Clustering‐based routing protocol using gray wolf optimization and technique for order of preference by similarity to ideal solution algorithms in the vehicular ad hoc networks
Summary In a vehicular ad‐hoc network (VANET), each vehicle is equipped with an on‐board unit to communicate vehicle to vehicle or vehicle to fixed infrastructure. VANET technology is offered to provide many facilities to passengers and drivers, including safety, entertainment, mobile commerce, driv...
Saved in:
| Published in | Concurrency and computation Vol. 34; no. 23 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
25.10.2022
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0626 1532-0634 |
| DOI | 10.1002/cpe.7209 |
Cover
| Abstract | Summary
In a vehicular ad‐hoc network (VANET), each vehicle is equipped with an on‐board unit to communicate vehicle to vehicle or vehicle to fixed infrastructure. VANET technology is offered to provide many facilities to passengers and drivers, including safety, entertainment, mobile commerce, driver assistance, and emergency alarms. VANET has unique features such as high‐speed node mobility and network topology dynamics. These special features cause many problems such as increased transmission delays and packet loss. On the other hand, providing a good routing plan for VANET is a critical issue. Therefore, this article proposes a cluster‐based routing using in‐vehicle meta‐heuristic algorithms (CRMHA‐VANET) which has two phases. In the first stage, the vehicles are clustered and the most suitable cluster head (CH) is selected using the gray wolf optimization algorithm (GWO). In the next step, the next suitable CH is selected for data transmission in direct paths using the technique for order of preference by similarity to ideal solution (TOPSIS). The performance of the proposed method is analyzed through several criteria such as package delivery rate, end‐to‐end delay and throughput. CRMHA‐VANET results in a 10% to 25% improvement over all performance metrics, that is, packet delivery rate, latency, and throughput, over CRBP (clustering routing based on PSO [particle swarm optimization]), WCV (weight based clustering for VANET), and AODV‐CD methods. |
|---|---|
| AbstractList | In a vehicular ad‐hoc network (VANET), each vehicle is equipped with an on‐board unit to communicate vehicle to vehicle or vehicle to fixed infrastructure. VANET technology is offered to provide many facilities to passengers and drivers, including safety, entertainment, mobile commerce, driver assistance, and emergency alarms. VANET has unique features such as high‐speed node mobility and network topology dynamics. These special features cause many problems such as increased transmission delays and packet loss. On the other hand, providing a good routing plan for VANET is a critical issue. Therefore, this article proposes a cluster‐based routing using in‐vehicle meta‐heuristic algorithms (CRMHA‐VANET) which has two phases. In the first stage, the vehicles are clustered and the most suitable cluster head (CH) is selected using the gray wolf optimization algorithm (GWO). In the next step, the next suitable CH is selected for data transmission in direct paths using the technique for order of preference by similarity to ideal solution (TOPSIS). The performance of the proposed method is analyzed through several criteria such as package delivery rate, end‐to‐end delay and throughput. CRMHA‐VANET results in a 10% to 25% improvement over all performance metrics, that is, packet delivery rate, latency, and throughput, over CRBP (clustering routing based on PSO [particle swarm optimization]), WCV (weight based clustering for VANET), and AODV‐CD methods. Summary In a vehicular ad‐hoc network (VANET), each vehicle is equipped with an on‐board unit to communicate vehicle to vehicle or vehicle to fixed infrastructure. VANET technology is offered to provide many facilities to passengers and drivers, including safety, entertainment, mobile commerce, driver assistance, and emergency alarms. VANET has unique features such as high‐speed node mobility and network topology dynamics. These special features cause many problems such as increased transmission delays and packet loss. On the other hand, providing a good routing plan for VANET is a critical issue. Therefore, this article proposes a cluster‐based routing using in‐vehicle meta‐heuristic algorithms (CRMHA‐VANET) which has two phases. In the first stage, the vehicles are clustered and the most suitable cluster head (CH) is selected using the gray wolf optimization algorithm (GWO). In the next step, the next suitable CH is selected for data transmission in direct paths using the technique for order of preference by similarity to ideal solution (TOPSIS). The performance of the proposed method is analyzed through several criteria such as package delivery rate, end‐to‐end delay and throughput. CRMHA‐VANET results in a 10% to 25% improvement over all performance metrics, that is, packet delivery rate, latency, and throughput, over CRBP (clustering routing based on PSO [particle swarm optimization]), WCV (weight based clustering for VANET), and AODV‐CD methods. |
| Author | Masdari, Mohammad Soleimanian Gharehchopogh, Farhad Ghaffari, Ali Kheradmand, Behbod |
| Author_xml | – sequence: 1 givenname: Behbod surname: Kheradmand fullname: Kheradmand, Behbod organization: Urmia Branch, Islamic Azad University – sequence: 2 givenname: Ali orcidid: 0000-0001-5407-8629 surname: Ghaffari fullname: Ghaffari, Ali email: a.ghaffari@iaut.ac.ir organization: Tabriz Branch, Islamic Azad University – sequence: 3 givenname: Farhad surname: Soleimanian Gharehchopogh fullname: Soleimanian Gharehchopogh, Farhad organization: Urmia Branch, Islamic Azad University – sequence: 4 givenname: Mohammad surname: Masdari fullname: Masdari, Mohammad organization: Urmia Branch, Islamic Azad University |
| BookMark | eNp1UcuO1DAQjNAisbsg8QktceGSwY84jyMaLQ9pJTjAOXLs9sSLxx5sh1E48Ql8C5_El-DZQRwQXNrdclW1uuqquvDBY1U9pWRDCWEv1AE3HSPDg-qSCs5q0vLm4k_P2kfVVUp3hFBKOL2sfmzdkjJG63c_v32fZEINMSy5zHCIIQcVHCzpNO6iXOEYnIFwyHZvv8psgwfpNWRUs7efFwQTIoSosVRTBNBgRK8QphVS4TgZbV4hB7AapYMU3HJWcbtQvuZ9AushzwhfcLZqKQSQGuagwGM-hvgpPa4eGukSPvn9XlcfX9182L6pb9-9frt9eVsrNvChpqaXrO-N0ISLSU_YdWSYiGaGE9Mq0TBiGhxYMaLrpOJd0wrd9KLrhOaT6Pl19eysW3wop6U83oUl-rJyZB0VLWFcNAX1_IxSMaRUDh4P0e5lXEdKxlMiY0lkPCVSoJu_oMrmexNzlNb9i1CfCUfrcP2v8Lh9f3OP_wXs06NJ |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2025_113371 crossref_primary_10_1109_ACCESS_2025_3525636 |
| Cites_doi | 10.1007/s12083-019-00724-4 10.1109/ACCESS.2020.2963850 10.1109/TVT.2019.2899627 10.1007/978-981-15-8469-5_9 10.1007/s11276-019-01997-6 10.1016/j.adhoc.2020.102285 10.1007/978-3-642-10844-0_41 10.1016/j.vehcom.2018.02.004 10.1109/TVT.2007.897656 10.1016/j.measurement.2019.107306 10.1109/TITS.2020.2983835 10.1016/j.vehcom.2021.100453 10.1016/j.asoc.2021.107328 10.1002/ett.3951 10.1007/s40747-021-00629-x 10.1002/dac.5008 10.1016/j.vehcom.2021.100332 10.1002/dac.4502 10.1109/ACCESS.2018.2868118 10.1007/978-3-319-92007-8_43 10.1016/j.eswa.2020.113917 10.1007/s12652-020-01947-7 10.1016/j.comnet.2018.05.017 10.1016/j.advengsoft.2013.12.007 10.1007/s11235-018-0513-6 10.1007/s11227-018-2283-z 10.1007/s12652-019-01316-z 10.1007/s12652-020-01708-6 10.1016/j.eswa.2019.112889 10.1007/978-3-030-22773-9_1 10.1049/iet-com.2018.6214 10.1109/ACCESS.2022.3155632 10.1016/j.adhoc.2020.102213 10.1007/s11235-016-0219-6 10.1016/j.compeleceng.2018.01.002 10.1016/j.comnet.2022.109086 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.7209 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_7209 CPE7209 |
| Genre | article |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2939-1f8a288f5d035bdbe7709b0d2f30f6c5420f4e9211077ac37465d485775d3b583 |
| IEDL.DBID | DR2 |
| ISSN | 1532-0626 |
| IngestDate | Mon Jul 14 07:50:37 EDT 2025 Wed Oct 01 00:59:53 EDT 2025 Thu Apr 24 22:59:17 EDT 2025 Wed Jan 22 16:24:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2939-1f8a288f5d035bdbe7709b0d2f30f6c5420f4e9211077ac37465d485775d3b583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5407-8629 |
| PQID | 2715602354 |
| PQPubID | 2045170 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2715602354 crossref_primary_10_1002_cpe_7209 crossref_citationtrail_10_1002_cpe_7209 wiley_primary_10_1002_cpe_7209_CPE7209 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 25 October 2022 |
| PublicationDateYYYYMMDD | 2022-10-25 |
| PublicationDate_xml | – month: 10 year: 2022 text: 25 October 2022 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2018; 141 2019; 71 2021; 67 2020; 140 2021; 29 2021; 106 2017; 65 2020; 106 2014; 69 2020; 14 2020; 13 2020; 11 2020; 33 2021; 166 2007; 56 2020; 108 2022; 213 2020; 8 2021; 13 2018; 6 2022 2020; 152 2019; 68 2022; 8 2019; 25 2018; 70 2022; 34 2022; 35 2018; 74 2020; 22 2022; 10 2018; 12 e_1_2_8_28_1 Shankar A (e_1_2_8_6_1) 2022 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Jamalzadeh M (e_1_2_8_5_1) 2022 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 Aissa M (e_1_2_8_10_1) 2020; 33 e_1_2_8_23_1 Gharehchopogh FS (e_1_2_8_18_1) 2022 Ghafori S (e_1_2_8_19_1) 2021; 29 Ebadinezhad S (e_1_2_8_29_1) 2021; 67 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_39_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Hosmani S (e_1_2_8_15_1) 2021; 13 e_1_2_8_30_1 |
| References_xml | – start-page: 1 year: 2022 end-page: 24 article-title: Advances in tree seed algorithm: a comprehensive survey publication-title: Arch Comput Methods Eng – volume: 11 start-page: 5721 issue: 11 year: 2020 end-page: 5733 article-title: Inter‐vehicle distance‐based location aware multi‐hop routing in vehicular ad‐hoc network publication-title: J Ambient Intell Humaniz Comput – volume: 12 start-page: 66 year: 2018 end-page: 74 article-title: Clustering‐based reliable low‐latency routing scheme using ACO method for vehicular networks publication-title: Veh Commun – volume: 6 start-page: 48611 year: 2018 end-page: 48624 article-title: CAMONET: moth‐flame optimization (MFO) based clustering algorithm for VANETs publication-title: IEEE Access – volume: 65 start-page: 127 issue: 1 year: 2017 end-page: 137 article-title: RMRPTS: a reliable multi‐level routing protocol with tabu search in VANET publication-title: Telecommun Syst – volume: 11 start-page: 1593 issue: 4 year: 2020 end-page: 1603 article-title: Hybrid opportunistic and position‐based routing protocol in vehicular ad hoc networks publication-title: J Ambient Intell Humaniz Comput – volume: 70 start-page: 853 year: 2018 end-page: 870 article-title: Grey wolf optimization based clustering algorithm for vehicular ad‐hoc networks publication-title: Comput Electr Eng – volume: 74 start-page: 2528 issue: 6 year: 2018 end-page: 2552 article-title: A routing protocol for vehicular ad hoc networks using simulated annealing algorithm and neural networks publication-title: J Supercomput – start-page: 1 year: 2022 end-page: 44 article-title: A modified social spider algorithm for an efficient data dissemination in VANET publication-title: Environ Dev Sustain – volume: 33 issue: 14 year: 2020 article-title: An improved distance‐based ant colony optimization routing for vehicular ad hoc networks publication-title: Int J Commun Syst – start-page: 1 year: 2022 end-page: 13 article-title: EC‐MOPSO: an edge computing‐assisted hybrid cluster and MOPSO‐based routing protocol for the internet of vehicles publication-title: Ann Telecommun – volume: 68 start-page: 3967 issue: 4 year: 2019 end-page: 3979 article-title: Delay‐minimization routing for heterogeneous VANETs with machine learning based mobility prediction publication-title: IEEE Trans Veh Technol – volume: 56 start-page: 2332 issue: 4 year: 2007 end-page: 2345 article-title: Prediction‐based routing for vehicular ad hoc networks publication-title: IEEE Trans Veh Technol – volume: 10 start-page: 26613 year: 2022 end-page: 26627 article-title: Reliability‐aware multi‐objective optimization‐based routing protocol for VANETs using enhanced Gaussian mutation harmony searching publication-title: IEEE Access – volume: 8 start-page: 1 year: 2022 end-page: 30 article-title: Data collection protocols for VANETs: a survey publication-title: Complex Intell Syst – volume: 106 year: 2021 article-title: R‐GWO: representative‐based grey wolf optimizer for solving engineering problems publication-title: Appl Soft Comput – volume: 166 year: 2021 article-title: An improved grey wolf optimizer for solving engineering problems publication-title: Expert Syst Appl – volume: 67 year: 2021 article-title: Design and analysis of an improved AODV protocol based on clustering approach for internet of vehicles (AODV‐CD) publication-title: Int J Electron Telecommun – volume: 22 start-page: 3533 issue: 6 year: 2020 end-page: 3546 article-title: V2VR: reliable hybrid‐network‐oriented V2V data transmission and routing considering RSUs and connectivity probability publication-title: IEEE trans Intell Transp Syst – volume: 108 start-page: 102285 year: 2020 article-title: Fuzzy‐based beaconless probabilistic broadcasting for information dissemination in urban VANET publication-title: Ad Hoc Netw – volume: 213 year: 2022 article-title: G‐3MRP: a game‐theoretical multimedia multimetric map‐aware routing protocol for vehicular ad hoc networks publication-title: Computer Networks – volume: 13 start-page: 532 issue: 2 year: 2020 end-page: 547 article-title: Optimized clustering in vehicular ad hoc networks based on honey bee and genetic algorithm for internet of things publication-title: Peer Peer Netw Appl – volume: 34 start-page: 100453 year: 2022 article-title: ICDRP‐F‐SDVN: an innovative cluster‐based dual‐phase routing protocol using fog computing and software‐defined vehicular network publication-title: Veh Commun – volume: 13 start-page: 469 issue: 2 year: 2021 end-page: 473 article-title: Efficient vehicular ad hoc network routing protocol using weighted clustering technique publication-title: Int J Inf Technol – volume: 8 start-page: 5733 year: 2020 end-page: 5748 article-title: RSU‐assisted traffic‐aware routing based on reinforcement learning for urban vanets publication-title: IEEE Access – volume: 11 start-page: 4273 issue: 10 year: 2020 end-page: 4283 article-title: RISA: routing scheme for internet of things using shuffled frog leaping optimization algorithm publication-title: J Ambient Intell Humaniz Comput – volume: 152 start-page: 107306 year: 2020 article-title: Efficient clustering V2V routing based on PSO in VANETs publication-title: Measurement – volume: 29 start-page: 100332 year: 2021 article-title: SAMNET: self‐adaptative multi‐kernel clustering algorithm for urban VANETs publication-title: Veh Commun – volume: 29 start-page: 1 year: 2021 end-page: 22 article-title: Advances in spotted hyena optimizer: a comprehensive survey publication-title: Arch Comput Methods Eng – volume: 141 start-page: 67 year: 2018 end-page: 81 article-title: PGRP: predictive geographic routing protocol for VANETs publication-title: Comput Netw – volume: 35 year: 2022 article-title: DACOR: a distributed ACO‐based routing protocol for mitigating the hot spot problem in fog‐enabled WSN architecture publication-title: Int J Commun Syst – volume: 25 start-page: 2831 issue: 5 year: 2019 end-page: 2849 article-title: Hybrid routing scheme using imperialist competitive algorithm and RBF neural networks for VANETs publication-title: Wirel Netw – volume: 106 start-page: 102213 year: 2020 article-title: Link utility aware geographic routing for urban VANETs using two‐hop neighbor information publication-title: Ad Hoc Netw – volume: 71 start-page: 433 issue: 3 year: 2019 end-page: 445 article-title: Construction of a stable vehicular ad hoc network based on hybrid genetic algorithm publication-title: Telecommun Syst – volume: 140 year: 2020 article-title: Intelligent firefly‐based algorithm with levy distribution (FF‐L) for multicast routing in vehicular communications publication-title: Expert Syst Appl – volume: 14 start-page: 2740 issue: 16 year: 2020 end-page: 2748 article-title: Optimal routing in VANET using improved meta‐heuristic approach: a variant of Jaya publication-title: IET Commun – volume: 33 year: 2020 article-title: SOFCluster: safety‐oriented, fuzzy logic‐based clustering scheme for vehicular ad hoc networks publication-title: Trans Emerg Telecommun Technol – volume: 69 start-page: 46 year: 2014 end-page: 61 article-title: Grey wolf optimizer publication-title: Adv Eng Softw – volume: 29 start-page: 1 year: 2021 ident: e_1_2_8_19_1 article-title: Advances in spotted hyena optimizer: a comprehensive survey publication-title: Arch Comput Methods Eng – ident: e_1_2_8_12_1 doi: 10.1007/s12083-019-00724-4 – ident: e_1_2_8_34_1 doi: 10.1109/ACCESS.2020.2963850 – ident: e_1_2_8_32_1 doi: 10.1109/TVT.2019.2899627 – ident: e_1_2_8_14_1 doi: 10.1007/978-981-15-8469-5_9 – ident: e_1_2_8_25_1 doi: 10.1007/s11276-019-01997-6 – ident: e_1_2_8_8_1 doi: 10.1016/j.adhoc.2020.102285 – ident: e_1_2_8_22_1 doi: 10.1007/978-3-642-10844-0_41 – volume: 67 year: 2021 ident: e_1_2_8_29_1 article-title: Design and analysis of an improved AODV protocol based on clustering approach for internet of vehicles (AODV‐CD) publication-title: Int J Electron Telecommun – ident: e_1_2_8_2_1 doi: 10.1016/j.vehcom.2018.02.004 – start-page: 1 year: 2022 ident: e_1_2_8_18_1 article-title: Advances in tree seed algorithm: a comprehensive survey publication-title: Arch Comput Methods Eng – volume: 13 start-page: 469 issue: 2 year: 2021 ident: e_1_2_8_15_1 article-title: Efficient vehicular ad hoc network routing protocol using weighted clustering technique publication-title: Int J Inf Technol – ident: e_1_2_8_41_1 doi: 10.1109/TVT.2007.897656 – ident: e_1_2_8_30_1 doi: 10.1016/j.measurement.2019.107306 – ident: e_1_2_8_31_1 doi: 10.1109/TITS.2020.2983835 – ident: e_1_2_8_36_1 doi: 10.1016/j.vehcom.2021.100453 – ident: e_1_2_8_40_1 doi: 10.1016/j.asoc.2021.107328 – volume: 33 start-page: e3951 year: 2020 ident: e_1_2_8_10_1 article-title: SOFCluster: safety‐oriented, fuzzy logic‐based clustering scheme for vehicular ad hoc networks publication-title: Trans Emerg Telecommun Technol doi: 10.1002/ett.3951 – ident: e_1_2_8_4_1 doi: 10.1007/s40747-021-00629-x – ident: e_1_2_8_7_1 doi: 10.1002/dac.5008 – ident: e_1_2_8_11_1 doi: 10.1016/j.vehcom.2021.100332 – start-page: 1 year: 2022 ident: e_1_2_8_5_1 article-title: EC‐MOPSO: an edge computing‐assisted hybrid cluster and MOPSO‐based routing protocol for the internet of vehicles publication-title: Ann Telecommun – start-page: 1 year: 2022 ident: e_1_2_8_6_1 article-title: A modified social spider algorithm for an efficient data dissemination in VANET publication-title: Environ Dev Sustain – ident: e_1_2_8_17_1 doi: 10.1002/dac.4502 – ident: e_1_2_8_24_1 doi: 10.1109/ACCESS.2018.2868118 – ident: e_1_2_8_27_1 doi: 10.1007/978-3-319-92007-8_43 – ident: e_1_2_8_39_1 doi: 10.1016/j.eswa.2020.113917 – ident: e_1_2_8_3_1 doi: 10.1007/s12652-020-01947-7 – ident: e_1_2_8_33_1 doi: 10.1016/j.comnet.2018.05.017 – ident: e_1_2_8_38_1 doi: 10.1016/j.advengsoft.2013.12.007 – ident: e_1_2_8_26_1 doi: 10.1007/s11235-018-0513-6 – ident: e_1_2_8_28_1 doi: 10.1007/s11227-018-2283-z – ident: e_1_2_8_43_1 doi: 10.1007/s12652-019-01316-z – ident: e_1_2_8_20_1 doi: 10.1007/s12652-020-01708-6 – ident: e_1_2_8_16_1 doi: 10.1016/j.eswa.2019.112889 – ident: e_1_2_8_42_1 doi: 10.1007/978-3-030-22773-9_1 – ident: e_1_2_8_13_1 doi: 10.1049/iet-com.2018.6214 – ident: e_1_2_8_35_1 doi: 10.1109/ACCESS.2022.3155632 – ident: e_1_2_8_9_1 doi: 10.1016/j.adhoc.2020.102213 – ident: e_1_2_8_23_1 doi: 10.1007/s11235-016-0219-6 – ident: e_1_2_8_21_1 doi: 10.1016/j.compeleceng.2018.01.002 – ident: e_1_2_8_37_1 doi: 10.1016/j.comnet.2022.109086 |
| SSID | ssj0011031 |
| Score | 2.3571372 |
| Snippet | Summary
In a vehicular ad‐hoc network (VANET), each vehicle is equipped with an on‐board unit to communicate vehicle to vehicle or vehicle to fixed... In a vehicular ad‐hoc network (VANET), each vehicle is equipped with an on‐board unit to communicate vehicle to vehicle or vehicle to fixed infrastructure.... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Clustering Data transmission gray wolf optimization Heuristic methods Mobile ad hoc networks Network latency Network topologies Optimization Particle swarm optimization Passenger safety Performance measurement routing Routing (telecommunications) Similarity TOPSIS vehicular ad hoc network |
| Title | Clustering‐based routing protocol using gray wolf optimization and technique for order of preference by similarity to ideal solution algorithms in the vehicular ad hoc networks |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7209 https://www.proquest.com/docview/2715602354 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-0634 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: ADMLS dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NitRAEG5kT15cf3F0lRJET5lNOt3p5CjDLougiLiw4CH078zgbLJMZpT15CP4LD6ST2JVJ5lVURBPIaS7SVJVXV81VV8x9lQIa0pP9p0aKsnhISnxPqny1AnviByAziFfvS5OTsXLM3k2ZFVSLUzPD7E7cCPLiPs1Gbg23eEVaai98FPFY-1elhcxmnq7Y47KqHtBT5XKkxRB-8g7m_LDceKvnugKXv4MUqOXOd5n78f365NLPky3GzO1n3-jbvy_D7jJbgzgE1702nKLXfPNbbY_NnaAwc7vsG-z1ZYIFNCtff_ylRydg3W7pQxpIGKHFrUHKGN-DvO1voRP7SpAi5vP-VDVCbpxsKOHBQTGEDk-oQ24wMhtC-YSOpyDwTXGArBpYekQt8JoDqBX8xYfLc47WDaAUBU--sUyZs6CdrBoLTR9Gnt3l50eH72bnSRDc4fEIsKokiyUmpdlkC7NpXHGK5VWJnU85GkorBQ8DcJXMT5V2uZKFNKJUiolXW5kmd9je03b-PsMlMm4o5-qQyYsLm4LLcuK42qmDM5P2PNR0LUdmM-pAceq7jmbeY2iqEkUE_ZkN_KiZ_v4w5iDUVfqwd67miuqSOe5FBP2LAr9r_Pr2Zsjuj7414EP2XVONRdoUFwesL3NeusfIRLamMdR538AsGMKPg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWq9gFeaLmJhQKDhOApW69j5yKe0KrVAm2FUCv1ASmKb7srtkm1F1B54hP4Fj6JL2EmibeAQEI8RVFsK8n4eM5YM8eMPZXS6MwRvrmmkhzhowzvozzmVjpL4gC0D3l0nIxO5eszdbbBXoRamFYfYr3hRsho1msCOG1I712phpoL108FFe9tyQTDFGJE79baUQM6v6AVSxURR9oelGe52As9f_VFVwTzZ5ra-JmDbfY-vGGbXvKhv1rqvvn8m3jjf37CDrvR8U942U6Ym2zDVbfYdjjbATqo32bfhrMVaSigZ_v-5Sv5OgvzekVJ0kDaDjVOIKCk-TGM5-UlfKpnHmpcf867wk4oKwtrhVhAbgyNzCfUHgcI8ragL2GBfTC-xnAAljVMLVJXCIiAcjau8dHkfAHTCpCtwkc3mTbJs1BamNQGqjaTfXGHnR7snwxHUXe-Q2SQZOTRwGelyDKvLI-VttqlKc81t8LH3CdGScG9dHkToqaliVOZKCszlabKxlpl8V22WdWVu8cg1QNh6aeWfiANDm6SUmW5wNF05q3rsefB0oXpxM_pDI5Z0co2iwJNUZApeuzJuuVFK_jxhza7YbIUHeQXhUipKF3ESvbYs8bqf-1fDN_u0_X-vzZ8zK6NTo4Oi8NXx28esOuCSjAQX0Ltss3lfOUeIjFa6kcNAH4AQZAOXw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bahRBEG1CBPHFeMXVGEsQfZrNbE_3Tg8-hU2WeAtBDORBGKZvu4ub6WUvSnzyE_yWfFK-xKq5bFQUxKdhmO5mZqqq61RTdYqxZ0IYrRzZd6ypJIf7SOF9lCWxFc4SOQCdQ7476h-eiNen8nSDvWxrYWp-iPWBG1lGtV-TgbuZ9btXrKFm5ropp-K9a0JmivL59t-vuaN61L-gJkvlUYywvWWejfluO_NXX3QFMH-GqZWfGW6xj-0b1ukln7qrpe6ar7-RN_7nJ9xiNxv8CXu1wtxmG668w7ba3g7QmPpddjGYrohDAT3b5bfv5OsszMOKkqSBuB0CKhBQ0vwIRvPiHL6EqYeA-89ZU9gJRWlhzRALiI2hovmE4HGBlt4W9DkscA7G1xgOwDLAxCJ0hdYioJiOAj4any1gUgKiVfjsxpMqeRYKC-NgoKwz2Rf32Mnw4MPgMGr6O0QGQUYW9bwquFJe2jiR2mqXpnGmY8t9Evu-kYLHXrisClHTwiSp6EsrlExTaRMtVXKfbZahdA8YpLrHLf3UwveEwcVNv5Aq47iaVt66DnvRSjo3Dfk59eCY5jVtM89RFDmJosOerkfOasKPP4zZbpUlb0x-kfOUitJ5IkWHPa-k_tf5-eD4gK4P_3XgE3b9eH-Yv3119OYRu8GpAgPNi8tttrmcr9xjxEVLvVPp_w_Xmg3j |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering%E2%80%90based+routing+protocol+using+gray+wolf+optimization+and+technique+for+order+of+preference+by+similarity+to+ideal+solution+algorithms+in+the+vehicular+ad+hoc+networks&rft.jtitle=Concurrency+and+computation&rft.au=Kheradmand%2C+Behbod&rft.au=Ghaffari%2C+Ali&rft.au=Soleimanian+Gharehchopogh%2C+Farhad&rft.au=Masdari%2C+Mohammad&rft.date=2022-10-25&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.7209&rft.externalDBID=10.1002%252Fcpe.7209&rft.externalDocID=CPE7209 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |