Fast and Robust Variable-Step-Size LMS Algorithm for Adaptive Beamforming

Conventional least-mean-square (LMS) algorithm is one of the most popular algorithms, which is widely used for adaptive beamforming. But the performance of the LMS algorithm degrades significantly because the constant step size is not suitable for varying signal-to-noise ratio (SNR) scenarios. Altho...

Full description

Saved in:
Bibliographic Details
Published inIEEE antennas and wireless propagation letters Vol. 19; no. 7; pp. 1206 - 1210
Main Authors Jalal, Babur, Yang, Xiaopeng, Liu, Quanhua, Long, Teng, Sarkar, Tapan K.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1225
1548-5757
DOI10.1109/LAWP.2020.2995244

Cover

Abstract Conventional least-mean-square (LMS) algorithm is one of the most popular algorithms, which is widely used for adaptive beamforming. But the performance of the LMS algorithm degrades significantly because the constant step size is not suitable for varying signal-to-noise ratio (SNR) scenarios. Although numerous variable-step-size LMS (VSS-LMS) algorithms were proposed to improve the performance of the LMS algorithm; however, most of these VSS-LMS algorithms are either computationally complex or not reliable in practical scenarios since they depend on many parameters that are not easy to tune manually. In this letter, a fast and robust VSS-LMS algorithm is proposed for adaptive beamforming. The VSS is obtained based on normalized sigmoid function, where the sigmoid function is calculated by using the mean of instantaneous error first and then normalized by the squared cumulative sum of instantaneous error and estimated signal power. The proposed algorithm can update the step size adaptively without tuning any parameter and outperform state-of-the-art algorithms with low computational complexity. The simulation results show better performance of the proposed algorithm.
AbstractList Conventional least-mean-square (LMS) algorithm is one of the most popular algorithms, which is widely used for adaptive beamforming. But the performance of the LMS algorithm degrades significantly because the constant step size is not suitable for varying signal-to-noise ratio (SNR) scenarios. Although numerous variable-step-size LMS (VSS-LMS) algorithms were proposed to improve the performance of the LMS algorithm; however, most of these VSS-LMS algorithms are either computationally complex or not reliable in practical scenarios since they depend on many parameters that are not easy to tune manually. In this letter, a fast and robust VSS-LMS algorithm is proposed for adaptive beamforming. The VSS is obtained based on normalized sigmoid function, where the sigmoid function is calculated by using the mean of instantaneous error first and then normalized by the squared cumulative sum of instantaneous error and estimated signal power. The proposed algorithm can update the step size adaptively without tuning any parameter and outperform state-of-the-art algorithms with low computational complexity. The simulation results show better performance of the proposed algorithm.
Author Yang, Xiaopeng
Liu, Quanhua
Jalal, Babur
Long, Teng
Sarkar, Tapan K.
Author_xml – sequence: 1
  givenname: Babur
  orcidid: 0000-0003-1167-0571
  surname: Jalal
  fullname: Jalal, Babur
  email: babar356@yahoo.com
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Xiaopeng
  orcidid: 0000-0003-2750-6944
  surname: Yang
  fullname: Yang, Xiaopeng
  email: xiaopengyang@bit.edu.cn
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Quanhua
  orcidid: 0000-0003-4253-2614
  surname: Liu
  fullname: Liu, Quanhua
  email: liuquanhua@bit.edu.cn
  organization: Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China
– sequence: 4
  givenname: Teng
  surname: Long
  fullname: Long, Teng
  email: longteng@bit.edu.cn
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Tapan K.
  orcidid: 0000-0002-4125-5267
  surname: Sarkar
  fullname: Sarkar, Tapan K.
  email: tksarkar@syr.edu
  organization: Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA
BookMark eNp9UMtOwzAQtFCRaAsfgLhE4pziZxwfS0WhUhCI8jhGjuMUV0kcHBcJvh5HrThw4LSj3Zmd3ZmAUWtbDcA5gjOEoLjK5m-PMwwxnGEhGKb0CIwRo2nMOOOjAZMkRhizEzDp-y2EiCeMjMFqKXsfybaMnmyxC_BVOiOLWsdrr7t4bb51lN2vo3m9sc749yaqrIvmpey8-dTRtZZNaDSm3ZyC40rWvT471Cl4Wd48L-7i7OF2tZhnscKC-HAD0aoUhYSVQogrjRKVMgSLlEmqNCm4TKrwQUppQVKRMMY5hFpyUaZEQEWm4HK_t3P2Y6d7n2_tzrXBMscUY8gooiKw0J6lnO17p6u8c6aR7itHMB8Sy4fE8iGx_JBY0PA_GmW89Ma23klT_6u82CuN1vrXScAwZZz8ANmgeRg
CODEN IAWPA7
CitedBy_id crossref_primary_10_1002_tee_23499
crossref_primary_10_1371_journal_pone_0304018
crossref_primary_10_3390_electronics12214437
crossref_primary_10_1109_TIM_2025_3533655
crossref_primary_10_1177_10775463241260110
crossref_primary_10_1007_s00034_022_02015_5
crossref_primary_10_1007_s00034_022_02192_3
crossref_primary_10_1016_j_dsp_2021_102968
crossref_primary_10_1007_s11760_025_03886_2
crossref_primary_10_1109_ACCESS_2023_3319394
crossref_primary_10_3390_s23187871
crossref_primary_10_1109_TIA_2024_3403966
crossref_primary_10_1016_j_dsp_2024_104478
crossref_primary_10_1103_PhysRevApplied_22_044002
crossref_primary_10_1109_JSEN_2022_3211003
crossref_primary_10_1109_LSP_2022_3171123
crossref_primary_10_32604_cmc_2023_039826
crossref_primary_10_3390_rs14020350
crossref_primary_10_1002_acs_3970
crossref_primary_10_1109_TSP_2023_3236151
crossref_primary_10_1109_TCSII_2024_3365212
crossref_primary_10_3390_rs14122924
crossref_primary_10_3389_fphy_2022_1063474
crossref_primary_10_1007_s00034_023_02303_8
crossref_primary_10_1109_MMM_2024_3524825
crossref_primary_10_3390_rs15174129
Cites_doi 10.1109/TSP.2014.2367452
10.1109/ICIEA.2007.4318828
10.1109/LAWP.2019.2923700
10.1109/78.558478
10.1109/LSP.2014.2362932
10.1109/ACCESS.2018.2865626
10.1109/TAP.2010.2071361
10.1109/TSP.2011.2181505
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LAWP.2020.2995244
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1548-5757
EndPage 1210
ExternalDocumentID 10_1109_LAWP_2020_2995244
9095257
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61860206012; 61671065; 31727901
  funderid: 10.13039/501100001809
– fundername: 111 project of China
  grantid: B14010
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-123ecd9ba0fc117ce16c8510b85a4ce3b7a6f952844b3896557700ea79d8390c3
IEDL.DBID RIE
ISSN 1536-1225
IngestDate Mon Jun 30 03:59:27 EDT 2025
Wed Oct 01 01:41:05 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Wed Aug 27 02:36:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-123ecd9ba0fc117ce16c8510b85a4ce3b7a6f952844b3896557700ea79d8390c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2750-6944
0000-0003-1167-0571
0000-0003-4253-2614
0000-0002-4125-5267
PQID 2422054149
PQPubID 75732
PageCount 5
ParticipantIDs proquest_journals_2422054149
crossref_primary_10_1109_LAWP_2020_2995244
crossref_citationtrail_10_1109_LAWP_2020_2995244
ieee_primary_9095257
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE antennas and wireless propagation letters
PublicationTitleAbbrev LAWP
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
ref7
ref4
ref3
ref6
ref5
ref2
ref1
References_xml – ident: ref4
  doi: 10.1109/TSP.2014.2367452
– ident: ref6
  doi: 10.1109/ICIEA.2007.4318828
– ident: ref5
  doi: 10.1109/LAWP.2019.2923700
– ident: ref8
  doi: 10.1109/78.558478
– ident: ref2
  doi: 10.1109/LSP.2014.2362932
– ident: ref1
  doi: 10.1109/ACCESS.2018.2865626
– ident: ref3
  doi: 10.1109/TAP.2010.2071361
– ident: ref7
  doi: 10.1109/TSP.2011.2181505
SSID ssj0017653
Score 2.497445
Snippet Conventional least-mean-square (LMS) algorithm is one of the most popular algorithms, which is widely used for adaptive beamforming. But the performance of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1206
SubjectTerms Adaptive algorithms
Adaptive beamforming
Algorithms
Array signal processing
Beamforming
Complexity
Computer simulation
Convergence
Interference
least mean square (LMS)
Mathematical analysis
Mean square error methods
Parameters
Performance enhancement
Robustness
sigmoid function
Signal to noise ratio
Steady-state
variable step size (VSS)
Title Fast and Robust Variable-Step-Size LMS Algorithm for Adaptive Beamforming
URI https://ieeexplore.ieee.org/document/9095257
https://www.proquest.com/docview/2422054149
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1548-5757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017653
  issn: 1536-1225
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExx4IwYD5cAJ0S7dkrQ5DsQEiCEEDLhVSZrBxLZOW3fh1-O03cRLiFsOSWTZif05dmyAo0ZXRJJp6zEbSI9xdFBUEiWeZYgG0JNjQR4xbd-Iiw67eubPC3Ay_wtjrc2Tz6zvhnksP0nN1D2V1STiATxii7AYRqL4qzWPGIQirziJF9j1lanzMoIZUFm7bj7doidYpz7qXo727IsNypuq_NDEuXlprUF7RliRVfLmTzPtm_dvNRv_S_k6rJY4kzSLg7EBC3a4CSufqg9uwWVLTTKihgm5S_UUh4_oN7ufVJ5L_fLue--WXLfvSbP_ko572euAIMAlzUSNnIokp1YNHOLFvbah0zp_OLvwys4KnkHzniGDGtYkUivaNUEQGhsIg9CL6ogrZmxDh0p0keKIMY2IRnAehpRaFcoEARU1jR1YGqZDuwsk4kIipEpYV7ge61zJkCqm6w43SC1VBeiM17Epy4677hf9OHc_qIydeGInnrgUTwWO50tGRc2NvyZvOXbPJ5acrkB1JtC4vJWTGOFInbq-53Lv91X7sOz2LtJxq7CUjaf2AEFHpg_z0_YBRZbPqA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAH3ojBgBw4ITrSLWmb40BMA7YJ8b5VSZrBxF7aust-PU7bTbyEuOWQpJad2J9rxwY4rrS9QDBlHGZc4TCODoqMgsgxDNEAenLMTSKmzZZXf2TXL_wlB6fztzDGmCT5zJTsMInlRwM9sb_KzgTiATxiC7DIGWM8fa01jxn4XlJzEq-w7SxT5lkM06XirFF9vkVfsExLqH05WrQvVihpq_JDFycGprYGzRlpaV7Je2kSq5Kefqva-F_a12E1Q5qkmh6NDciZ_iasfKo_uAVXNTmOiexH5G6gJjh8Qs_ZvqVybPKXc9-ZGtJo3pNq93Uw6sRvPYIQl1QjObRKkpwb2bOYF_fahsfa5cNF3cl6KzgaDXyMDKoYHQklaVu7rq-N62kEX1QFXDJtKsqXXhspDhhTiGk8zn2fUiN9ESGkorqyA_n-oG92gQTcEwiqItb2bJd1LoVPJVNlixyEErIAdMbrUGeFx23_i26YOCBUhFY8oRVPmImnACfzJcO06sZfk7csu-cTM04XoDgTaJjdy3GIgKRMbedzsff7qiNYqj80G2HjqnWzD8v2O2lybhHy8WhiDhCCxOowOXkfU8LS9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Robust+Variable-Step-Size+LMS+Algorithm+for+Adaptive+Beamforming&rft.jtitle=IEEE+antennas+and+wireless+propagation+letters&rft.au=Babur+Jalal&rft.au=Yang%2C+Xiaopeng&rft.au=Liu%2C+Quanhua&rft.au=Long%2C+Teng&rft.date=2020-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1225&rft.eissn=1548-5757&rft.volume=19&rft.issue=7&rft.spage=1206&rft_id=info:doi/10.1109%2FLAWP.2020.2995244&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1225&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1225&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1225&client=summon