Clustering‐based routing protocol using gray wolf optimization and technique for order of preference by similarity to ideal solution algorithms in the vehicular ad hoc networks

Summary In a vehicular ad‐hoc network (VANET), each vehicle is equipped with an on‐board unit to communicate vehicle to vehicle or vehicle to fixed infrastructure. VANET technology is offered to provide many facilities to passengers and drivers, including safety, entertainment, mobile commerce, driv...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 34; no. 23
Main Authors Kheradmand, Behbod, Ghaffari, Ali, Soleimanian Gharehchopogh, Farhad, Masdari, Mohammad
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 25.10.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.7209

Cover

Abstract Summary In a vehicular ad‐hoc network (VANET), each vehicle is equipped with an on‐board unit to communicate vehicle to vehicle or vehicle to fixed infrastructure. VANET technology is offered to provide many facilities to passengers and drivers, including safety, entertainment, mobile commerce, driver assistance, and emergency alarms. VANET has unique features such as high‐speed node mobility and network topology dynamics. These special features cause many problems such as increased transmission delays and packet loss. On the other hand, providing a good routing plan for VANET is a critical issue. Therefore, this article proposes a cluster‐based routing using in‐vehicle meta‐heuristic algorithms (CRMHA‐VANET) which has two phases. In the first stage, the vehicles are clustered and the most suitable cluster head (CH) is selected using the gray wolf optimization algorithm (GWO). In the next step, the next suitable CH is selected for data transmission in direct paths using the technique for order of preference by similarity to ideal solution (TOPSIS). The performance of the proposed method is analyzed through several criteria such as package delivery rate, end‐to‐end delay and throughput. CRMHA‐VANET results in a 10% to 25% improvement over all performance metrics, that is, packet delivery rate, latency, and throughput, over CRBP (clustering routing based on PSO [particle swarm optimization]), WCV (weight based clustering for VANET), and AODV‐CD methods.
AbstractList In a vehicular ad‐hoc network (VANET), each vehicle is equipped with an on‐board unit to communicate vehicle to vehicle or vehicle to fixed infrastructure. VANET technology is offered to provide many facilities to passengers and drivers, including safety, entertainment, mobile commerce, driver assistance, and emergency alarms. VANET has unique features such as high‐speed node mobility and network topology dynamics. These special features cause many problems such as increased transmission delays and packet loss. On the other hand, providing a good routing plan for VANET is a critical issue. Therefore, this article proposes a cluster‐based routing using in‐vehicle meta‐heuristic algorithms (CRMHA‐VANET) which has two phases. In the first stage, the vehicles are clustered and the most suitable cluster head (CH) is selected using the gray wolf optimization algorithm (GWO). In the next step, the next suitable CH is selected for data transmission in direct paths using the technique for order of preference by similarity to ideal solution (TOPSIS). The performance of the proposed method is analyzed through several criteria such as package delivery rate, end‐to‐end delay and throughput. CRMHA‐VANET results in a 10% to 25% improvement over all performance metrics, that is, packet delivery rate, latency, and throughput, over CRBP (clustering routing based on PSO [particle swarm optimization]), WCV (weight based clustering for VANET), and AODV‐CD methods.
Summary In a vehicular ad‐hoc network (VANET), each vehicle is equipped with an on‐board unit to communicate vehicle to vehicle or vehicle to fixed infrastructure. VANET technology is offered to provide many facilities to passengers and drivers, including safety, entertainment, mobile commerce, driver assistance, and emergency alarms. VANET has unique features such as high‐speed node mobility and network topology dynamics. These special features cause many problems such as increased transmission delays and packet loss. On the other hand, providing a good routing plan for VANET is a critical issue. Therefore, this article proposes a cluster‐based routing using in‐vehicle meta‐heuristic algorithms (CRMHA‐VANET) which has two phases. In the first stage, the vehicles are clustered and the most suitable cluster head (CH) is selected using the gray wolf optimization algorithm (GWO). In the next step, the next suitable CH is selected for data transmission in direct paths using the technique for order of preference by similarity to ideal solution (TOPSIS). The performance of the proposed method is analyzed through several criteria such as package delivery rate, end‐to‐end delay and throughput. CRMHA‐VANET results in a 10% to 25% improvement over all performance metrics, that is, packet delivery rate, latency, and throughput, over CRBP (clustering routing based on PSO [particle swarm optimization]), WCV (weight based clustering for VANET), and AODV‐CD methods.
Author Masdari, Mohammad
Soleimanian Gharehchopogh, Farhad
Ghaffari, Ali
Kheradmand, Behbod
Author_xml – sequence: 1
  givenname: Behbod
  surname: Kheradmand
  fullname: Kheradmand, Behbod
  organization: Urmia Branch, Islamic Azad University
– sequence: 2
  givenname: Ali
  orcidid: 0000-0001-5407-8629
  surname: Ghaffari
  fullname: Ghaffari, Ali
  email: a.ghaffari@iaut.ac.ir
  organization: Tabriz Branch, Islamic Azad University
– sequence: 3
  givenname: Farhad
  surname: Soleimanian Gharehchopogh
  fullname: Soleimanian Gharehchopogh, Farhad
  organization: Urmia Branch, Islamic Azad University
– sequence: 4
  givenname: Mohammad
  surname: Masdari
  fullname: Masdari, Mohammad
  organization: Urmia Branch, Islamic Azad University
BookMark eNp1UcuO1DAQjNAisbsg8QktceGSwY84jyMaLQ9pJTjAOXLs9sSLxx5sh1E48Ql8C5_El-DZQRwQXNrdclW1uuqquvDBY1U9pWRDCWEv1AE3HSPDg-qSCs5q0vLm4k_P2kfVVUp3hFBKOL2sfmzdkjJG63c_v32fZEINMSy5zHCIIQcVHCzpNO6iXOEYnIFwyHZvv8psgwfpNWRUs7efFwQTIoSosVRTBNBgRK8QphVS4TgZbV4hB7AapYMU3HJWcbtQvuZ9AushzwhfcLZqKQSQGuagwGM-hvgpPa4eGukSPvn9XlcfX9182L6pb9-9frt9eVsrNvChpqaXrO-N0ISLSU_YdWSYiGaGE9Mq0TBiGhxYMaLrpOJd0wrd9KLrhOaT6Pl19eysW3wop6U83oUl-rJyZB0VLWFcNAX1_IxSMaRUDh4P0e5lXEdKxlMiY0lkPCVSoJu_oMrmexNzlNb9i1CfCUfrcP2v8Lh9f3OP_wXs06NJ
CitedBy_id crossref_primary_10_1016_j_knosys_2025_113371
crossref_primary_10_1109_ACCESS_2025_3525636
Cites_doi 10.1007/s12083-019-00724-4
10.1109/ACCESS.2020.2963850
10.1109/TVT.2019.2899627
10.1007/978-981-15-8469-5_9
10.1007/s11276-019-01997-6
10.1016/j.adhoc.2020.102285
10.1007/978-3-642-10844-0_41
10.1016/j.vehcom.2018.02.004
10.1109/TVT.2007.897656
10.1016/j.measurement.2019.107306
10.1109/TITS.2020.2983835
10.1016/j.vehcom.2021.100453
10.1016/j.asoc.2021.107328
10.1002/ett.3951
10.1007/s40747-021-00629-x
10.1002/dac.5008
10.1016/j.vehcom.2021.100332
10.1002/dac.4502
10.1109/ACCESS.2018.2868118
10.1007/978-3-319-92007-8_43
10.1016/j.eswa.2020.113917
10.1007/s12652-020-01947-7
10.1016/j.comnet.2018.05.017
10.1016/j.advengsoft.2013.12.007
10.1007/s11235-018-0513-6
10.1007/s11227-018-2283-z
10.1007/s12652-019-01316-z
10.1007/s12652-020-01708-6
10.1016/j.eswa.2019.112889
10.1007/978-3-030-22773-9_1
10.1049/iet-com.2018.6214
10.1109/ACCESS.2022.3155632
10.1016/j.adhoc.2020.102213
10.1007/s11235-016-0219-6
10.1016/j.compeleceng.2018.01.002
10.1016/j.comnet.2022.109086
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.7209
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_7209
CPE7209
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2939-1f8a288f5d035bdbe7709b0d2f30f6c5420f4e9211077ac37465d485775d3b583
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Mon Jul 14 07:50:37 EDT 2025
Wed Oct 01 00:59:53 EDT 2025
Thu Apr 24 22:59:17 EDT 2025
Wed Jan 22 16:24:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2939-1f8a288f5d035bdbe7709b0d2f30f6c5420f4e9211077ac37465d485775d3b583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5407-8629
PQID 2715602354
PQPubID 2045170
PageCount 19
ParticipantIDs proquest_journals_2715602354
crossref_primary_10_1002_cpe_7209
crossref_citationtrail_10_1002_cpe_7209
wiley_primary_10_1002_cpe_7209_CPE7209
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 October 2022
PublicationDateYYYYMMDD 2022-10-25
PublicationDate_xml – month: 10
  year: 2022
  text: 25 October 2022
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 141
2019; 71
2021; 67
2020; 140
2021; 29
2021; 106
2017; 65
2020; 106
2014; 69
2020; 14
2020; 13
2020; 11
2020; 33
2021; 166
2007; 56
2020; 108
2022; 213
2020; 8
2021; 13
2018; 6
2022
2020; 152
2019; 68
2022; 8
2019; 25
2018; 70
2022; 34
2022; 35
2018; 74
2020; 22
2022; 10
2018; 12
e_1_2_8_28_1
Shankar A (e_1_2_8_6_1) 2022
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Jamalzadeh M (e_1_2_8_5_1) 2022
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
Aissa M (e_1_2_8_10_1) 2020; 33
e_1_2_8_23_1
Gharehchopogh FS (e_1_2_8_18_1) 2022
Ghafori S (e_1_2_8_19_1) 2021; 29
Ebadinezhad S (e_1_2_8_29_1) 2021; 67
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_39_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Hosmani S (e_1_2_8_15_1) 2021; 13
e_1_2_8_30_1
References_xml – start-page: 1
  year: 2022
  end-page: 24
  article-title: Advances in tree seed algorithm: a comprehensive survey
  publication-title: Arch Comput Methods Eng
– volume: 11
  start-page: 5721
  issue: 11
  year: 2020
  end-page: 5733
  article-title: Inter‐vehicle distance‐based location aware multi‐hop routing in vehicular ad‐hoc network
  publication-title: J Ambient Intell Humaniz Comput
– volume: 12
  start-page: 66
  year: 2018
  end-page: 74
  article-title: Clustering‐based reliable low‐latency routing scheme using ACO method for vehicular networks
  publication-title: Veh Commun
– volume: 6
  start-page: 48611
  year: 2018
  end-page: 48624
  article-title: CAMONET: moth‐flame optimization (MFO) based clustering algorithm for VANETs
  publication-title: IEEE Access
– volume: 65
  start-page: 127
  issue: 1
  year: 2017
  end-page: 137
  article-title: RMRPTS: a reliable multi‐level routing protocol with tabu search in VANET
  publication-title: Telecommun Syst
– volume: 11
  start-page: 1593
  issue: 4
  year: 2020
  end-page: 1603
  article-title: Hybrid opportunistic and position‐based routing protocol in vehicular ad hoc networks
  publication-title: J Ambient Intell Humaniz Comput
– volume: 70
  start-page: 853
  year: 2018
  end-page: 870
  article-title: Grey wolf optimization based clustering algorithm for vehicular ad‐hoc networks
  publication-title: Comput Electr Eng
– volume: 74
  start-page: 2528
  issue: 6
  year: 2018
  end-page: 2552
  article-title: A routing protocol for vehicular ad hoc networks using simulated annealing algorithm and neural networks
  publication-title: J Supercomput
– start-page: 1
  year: 2022
  end-page: 44
  article-title: A modified social spider algorithm for an efficient data dissemination in VANET
  publication-title: Environ Dev Sustain
– volume: 33
  issue: 14
  year: 2020
  article-title: An improved distance‐based ant colony optimization routing for vehicular ad hoc networks
  publication-title: Int J Commun Syst
– start-page: 1
  year: 2022
  end-page: 13
  article-title: EC‐MOPSO: an edge computing‐assisted hybrid cluster and MOPSO‐based routing protocol for the internet of vehicles
  publication-title: Ann Telecommun
– volume: 68
  start-page: 3967
  issue: 4
  year: 2019
  end-page: 3979
  article-title: Delay‐minimization routing for heterogeneous VANETs with machine learning based mobility prediction
  publication-title: IEEE Trans Veh Technol
– volume: 56
  start-page: 2332
  issue: 4
  year: 2007
  end-page: 2345
  article-title: Prediction‐based routing for vehicular ad hoc networks
  publication-title: IEEE Trans Veh Technol
– volume: 10
  start-page: 26613
  year: 2022
  end-page: 26627
  article-title: Reliability‐aware multi‐objective optimization‐based routing protocol for VANETs using enhanced Gaussian mutation harmony searching
  publication-title: IEEE Access
– volume: 8
  start-page: 1
  year: 2022
  end-page: 30
  article-title: Data collection protocols for VANETs: a survey
  publication-title: Complex Intell Syst
– volume: 106
  year: 2021
  article-title: R‐GWO: representative‐based grey wolf optimizer for solving engineering problems
  publication-title: Appl Soft Comput
– volume: 166
  year: 2021
  article-title: An improved grey wolf optimizer for solving engineering problems
  publication-title: Expert Syst Appl
– volume: 67
  year: 2021
  article-title: Design and analysis of an improved AODV protocol based on clustering approach for internet of vehicles (AODV‐CD)
  publication-title: Int J Electron Telecommun
– volume: 22
  start-page: 3533
  issue: 6
  year: 2020
  end-page: 3546
  article-title: V2VR: reliable hybrid‐network‐oriented V2V data transmission and routing considering RSUs and connectivity probability
  publication-title: IEEE trans Intell Transp Syst
– volume: 108
  start-page: 102285
  year: 2020
  article-title: Fuzzy‐based beaconless probabilistic broadcasting for information dissemination in urban VANET
  publication-title: Ad Hoc Netw
– volume: 213
  year: 2022
  article-title: G‐3MRP: a game‐theoretical multimedia multimetric map‐aware routing protocol for vehicular ad hoc networks
  publication-title: Computer Networks
– volume: 13
  start-page: 532
  issue: 2
  year: 2020
  end-page: 547
  article-title: Optimized clustering in vehicular ad hoc networks based on honey bee and genetic algorithm for internet of things
  publication-title: Peer Peer Netw Appl
– volume: 34
  start-page: 100453
  year: 2022
  article-title: ICDRP‐F‐SDVN: an innovative cluster‐based dual‐phase routing protocol using fog computing and software‐defined vehicular network
  publication-title: Veh Commun
– volume: 13
  start-page: 469
  issue: 2
  year: 2021
  end-page: 473
  article-title: Efficient vehicular ad hoc network routing protocol using weighted clustering technique
  publication-title: Int J Inf Technol
– volume: 8
  start-page: 5733
  year: 2020
  end-page: 5748
  article-title: RSU‐assisted traffic‐aware routing based on reinforcement learning for urban vanets
  publication-title: IEEE Access
– volume: 11
  start-page: 4273
  issue: 10
  year: 2020
  end-page: 4283
  article-title: RISA: routing scheme for internet of things using shuffled frog leaping optimization algorithm
  publication-title: J Ambient Intell Humaniz Comput
– volume: 152
  start-page: 107306
  year: 2020
  article-title: Efficient clustering V2V routing based on PSO in VANETs
  publication-title: Measurement
– volume: 29
  start-page: 100332
  year: 2021
  article-title: SAMNET: self‐adaptative multi‐kernel clustering algorithm for urban VANETs
  publication-title: Veh Commun
– volume: 29
  start-page: 1
  year: 2021
  end-page: 22
  article-title: Advances in spotted hyena optimizer: a comprehensive survey
  publication-title: Arch Comput Methods Eng
– volume: 141
  start-page: 67
  year: 2018
  end-page: 81
  article-title: PGRP: predictive geographic routing protocol for VANETs
  publication-title: Comput Netw
– volume: 35
  year: 2022
  article-title: DACOR: a distributed ACO‐based routing protocol for mitigating the hot spot problem in fog‐enabled WSN architecture
  publication-title: Int J Commun Syst
– volume: 25
  start-page: 2831
  issue: 5
  year: 2019
  end-page: 2849
  article-title: Hybrid routing scheme using imperialist competitive algorithm and RBF neural networks for VANETs
  publication-title: Wirel Netw
– volume: 106
  start-page: 102213
  year: 2020
  article-title: Link utility aware geographic routing for urban VANETs using two‐hop neighbor information
  publication-title: Ad Hoc Netw
– volume: 71
  start-page: 433
  issue: 3
  year: 2019
  end-page: 445
  article-title: Construction of a stable vehicular ad hoc network based on hybrid genetic algorithm
  publication-title: Telecommun Syst
– volume: 140
  year: 2020
  article-title: Intelligent firefly‐based algorithm with levy distribution (FF‐L) for multicast routing in vehicular communications
  publication-title: Expert Syst Appl
– volume: 14
  start-page: 2740
  issue: 16
  year: 2020
  end-page: 2748
  article-title: Optimal routing in VANET using improved meta‐heuristic approach: a variant of Jaya
  publication-title: IET Commun
– volume: 33
  year: 2020
  article-title: SOFCluster: safety‐oriented, fuzzy logic‐based clustering scheme for vehicular ad hoc networks
  publication-title: Trans Emerg Telecommun Technol
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
– volume: 29
  start-page: 1
  year: 2021
  ident: e_1_2_8_19_1
  article-title: Advances in spotted hyena optimizer: a comprehensive survey
  publication-title: Arch Comput Methods Eng
– ident: e_1_2_8_12_1
  doi: 10.1007/s12083-019-00724-4
– ident: e_1_2_8_34_1
  doi: 10.1109/ACCESS.2020.2963850
– ident: e_1_2_8_32_1
  doi: 10.1109/TVT.2019.2899627
– ident: e_1_2_8_14_1
  doi: 10.1007/978-981-15-8469-5_9
– ident: e_1_2_8_25_1
  doi: 10.1007/s11276-019-01997-6
– ident: e_1_2_8_8_1
  doi: 10.1016/j.adhoc.2020.102285
– ident: e_1_2_8_22_1
  doi: 10.1007/978-3-642-10844-0_41
– volume: 67
  year: 2021
  ident: e_1_2_8_29_1
  article-title: Design and analysis of an improved AODV protocol based on clustering approach for internet of vehicles (AODV‐CD)
  publication-title: Int J Electron Telecommun
– ident: e_1_2_8_2_1
  doi: 10.1016/j.vehcom.2018.02.004
– start-page: 1
  year: 2022
  ident: e_1_2_8_18_1
  article-title: Advances in tree seed algorithm: a comprehensive survey
  publication-title: Arch Comput Methods Eng
– volume: 13
  start-page: 469
  issue: 2
  year: 2021
  ident: e_1_2_8_15_1
  article-title: Efficient vehicular ad hoc network routing protocol using weighted clustering technique
  publication-title: Int J Inf Technol
– ident: e_1_2_8_41_1
  doi: 10.1109/TVT.2007.897656
– ident: e_1_2_8_30_1
  doi: 10.1016/j.measurement.2019.107306
– ident: e_1_2_8_31_1
  doi: 10.1109/TITS.2020.2983835
– ident: e_1_2_8_36_1
  doi: 10.1016/j.vehcom.2021.100453
– ident: e_1_2_8_40_1
  doi: 10.1016/j.asoc.2021.107328
– volume: 33
  start-page: e3951
  year: 2020
  ident: e_1_2_8_10_1
  article-title: SOFCluster: safety‐oriented, fuzzy logic‐based clustering scheme for vehicular ad hoc networks
  publication-title: Trans Emerg Telecommun Technol
  doi: 10.1002/ett.3951
– ident: e_1_2_8_4_1
  doi: 10.1007/s40747-021-00629-x
– ident: e_1_2_8_7_1
  doi: 10.1002/dac.5008
– ident: e_1_2_8_11_1
  doi: 10.1016/j.vehcom.2021.100332
– start-page: 1
  year: 2022
  ident: e_1_2_8_5_1
  article-title: EC‐MOPSO: an edge computing‐assisted hybrid cluster and MOPSO‐based routing protocol for the internet of vehicles
  publication-title: Ann Telecommun
– start-page: 1
  year: 2022
  ident: e_1_2_8_6_1
  article-title: A modified social spider algorithm for an efficient data dissemination in VANET
  publication-title: Environ Dev Sustain
– ident: e_1_2_8_17_1
  doi: 10.1002/dac.4502
– ident: e_1_2_8_24_1
  doi: 10.1109/ACCESS.2018.2868118
– ident: e_1_2_8_27_1
  doi: 10.1007/978-3-319-92007-8_43
– ident: e_1_2_8_39_1
  doi: 10.1016/j.eswa.2020.113917
– ident: e_1_2_8_3_1
  doi: 10.1007/s12652-020-01947-7
– ident: e_1_2_8_33_1
  doi: 10.1016/j.comnet.2018.05.017
– ident: e_1_2_8_38_1
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: e_1_2_8_26_1
  doi: 10.1007/s11235-018-0513-6
– ident: e_1_2_8_28_1
  doi: 10.1007/s11227-018-2283-z
– ident: e_1_2_8_43_1
  doi: 10.1007/s12652-019-01316-z
– ident: e_1_2_8_20_1
  doi: 10.1007/s12652-020-01708-6
– ident: e_1_2_8_16_1
  doi: 10.1016/j.eswa.2019.112889
– ident: e_1_2_8_42_1
  doi: 10.1007/978-3-030-22773-9_1
– ident: e_1_2_8_13_1
  doi: 10.1049/iet-com.2018.6214
– ident: e_1_2_8_35_1
  doi: 10.1109/ACCESS.2022.3155632
– ident: e_1_2_8_9_1
  doi: 10.1016/j.adhoc.2020.102213
– ident: e_1_2_8_23_1
  doi: 10.1007/s11235-016-0219-6
– ident: e_1_2_8_21_1
  doi: 10.1016/j.compeleceng.2018.01.002
– ident: e_1_2_8_37_1
  doi: 10.1016/j.comnet.2022.109086
SSID ssj0011031
Score 2.3571372
Snippet Summary In a vehicular ad‐hoc network (VANET), each vehicle is equipped with an on‐board unit to communicate vehicle to vehicle or vehicle to fixed...
In a vehicular ad‐hoc network (VANET), each vehicle is equipped with an on‐board unit to communicate vehicle to vehicle or vehicle to fixed infrastructure....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Clustering
Data transmission
gray wolf optimization
Heuristic methods
Mobile ad hoc networks
Network latency
Network topologies
Optimization
Particle swarm optimization
Passenger safety
Performance measurement
routing
Routing (telecommunications)
Similarity
TOPSIS
vehicular ad hoc network
Title Clustering‐based routing protocol using gray wolf optimization and technique for order of preference by similarity to ideal solution algorithms in the vehicular ad hoc networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7209
https://www.proquest.com/docview/2715602354
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: ADMLS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NitRAEG5kT15cf3F0lRJET5lNOt3p5CjDLougiLiw4CH078zgbLJMZpT15CP4LD6ST2JVJ5lVURBPIaS7SVJVXV81VV8x9lQIa0pP9p0aKsnhISnxPqny1AnviByAziFfvS5OTsXLM3k2ZFVSLUzPD7E7cCPLiPs1Gbg23eEVaai98FPFY-1elhcxmnq7Y47KqHtBT5XKkxRB-8g7m_LDceKvnugKXv4MUqOXOd5n78f365NLPky3GzO1n3-jbvy_D7jJbgzgE1702nKLXfPNbbY_NnaAwc7vsG-z1ZYIFNCtff_ylRydg3W7pQxpIGKHFrUHKGN-DvO1voRP7SpAi5vP-VDVCbpxsKOHBQTGEDk-oQ24wMhtC-YSOpyDwTXGArBpYekQt8JoDqBX8xYfLc47WDaAUBU--sUyZs6CdrBoLTR9Gnt3l50eH72bnSRDc4fEIsKokiyUmpdlkC7NpXHGK5VWJnU85GkorBQ8DcJXMT5V2uZKFNKJUiolXW5kmd9je03b-PsMlMm4o5-qQyYsLm4LLcuK42qmDM5P2PNR0LUdmM-pAceq7jmbeY2iqEkUE_ZkN_KiZ_v4w5iDUVfqwd67miuqSOe5FBP2LAr9r_Pr2Zsjuj7414EP2XVONRdoUFwesL3NeusfIRLamMdR538AsGMKPg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWq9gFeaLmJhQKDhOApW69j5yKe0KrVAm2FUCv1ASmKb7srtkm1F1B54hP4Fj6JL2EmibeAQEI8RVFsK8n4eM5YM8eMPZXS6MwRvrmmkhzhowzvozzmVjpL4gC0D3l0nIxO5eszdbbBXoRamFYfYr3hRsho1msCOG1I712phpoL108FFe9tyQTDFGJE79baUQM6v6AVSxURR9oelGe52As9f_VFVwTzZ5ra-JmDbfY-vGGbXvKhv1rqvvn8m3jjf37CDrvR8U942U6Ym2zDVbfYdjjbATqo32bfhrMVaSigZ_v-5Sv5OgvzekVJ0kDaDjVOIKCk-TGM5-UlfKpnHmpcf867wk4oKwtrhVhAbgyNzCfUHgcI8ragL2GBfTC-xnAAljVMLVJXCIiAcjau8dHkfAHTCpCtwkc3mTbJs1BamNQGqjaTfXGHnR7snwxHUXe-Q2SQZOTRwGelyDKvLI-VttqlKc81t8LH3CdGScG9dHkToqaliVOZKCszlabKxlpl8V22WdWVu8cg1QNh6aeWfiANDm6SUmW5wNF05q3rsefB0oXpxM_pDI5Z0co2iwJNUZApeuzJuuVFK_jxhza7YbIUHeQXhUipKF3ESvbYs8bqf-1fDN_u0_X-vzZ8zK6NTo4Oi8NXx28esOuCSjAQX0Ltss3lfOUeIjFa6kcNAH4AQZAOXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bahRBEG1CBPHFeMXVGEsQfZrNbE_3Tg8-hU2WeAtBDORBGKZvu4ub6WUvSnzyE_yWfFK-xKq5bFQUxKdhmO5mZqqq61RTdYqxZ0IYrRzZd6ypJIf7SOF9lCWxFc4SOQCdQ7476h-eiNen8nSDvWxrYWp-iPWBG1lGtV-TgbuZ9btXrKFm5ropp-K9a0JmivL59t-vuaN61L-gJkvlUYywvWWejfluO_NXX3QFMH-GqZWfGW6xj-0b1ukln7qrpe6ar7-RN_7nJ9xiNxv8CXu1wtxmG668w7ba3g7QmPpddjGYrohDAT3b5bfv5OsszMOKkqSBuB0CKhBQ0vwIRvPiHL6EqYeA-89ZU9gJRWlhzRALiI2hovmE4HGBlt4W9DkscA7G1xgOwDLAxCJ0hdYioJiOAj4any1gUgKiVfjsxpMqeRYKC-NgoKwz2Rf32Mnw4MPgMGr6O0QGQUYW9bwquFJe2jiR2mqXpnGmY8t9Evu-kYLHXrisClHTwiSp6EsrlExTaRMtVXKfbZahdA8YpLrHLf3UwveEwcVNv5Aq47iaVt66DnvRSjo3Dfk59eCY5jVtM89RFDmJosOerkfOasKPP4zZbpUlb0x-kfOUitJ5IkWHPa-k_tf5-eD4gK4P_3XgE3b9eH-Yv3119OYRu8GpAgPNi8tttrmcr9xjxEVLvVPp_w_Xmg3j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering%E2%80%90based+routing+protocol+using+gray+wolf+optimization+and+technique+for+order+of+preference+by+similarity+to+ideal+solution+algorithms+in+the+vehicular+ad+hoc+networks&rft.jtitle=Concurrency+and+computation&rft.au=Kheradmand%2C+Behbod&rft.au=Ghaffari%2C+Ali&rft.au=Soleimanian+Gharehchopogh%2C+Farhad&rft.au=Masdari%2C+Mohammad&rft.date=2022-10-25&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.7209&rft.externalDBID=10.1002%252Fcpe.7209&rft.externalDocID=CPE7209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon