Edge Detection Algorithm Optimization and Simulation Based on Machine Learning Method and Image Depth Information
Machine learning algorithms have become a hot topic in current research due to their unique learning performance, and have achieved fruitful research and application results in various fields. In this paper, the idea of machine learning classification algorithm is applied to depth image edge detecti...
Saved in:
| Published in | IEEE sensors journal Vol. 20; no. 20; pp. 11770 - 11777 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
15.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2019.2936117 |
Cover
| Abstract | Machine learning algorithms have become a hot topic in current research due to their unique learning performance, and have achieved fruitful research and application results in various fields. In this paper, the idea of machine learning classification algorithm is applied to depth image edge detection, AdaBoost algorithm and decision tree are used for image edge detection. The algorithm is created from training set creation, depth image feature extraction and combination of AdaBoost and image depth information, creating image training sample sets, selecting image features, training algorithm classifiers, and simulating medical ultrasound image classifiers. Finally, the machine learning algorithm was simulated and tested. The experimental results show that the edge detection effect is good, the algorithm adaptability is strong, and no adjustment parameters are needed. |
|---|---|
| AbstractList | Machine learning algorithms have become a hot topic in current research due to their unique learning performance, and have achieved fruitful research and application results in various fields. In this paper, the idea of machine learning classification algorithm is applied to depth image edge detection, AdaBoost algorithm and decision tree are used for image edge detection. The algorithm is created from training set creation, depth image feature extraction and combination of AdaBoost and image depth information, creating image training sample sets, selecting image features, training algorithm classifiers, and simulating medical ultrasound image classifiers. Finally, the machine learning algorithm was simulated and tested. The experimental results show that the edge detection effect is good, the algorithm adaptability is strong, and no adjustment parameters are needed. |
| Author | Cui, Jichao Tian, Kun |
| Author_xml | – sequence: 1 givenname: Jichao surname: Cui fullname: Cui, Jichao email: jichaocui@126.com organization: Institute of Intelligent Engineering, Henan Institute of Technology, Xinxiang, China – sequence: 2 givenname: Kun surname: Tian fullname: Tian, Kun email: kuntian112@126.com organization: Institute of Intelligent Engineering, Henan Institute of Technology, Xinxiang, China |
| BookMark | eNp9kEFPgzAUxxszE-f0AxgvTTwzW1ooHOecOrO5wzTxRkopowsUVrqDfnoLLB48eOrry-_32ve_BCNdawnADUZTjFF8_7pdvE19hOOpH5MQY3YGxjgIIg8zGo26miCPEvZ5AS7bdo8cyQI2BodFtpPwUVoprKo1nJW72ihbVHDTWFWpb963uc7gVlXHcrg-8FZm0BVrLgqlJVxJbrTSO7iWtqiznl9WvB_d2AIudV6bqpevwHnOy1Zen84J-HhavM9fvNXmeTmfrTzhNrCeW4GilLGU8ZTEmAQsj0nqu3bocyIED2PMGCYiF5wjJkJOIx5kvojCmIYZIRNwN8xtTH04ytYm-_potHsy8SmlIaFRgB3FBkqYum2NzBOhbP9Pa7gqE4ySLt-kyzfp8k1O-ToT_zEboypuvv51bgdHSSl_-ShCAQ4Q-QFoaYgq |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_JSEN_2023_3263461 crossref_primary_10_1049_ipr2_12935 crossref_primary_10_1109_JSEN_2023_3303012 crossref_primary_10_3390_math13010042 crossref_primary_10_3233_JCM_226722 crossref_primary_10_1088_1742_6596_2314_1_012023 |
| Cites_doi | 10.1007/s00170-018-2799-7 10.1166/jno.2018.2133 10.1364/JOSAA.35.000969 10.3390/s18072179 10.1016/j.comnet.2018.02.028 10.3390/ijerph15050966 10.1186/s12880-018-0249-5 10.1088/1757-899X/439/5/052018 10.1007/s12652-019-01232-2 10.1109/TIM.2019.2905944 10.1016/j.ijepes.2017.06.035 10.1016/j.jisa.2018.05.001 10.1155/2018/3598284 10.1080/17458080.2018.1459890 10.1088/1742-6596/1003/1/012075 10.1049/iet-rpg.2017.0115 10.3390/ijerph15071505 10.1007/s11042-017-5080-4 10.1007/s00521-017-2983-y 10.1049/iet-gtd.2017.0999 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2019.2936117 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 11777 |
| ExternalDocumentID | 10_1109_JSEN_2019_2936117 8805150 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Henan Science and Technology Research Project: Development of Intelligent Control System for Visual Guidance of Welding Robot grantid: 172102210123 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-11740b77b7ab391357f93b211762a3cca6917713cfcaa07c6a48a5d2c86946d33 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:14:59 EDT 2025 Wed Oct 01 04:14:39 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Wed Aug 27 02:32:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-11740b77b7ab391357f93b211762a3cca6917713cfcaa07c6a48a5d2c86946d33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2444634851 |
| PQPubID | 75733 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2019_2936117 crossref_primary_10_1109_JSEN_2019_2936117 ieee_primary_8805150 proquest_journals_2444634851 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-15 |
| PublicationDateYYYYMMDD | 2020-10-15 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 ref20 ref11 ref10 ref21 ref2 ling (ref9) 2018; 25 ref1 ref17 ref16 ref19 ref18 ref8 ref4 ref3 ref6 ref5 salehi (ref15) 2018; 12 devisree (ref7) 2018; 13 |
| References_xml | – ident: ref5 doi: 10.1007/s00170-018-2799-7 – ident: ref11 doi: 10.1166/jno.2018.2133 – ident: ref16 doi: 10.1364/JOSAA.35.000969 – ident: ref21 doi: 10.3390/s18072179 – ident: ref17 doi: 10.1016/j.comnet.2018.02.028 – ident: ref18 doi: 10.3390/ijerph15050966 – ident: ref12 doi: 10.1186/s12880-018-0249-5 – ident: ref8 doi: 10.1088/1757-899X/439/5/052018 – ident: ref2 doi: 10.1007/s12652-019-01232-2 – ident: ref4 doi: 10.1109/TIM.2019.2905944 – ident: ref20 doi: 10.1016/j.ijepes.2017.06.035 – ident: ref1 doi: 10.1016/j.jisa.2018.05.001 – ident: ref3 doi: 10.1155/2018/3598284 – volume: 13 start-page: 144 year: 2018 ident: ref7 article-title: Fault detection and analysis of bistable rotaxane molecular electronic switch-A simulation approach publication-title: J Exp Nanosci doi: 10.1080/17458080.2018.1459890 – volume: 25 start-page: 55 year: 2018 ident: ref9 article-title: Image edge detection based on pulse coupled neural network and modulus maxima in non-subsampled contourlet domain publication-title: J China Univ Posts Telecommun – ident: ref13 doi: 10.1088/1742-6596/1003/1/012075 – ident: ref19 doi: 10.1049/iet-rpg.2017.0115 – ident: ref6 doi: 10.3390/ijerph15071505 – ident: ref10 doi: 10.1007/s11042-017-5080-4 – ident: ref14 doi: 10.1007/s00521-017-2983-y – volume: 12 start-page: 1595 year: 2018 ident: ref15 article-title: Fault classification and faulted phase selection for transmission line using morphological edge detection filter publication-title: IET Gener Transmiss Distrib doi: 10.1049/iet-gtd.2017.0999 |
| SSID | ssj0019757 |
| Score | 2.3378975 |
| Snippet | Machine learning algorithms have become a hot topic in current research due to their unique learning performance, and have achieved fruitful research and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11770 |
| SubjectTerms | algorithmic design Algorithms Classification algorithms Classifiers Computer simulation Decision trees depth image information Edge detection Feature extraction Filtering algorithms Image classification Image edge detection Machine learning Machine learning algorithms Optimization Training Visualization |
| Title | Edge Detection Algorithm Optimization and Simulation Based on Machine Learning Method and Image Depth Information |
| URI | https://ieeexplore.ieee.org/document/8805150 https://www.proquest.com/docview/2444634851 |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhEJ6oF_Xg21hf4eDJuHVXWChHHzVqUj2oSW8bFti20W59bA_66x0orUaN8bLhABvCNzAzMDMfwB5XxiYxLaJCyDRiMjeRlJbhpyhyiXYSlS7fuXXNL-7ZVTttT8HBJBfGWuuDz2zdNf1bvhnoobsqO0RZS72DPi0afJSrNXkxkMJX9cQNHEeMinZ4wUxieXh127x2QVyyjrqNJ56b7FMHeVKVHyexVy_ni9AaT2wUVfJQH1Z5Xb9_q9n435kvwUKwM8nxSDCWYcqWKzD_pfrgCswGAvTu2yo8N03HkjNb-ciskhw_dgYvvarbJzd4pvRDsiZRpSG3vX6g_CInqAINwUbLh2RaEqq1dkjLE1P7_pd95X_9VHVJSH5yg9fg_rx5d3oRBTaGSOOyVRGuG4tzIXKhEMCEpqKQNEf_EY9TRVEQOHp-6PLqQisVC80Va6jUHOkGl4wbStdhphyUdgOIooaib0yl1QnTDaryxCbuOkVySbUSNYjH-GQ6lCp3jBmPmXdZYpk5SDMHaRYgrcH-ZMjTqE7HX51XHUSTjgGdGmyPhSALO_k1Q_OHccrQMN38fdQWzB05H9xFuaTbMFO9DO0OGipVvusl9AOtWOOS |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5FcKA9AIVWBAL1oaeqG3ax146PQIPCY9MDIOW28treBEE2PDYH-PWMHSetoKp6Wflgryx_Y8-MPTMfwDeujE1iWkalkGnEZGEiKS3DT1kWEu0kKl2-c9bnvWt2NkgHDfixyIWx1vrgM9t2Tf-WbyZ66q7K9lHWUu-gL6eMsXSWrbV4M5DC1_XELRxHjIpBeMNMYrl_dtntuzAu2UbtxhPPTvZbC3lalXdnsVcwJ2uQzac2iyu5bU_roq1f3lRt_N-5r8NqsDTJ4Uw0PkHDVhvw8Y_6gxuwEijQR8-b8NA1Q0t-2trHZlXk8G44ebypR2PyC0-VcUjXJKoy5PJmHEi_yBEqQUOwkfmgTEtCvdYhyTw1te9_Olb-1_f1iIT0Jzf4M1yfdK-Oe1HgY4g0Llsd4bqxuBCiEAohTGgqSkkL9CDxQFUURYGj74dOry61UrHQXLGOSs2B7nDJuKH0CyxVk8puAVHUUPSOqbQ6YbpDVZHYxF2oSC6pVqIJ8RyfXIdi5Y4z4y73Tksscwdp7iDNA6RN-L4Ycj-r1PGvzpsOokXHgE4TWnMhyMNefsrRAGKcMjRNt_8-6ius9K6yi_zitH--Ax8OnEfuYl7SFizVj1O7i2ZLXex5aX0Fv_Pm3w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+Detection+Algorithm+Optimization+and+Simulation+Based+on+Machine+Learning+Method+and+Image+Depth+Information&rft.jtitle=IEEE+sensors+journal&rft.au=Cui%2C+Jichao&rft.au=Tian%2C+Kun&rft.date=2020-10-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=20&rft.issue=20&rft.spage=11770&rft.epage=11777&rft_id=info:doi/10.1109%2FJSEN.2019.2936117&rft.externalDocID=8805150 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |