy doi: 10.1016/j.solener.2018.10.054  | 
    
| SSID | ssj0014501 | 
    
| Score | 2.5508196 | 
    
| Snippet | Photovoltaic (PV) systems operating in the outdoor environment are vulnerable to various factors, especially dust impact. Abnormal operations lead to massive... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 7086 | 
    
| SubjectTerms | Aging Artificial bee colony (ABC) algorithm Artificial neural networks Circuit faults Cleaning Computer simulation Diagnostic systems Dust dust impact Electric power generation Fault diagnosis Fire hazards Machine learning Monitoring Operational hazards Optimization algorithms photovoltaic (PV) Photovoltaic cells Power consumption Power generation Power loss Search algorithms semi-supervised extreme learning. machine Semisupervised learning Short circuits Supervised learning Swarm intelligence System effectiveness Troubleshooting  | 
    
| Title | Design of Hybrid Artificial Bee Colony Algorithm and Semi-Supervised Extreme Learning Machine for PV Fault Diagnoses by Considering Dust Impact | 
    
| URI | https://ieeexplore.ieee.org/document/8918113 https://www.proquest.com/docview/2379362961  | 
    
| Volume | 35 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 1941-0107 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014501 issn: 0885-8993 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELaAU3vgUYpIodUceqrYsA-vHR8pSZRWDUICKm4rP8aAGjaI7EpN_wR_ubZ3EwFFqLc9jFeWZjwz9nzzDSGfTaY4Su7Ot2Q0ojKWkcuKWCSzns2ZVCYJRNrjEza6oN8v88sVcrDshUHEAD7Drv8MtXwz1bV_KjvsCReP_IjaVd5jTa_WsmJA8zDq2B2aPHJ3iKytYCaxODw_HfzwIC7RTUXg23oSg8JQlX88cQgvww0yXmysQZX86taV6uo_zzgb_3fnm2S9zTPhqDGMLbKC5Tvy9hH74DZ56Af0BkwtjOa-cStIN4wS8BURjp1jLOdwNLma3t9U17cgSwNneHsTndV33sfM0MDgd-WfGKElar2CcYBnIrhsGE5_wlDWkwr6DaIPZ6DmsBgS6qX79ayCb6FV8z25GA7Oj0dRO58h0i5JqKKEKeTILFqdU66lNVqiC36e-dh5glS50GcVWqp0ZoVCQ5lE41LUJOsZmepsh6yV0xJ3CXBreS4SlSCLqVRcxkK7v3FhGKOY6A6JFxordEte7mdoTIpwiYlF4ZVceCUXrZI75MtyyV3D3PGa8LZX2lKw1VeH7C_MomjP9qxIM-fTWCpY8uHlVXvkTepv5QHUu0_WqvsaP7rUpVKfgs3-BW8T7Nc | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELYQHGgPBUorUqDMoaeqG_bh9cZHShKFNkFIhIrbyo8xIMIGkV2J9E_0L9f2bqIWKtTbHsYrSzOeGXu--YaQTzqRGYrMnm_BaEBFKAKbFbFAJB2TMiF15Im0R6dscEG_XaaXK-TLshcGET34DNvu09fy9VRV7qnssMNtPHIjatdSSmlad2stawY09cOO7bFJA3uLSJoaZhTyw_FZb-hgXLwdc8-49VcU8mNVnvliH2D6G2S02FqNK7ltV6Vsq59PWBv_d--b5E2TacJRbRpbZAWLt-T1H_yD2-RX1-M3YGpgMHetW1665pSAr4hwbF1jMYejydX04aa8vgNRaDjHu5vgvLp3XmaGGnqPpXtkhIaq9QpGHqCJYPNhOPsBfVFNSujWmD6cgZzDYkyok-5WsxJOfLPmO3LR742PB0EzoSFQNk0og4hJzJAZNCqlmRJGK4E2_DnuY-sLYmmDn5FoqFSJ4RI1ZQK1TVKjpKNFrJL3ZLWYFrhDIDMmS3kkI2QhFTITIVf2bxnXjFGMVIuEC43lqqEvd1M0Jrm_xoQ8d0rOnZLzRskt8nm55L7m7nhJeNspbSnY6KtF9hZmkTene5bHifVqLOYs-vDvVQdkfTAeDfPhyen3XfIqdnd0D_HdI6vlQ4X7NpEp5Udvv78B93jwJA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Hybrid+Artificial+Bee+Colony+Algorithm+and+Semi-Supervised+Extreme+Learning+Machine+for+PV+Fault+Diagnoses+by+Considering+Dust+Impact&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Huang%2C+Jun-Ming&rft.au=Wai%2C+Rong-Jong&rft.au=Yang%2C+Geng-Jie&rft.date=2020-07-01&rft.issn=0885-8993&rft.eissn=1941-0107&rft.volume=35&rft.issue=7&rft.spage=7086&rft.epage=7099&rft_id=info:doi/10.1109%2FTPEL.2019.2956812&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPEL_2019_2956812 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon |