Fast and Robust Variable-Step-Size LMS Algorithm for Adaptive Beamforming
Conventional least-mean-square (LMS) algorithm is one of the most popular algorithms, which is widely used for adaptive beamforming. But the performance of the LMS algorithm degrades significantly because the constant step size is not suitable for varying signal-to-noise ratio (SNR) scenarios. Altho...
Saved in:
| Published in | IEEE antennas and wireless propagation letters Vol. 19; no. 7; pp. 1206 - 1210 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1536-1225 1548-5757 |
| DOI | 10.1109/LAWP.2020.2995244 |
Cover
| Abstract | Conventional least-mean-square (LMS) algorithm is one of the most popular algorithms, which is widely used for adaptive beamforming. But the performance of the LMS algorithm degrades significantly because the constant step size is not suitable for varying signal-to-noise ratio (SNR) scenarios. Although numerous variable-step-size LMS (VSS-LMS) algorithms were proposed to improve the performance of the LMS algorithm; however, most of these VSS-LMS algorithms are either computationally complex or not reliable in practical scenarios since they depend on many parameters that are not easy to tune manually. In this letter, a fast and robust VSS-LMS algorithm is proposed for adaptive beamforming. The VSS is obtained based on normalized sigmoid function, where the sigmoid function is calculated by using the mean of instantaneous error first and then normalized by the squared cumulative sum of instantaneous error and estimated signal power. The proposed algorithm can update the step size adaptively without tuning any parameter and outperform state-of-the-art algorithms with low computational complexity. The simulation results show better performance of the proposed algorithm. |
|---|---|
| AbstractList | Conventional least-mean-square (LMS) algorithm is one of the most popular algorithms, which is widely used for adaptive beamforming. But the performance of the LMS algorithm degrades significantly because the constant step size is not suitable for varying signal-to-noise ratio (SNR) scenarios. Although numerous variable-step-size LMS (VSS-LMS) algorithms were proposed to improve the performance of the LMS algorithm; however, most of these VSS-LMS algorithms are either computationally complex or not reliable in practical scenarios since they depend on many parameters that are not easy to tune manually. In this letter, a fast and robust VSS-LMS algorithm is proposed for adaptive beamforming. The VSS is obtained based on normalized sigmoid function, where the sigmoid function is calculated by using the mean of instantaneous error first and then normalized by the squared cumulative sum of instantaneous error and estimated signal power. The proposed algorithm can update the step size adaptively without tuning any parameter and outperform state-of-the-art algorithms with low computational complexity. The simulation results show better performance of the proposed algorithm. |
| Author | Yang, Xiaopeng Liu, Quanhua Jalal, Babur Long, Teng Sarkar, Tapan K. |
| Author_xml | – sequence: 1 givenname: Babur orcidid: 0000-0003-1167-0571 surname: Jalal fullname: Jalal, Babur email: babar356@yahoo.com organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Xiaopeng orcidid: 0000-0003-2750-6944 surname: Yang fullname: Yang, Xiaopeng email: xiaopengyang@bit.edu.cn organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Quanhua orcidid: 0000-0003-4253-2614 surname: Liu fullname: Liu, Quanhua email: liuquanhua@bit.edu.cn organization: Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China – sequence: 4 givenname: Teng surname: Long fullname: Long, Teng email: longteng@bit.edu.cn organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Tapan K. orcidid: 0000-0002-4125-5267 surname: Sarkar fullname: Sarkar, Tapan K. email: tksarkar@syr.edu organization: Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA |
| BookMark | eNp9UMtOwzAQtFCRaAsfgLhE4pziZxwfS0WhUhCI8jhGjuMUV0kcHBcJvh5HrThw4LSj3Zmd3ZmAUWtbDcA5gjOEoLjK5m-PMwwxnGEhGKb0CIwRo2nMOOOjAZMkRhizEzDp-y2EiCeMjMFqKXsfybaMnmyxC_BVOiOLWsdrr7t4bb51lN2vo3m9sc749yaqrIvmpey8-dTRtZZNaDSm3ZyC40rWvT471Cl4Wd48L-7i7OF2tZhnscKC-HAD0aoUhYSVQogrjRKVMgSLlEmqNCm4TKrwQUppQVKRMMY5hFpyUaZEQEWm4HK_t3P2Y6d7n2_tzrXBMscUY8gooiKw0J6lnO17p6u8c6aR7itHMB8Sy4fE8iGx_JBY0PA_GmW89Ma23klT_6u82CuN1vrXScAwZZz8ANmgeRg |
| CODEN | IAWPA7 |
| CitedBy_id | crossref_primary_10_1002_tee_23499 crossref_primary_10_1371_journal_pone_0304018 crossref_primary_10_3390_electronics12214437 crossref_primary_10_1109_TIM_2025_3533655 crossref_primary_10_1177_10775463241260110 crossref_primary_10_1007_s00034_022_02015_5 crossref_primary_10_1007_s00034_022_02192_3 crossref_primary_10_1016_j_dsp_2021_102968 crossref_primary_10_1007_s11760_025_03886_2 crossref_primary_10_1109_ACCESS_2023_3319394 crossref_primary_10_3390_s23187871 crossref_primary_10_1109_TIA_2024_3403966 crossref_primary_10_1016_j_dsp_2024_104478 crossref_primary_10_1103_PhysRevApplied_22_044002 crossref_primary_10_1109_JSEN_2022_3211003 crossref_primary_10_1109_LSP_2022_3171123 crossref_primary_10_32604_cmc_2023_039826 crossref_primary_10_3390_rs14020350 crossref_primary_10_1002_acs_3970 crossref_primary_10_1109_TSP_2023_3236151 crossref_primary_10_1109_TCSII_2024_3365212 crossref_primary_10_3390_rs14122924 crossref_primary_10_3389_fphy_2022_1063474 crossref_primary_10_1007_s00034_023_02303_8 crossref_primary_10_1109_MMM_2024_3524825 crossref_primary_10_3390_rs15174129 |
| Cites_doi | 10.1109/TSP.2014.2367452 10.1109/ICIEA.2007.4318828 10.1109/LAWP.2019.2923700 10.1109/78.558478 10.1109/LSP.2014.2362932 10.1109/ACCESS.2018.2865626 10.1109/TAP.2010.2071361 10.1109/TSP.2011.2181505 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/LAWP.2020.2995244 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1548-5757 |
| EndPage | 1210 |
| ExternalDocumentID | 10_1109_LAWP_2020_2995244 9095257 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61860206012; 61671065; 31727901 funderid: 10.13039/501100001809 – fundername: 111 project of China grantid: B14010 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c293t-123ecd9ba0fc117ce16c8510b85a4ce3b7a6f952844b3896557700ea79d8390c3 |
| IEDL.DBID | RIE |
| ISSN | 1536-1225 |
| IngestDate | Mon Jun 30 03:59:27 EDT 2025 Wed Oct 01 01:41:05 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Wed Aug 27 02:36:37 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-123ecd9ba0fc117ce16c8510b85a4ce3b7a6f952844b3896557700ea79d8390c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2750-6944 0000-0003-1167-0571 0000-0003-4253-2614 0000-0002-4125-5267 |
| PQID | 2422054149 |
| PQPubID | 75732 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2422054149 crossref_primary_10_1109_LAWP_2020_2995244 crossref_citationtrail_10_1109_LAWP_2020_2995244 ieee_primary_9095257 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE antennas and wireless propagation letters |
| PublicationTitleAbbrev | LAWP |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref8 ref7 ref4 ref3 ref6 ref5 ref2 ref1 |
| References_xml | – ident: ref4 doi: 10.1109/TSP.2014.2367452 – ident: ref6 doi: 10.1109/ICIEA.2007.4318828 – ident: ref5 doi: 10.1109/LAWP.2019.2923700 – ident: ref8 doi: 10.1109/78.558478 – ident: ref2 doi: 10.1109/LSP.2014.2362932 – ident: ref1 doi: 10.1109/ACCESS.2018.2865626 – ident: ref3 doi: 10.1109/TAP.2010.2071361 – ident: ref7 doi: 10.1109/TSP.2011.2181505 |
| SSID | ssj0017653 |
| Score | 2.497445 |
| Snippet | Conventional least-mean-square (LMS) algorithm is one of the most popular algorithms, which is widely used for adaptive beamforming. But the performance of the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1206 |
| SubjectTerms | Adaptive algorithms Adaptive beamforming Algorithms Array signal processing Beamforming Complexity Computer simulation Convergence Interference least mean square (LMS) Mathematical analysis Mean square error methods Parameters Performance enhancement Robustness sigmoid function Signal to noise ratio Steady-state variable step size (VSS) |
| Title | Fast and Robust Variable-Step-Size LMS Algorithm for Adaptive Beamforming |
| URI | https://ieeexplore.ieee.org/document/9095257 https://www.proquest.com/docview/2422054149 |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1548-5757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017653 issn: 1536-1225 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExx4IwYD5cAJ0S7dkrQ5DsQEiCEEDLhVSZrBxLZOW3fh1-O03cRLiFsOSWTZif05dmyAo0ZXRJJp6zEbSI9xdFBUEiWeZYgG0JNjQR4xbd-Iiw67eubPC3Ay_wtjrc2Tz6zvhnksP0nN1D2V1STiATxii7AYRqL4qzWPGIQirziJF9j1lanzMoIZUFm7bj7doidYpz7qXo727IsNypuq_NDEuXlprUF7RliRVfLmTzPtm_dvNRv_S_k6rJY4kzSLg7EBC3a4CSufqg9uwWVLTTKihgm5S_UUh4_oN7ufVJ5L_fLue--WXLfvSbP_ko572euAIMAlzUSNnIokp1YNHOLFvbah0zp_OLvwys4KnkHzniGDGtYkUivaNUEQGhsIg9CL6ogrZmxDh0p0keKIMY2IRnAehpRaFcoEARU1jR1YGqZDuwsk4kIipEpYV7ge61zJkCqm6w43SC1VBeiM17Epy4677hf9OHc_qIydeGInnrgUTwWO50tGRc2NvyZvOXbPJ5acrkB1JtC4vJWTGOFInbq-53Lv91X7sOz2LtJxq7CUjaf2AEFHpg_z0_YBRZbPqA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAH3ojBgBw4ITrSLWmb40BMA7YJ8b5VSZrBxF7aust-PU7bTbyEuOWQpJad2J9rxwY4rrS9QDBlHGZc4TCODoqMgsgxDNEAenLMTSKmzZZXf2TXL_wlB6fztzDGmCT5zJTsMInlRwM9sb_KzgTiATxiC7DIGWM8fa01jxn4XlJzEq-w7SxT5lkM06XirFF9vkVfsExLqH05WrQvVihpq_JDFycGprYGzRlpaV7Je2kSq5Kefqva-F_a12E1Q5qkmh6NDciZ_iasfKo_uAVXNTmOiexH5G6gJjh8Qs_ZvqVybPKXc9-ZGtJo3pNq93Uw6sRvPYIQl1QjObRKkpwb2bOYF_fahsfa5cNF3cl6KzgaDXyMDKoYHQklaVu7rq-N62kEX1QFXDJtKsqXXhspDhhTiGk8zn2fUiN9ESGkorqyA_n-oG92gQTcEwiqItb2bJd1LoVPJVNlixyEErIAdMbrUGeFx23_i26YOCBUhFY8oRVPmImnACfzJcO06sZfk7csu-cTM04XoDgTaJjdy3GIgKRMbedzsff7qiNYqj80G2HjqnWzD8v2O2lybhHy8WhiDhCCxOowOXkfU8LS9Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Robust+Variable-Step-Size+LMS+Algorithm+for+Adaptive+Beamforming&rft.jtitle=IEEE+antennas+and+wireless+propagation+letters&rft.au=Babur+Jalal&rft.au=Yang%2C+Xiaopeng&rft.au=Liu%2C+Quanhua&rft.au=Long%2C+Teng&rft.date=2020-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1225&rft.eissn=1548-5757&rft.volume=19&rft.issue=7&rft.spage=1206&rft_id=info:doi/10.1109%2FLAWP.2020.2995244&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1225&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1225&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1225&client=summon |