Edge Detection Algorithm Optimization and Simulation Based on Machine Learning Method and Image Depth Information

Machine learning algorithms have become a hot topic in current research due to their unique learning performance, and have achieved fruitful research and application results in various fields. In this paper, the idea of machine learning classification algorithm is applied to depth image edge detecti...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 20; no. 20; pp. 11770 - 11777
Main Authors Cui, Jichao, Tian, Kun
Format Journal Article
LanguageEnglish
Published New York IEEE 15.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2019.2936117

Cover

Abstract Machine learning algorithms have become a hot topic in current research due to their unique learning performance, and have achieved fruitful research and application results in various fields. In this paper, the idea of machine learning classification algorithm is applied to depth image edge detection, AdaBoost algorithm and decision tree are used for image edge detection. The algorithm is created from training set creation, depth image feature extraction and combination of AdaBoost and image depth information, creating image training sample sets, selecting image features, training algorithm classifiers, and simulating medical ultrasound image classifiers. Finally, the machine learning algorithm was simulated and tested. The experimental results show that the edge detection effect is good, the algorithm adaptability is strong, and no adjustment parameters are needed.
AbstractList Machine learning algorithms have become a hot topic in current research due to their unique learning performance, and have achieved fruitful research and application results in various fields. In this paper, the idea of machine learning classification algorithm is applied to depth image edge detection, AdaBoost algorithm and decision tree are used for image edge detection. The algorithm is created from training set creation, depth image feature extraction and combination of AdaBoost and image depth information, creating image training sample sets, selecting image features, training algorithm classifiers, and simulating medical ultrasound image classifiers. Finally, the machine learning algorithm was simulated and tested. The experimental results show that the edge detection effect is good, the algorithm adaptability is strong, and no adjustment parameters are needed.
Author Cui, Jichao
Tian, Kun
Author_xml – sequence: 1
  givenname: Jichao
  surname: Cui
  fullname: Cui, Jichao
  email: jichaocui@126.com
  organization: Institute of Intelligent Engineering, Henan Institute of Technology, Xinxiang, China
– sequence: 2
  givenname: Kun
  surname: Tian
  fullname: Tian, Kun
  email: kuntian112@126.com
  organization: Institute of Intelligent Engineering, Henan Institute of Technology, Xinxiang, China
BookMark eNp9kEFPgzAUxxszE-f0AxgvTTwzW1ooHOecOrO5wzTxRkopowsUVrqDfnoLLB48eOrry-_32ve_BCNdawnADUZTjFF8_7pdvE19hOOpH5MQY3YGxjgIIg8zGo26miCPEvZ5AS7bdo8cyQI2BodFtpPwUVoprKo1nJW72ihbVHDTWFWpb963uc7gVlXHcrg-8FZm0BVrLgqlJVxJbrTSO7iWtqiznl9WvB_d2AIudV6bqpevwHnOy1Zen84J-HhavM9fvNXmeTmfrTzhNrCeW4GilLGU8ZTEmAQsj0nqu3bocyIED2PMGCYiF5wjJkJOIx5kvojCmIYZIRNwN8xtTH04ytYm-_potHsy8SmlIaFRgB3FBkqYum2NzBOhbP9Pa7gqE4ySLt-kyzfp8k1O-ToT_zEboypuvv51bgdHSSl_-ShCAQ4Q-QFoaYgq
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JSEN_2023_3263461
crossref_primary_10_1049_ipr2_12935
crossref_primary_10_1109_JSEN_2023_3303012
crossref_primary_10_3390_math13010042
crossref_primary_10_3233_JCM_226722
crossref_primary_10_1088_1742_6596_2314_1_012023
Cites_doi 10.1007/s00170-018-2799-7
10.1166/jno.2018.2133
10.1364/JOSAA.35.000969
10.3390/s18072179
10.1016/j.comnet.2018.02.028
10.3390/ijerph15050966
10.1186/s12880-018-0249-5
10.1088/1757-899X/439/5/052018
10.1007/s12652-019-01232-2
10.1109/TIM.2019.2905944
10.1016/j.ijepes.2017.06.035
10.1016/j.jisa.2018.05.001
10.1155/2018/3598284
10.1080/17458080.2018.1459890
10.1088/1742-6596/1003/1/012075
10.1049/iet-rpg.2017.0115
10.3390/ijerph15071505
10.1007/s11042-017-5080-4
10.1007/s00521-017-2983-y
10.1049/iet-gtd.2017.0999
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2019.2936117
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 11777
ExternalDocumentID 10_1109_JSEN_2019_2936117
8805150
Genre orig-research
GrantInformation_xml – fundername: Henan Science and Technology Research Project: Development of Intelligent Control System for Visual Guidance of Welding Robot
  grantid: 172102210123
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-11740b77b7ab391357f93b211762a3cca6917713cfcaa07c6a48a5d2c86946d33
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:14:59 EDT 2025
Wed Oct 01 04:14:39 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Wed Aug 27 02:32:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-11740b77b7ab391357f93b211762a3cca6917713cfcaa07c6a48a5d2c86946d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2444634851
PQPubID 75733
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2019_2936117
crossref_primary_10_1109_JSEN_2019_2936117
ieee_primary_8805150
proquest_journals_2444634851
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref20
ref11
ref10
ref21
ref2
ling (ref9) 2018; 25
ref1
ref17
ref16
ref19
ref18
ref8
ref4
ref3
ref6
ref5
salehi (ref15) 2018; 12
devisree (ref7) 2018; 13
References_xml – ident: ref5
  doi: 10.1007/s00170-018-2799-7
– ident: ref11
  doi: 10.1166/jno.2018.2133
– ident: ref16
  doi: 10.1364/JOSAA.35.000969
– ident: ref21
  doi: 10.3390/s18072179
– ident: ref17
  doi: 10.1016/j.comnet.2018.02.028
– ident: ref18
  doi: 10.3390/ijerph15050966
– ident: ref12
  doi: 10.1186/s12880-018-0249-5
– ident: ref8
  doi: 10.1088/1757-899X/439/5/052018
– ident: ref2
  doi: 10.1007/s12652-019-01232-2
– ident: ref4
  doi: 10.1109/TIM.2019.2905944
– ident: ref20
  doi: 10.1016/j.ijepes.2017.06.035
– ident: ref1
  doi: 10.1016/j.jisa.2018.05.001
– ident: ref3
  doi: 10.1155/2018/3598284
– volume: 13
  start-page: 144
  year: 2018
  ident: ref7
  article-title: Fault detection and analysis of bistable rotaxane molecular electronic switch-A simulation approach
  publication-title: J Exp Nanosci
  doi: 10.1080/17458080.2018.1459890
– volume: 25
  start-page: 55
  year: 2018
  ident: ref9
  article-title: Image edge detection based on pulse coupled neural network and modulus maxima in non-subsampled contourlet domain
  publication-title: J China Univ Posts Telecommun
– ident: ref13
  doi: 10.1088/1742-6596/1003/1/012075
– ident: ref19
  doi: 10.1049/iet-rpg.2017.0115
– ident: ref6
  doi: 10.3390/ijerph15071505
– ident: ref10
  doi: 10.1007/s11042-017-5080-4
– ident: ref14
  doi: 10.1007/s00521-017-2983-y
– volume: 12
  start-page: 1595
  year: 2018
  ident: ref15
  article-title: Fault classification and faulted phase selection for transmission line using morphological edge detection filter
  publication-title: IET Gener Transmiss Distrib
  doi: 10.1049/iet-gtd.2017.0999
SSID ssj0019757
Score 2.3378975
Snippet Machine learning algorithms have become a hot topic in current research due to their unique learning performance, and have achieved fruitful research and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11770
SubjectTerms algorithmic design
Algorithms
Classification algorithms
Classifiers
Computer simulation
Decision trees
depth image information
Edge detection
Feature extraction
Filtering algorithms
Image classification
Image edge detection
Machine learning
Machine learning algorithms
Optimization
Training
Visualization
Title Edge Detection Algorithm Optimization and Simulation Based on Machine Learning Method and Image Depth Information
URI https://ieeexplore.ieee.org/document/8805150
https://www.proquest.com/docview/2444634851
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhEJ6oF_Xg21hf4eDJuHVXWChHHzVqUj2oSW8bFti20W59bA_66x0orUaN8bLhABvCNzAzMDMfwB5XxiYxLaJCyDRiMjeRlJbhpyhyiXYSlS7fuXXNL-7ZVTttT8HBJBfGWuuDz2zdNf1bvhnoobsqO0RZS72DPi0afJSrNXkxkMJX9cQNHEeMinZ4wUxieXh127x2QVyyjrqNJ56b7FMHeVKVHyexVy_ni9AaT2wUVfJQH1Z5Xb9_q9n435kvwUKwM8nxSDCWYcqWKzD_pfrgCswGAvTu2yo8N03HkjNb-ciskhw_dgYvvarbJzd4pvRDsiZRpSG3vX6g_CInqAINwUbLh2RaEqq1dkjLE1P7_pd95X_9VHVJSH5yg9fg_rx5d3oRBTaGSOOyVRGuG4tzIXKhEMCEpqKQNEf_EY9TRVEQOHp-6PLqQisVC80Va6jUHOkGl4wbStdhphyUdgOIooaib0yl1QnTDaryxCbuOkVySbUSNYjH-GQ6lCp3jBmPmXdZYpk5SDMHaRYgrcH-ZMjTqE7HX51XHUSTjgGdGmyPhSALO_k1Q_OHccrQMN38fdQWzB05H9xFuaTbMFO9DO0OGipVvusl9AOtWOOS
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5FcKA9AIVWBAL1oaeqG3ax146PQIPCY9MDIOW28treBEE2PDYH-PWMHSetoKp6Wflgryx_Y8-MPTMfwDeujE1iWkalkGnEZGEiKS3DT1kWEu0kKl2-c9bnvWt2NkgHDfixyIWx1vrgM9t2Tf-WbyZ66q7K9lHWUu-gL6eMsXSWrbV4M5DC1_XELRxHjIpBeMNMYrl_dtntuzAu2UbtxhPPTvZbC3lalXdnsVcwJ2uQzac2iyu5bU_roq1f3lRt_N-5r8NqsDTJ4Uw0PkHDVhvw8Y_6gxuwEijQR8-b8NA1Q0t-2trHZlXk8G44ebypR2PyC0-VcUjXJKoy5PJmHEi_yBEqQUOwkfmgTEtCvdYhyTw1te9_Olb-1_f1iIT0Jzf4M1yfdK-Oe1HgY4g0Llsd4bqxuBCiEAohTGgqSkkL9CDxQFUURYGj74dOry61UrHQXLGOSs2B7nDJuKH0CyxVk8puAVHUUPSOqbQ6YbpDVZHYxF2oSC6pVqIJ8RyfXIdi5Y4z4y73Tksscwdp7iDNA6RN-L4Ycj-r1PGvzpsOokXHgE4TWnMhyMNefsrRAGKcMjRNt_8-6ius9K6yi_zitH--Ax8OnEfuYl7SFizVj1O7i2ZLXex5aX0Fv_Pm3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+Detection+Algorithm+Optimization+and+Simulation+Based+on+Machine+Learning+Method+and+Image+Depth+Information&rft.jtitle=IEEE+sensors+journal&rft.au=Cui%2C+Jichao&rft.au=Tian%2C+Kun&rft.date=2020-10-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=20&rft.issue=20&rft.spage=11770&rft.epage=11777&rft_id=info:doi/10.1109%2FJSEN.2019.2936117&rft.externalDocID=8805150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon