Unsupervised neural networks for Maxwell fluid flow and heat transfer over a curved surface with nonlinear convection and temperature‐dependent properties
Maxwell fluid flow over a curved surface with the impacts of nonlinear convection and radiation, temperature‐dependent properties, and magnetic field are investigated. The governing equations of the physical system are solved using wavelet based physics informed neural network, a machine learning te...
        Saved in:
      
    
          | Published in | International journal for numerical methods in fluids Vol. 96; no. 9; pp. 1576 - 1591 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Bognor Regis
          Wiley Subscription Services, Inc
    
        01.09.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0271-2091 1097-0363  | 
| DOI | 10.1002/fld.5298 | 
Cover
| Abstract | Maxwell fluid flow over a curved surface with the impacts of nonlinear convection and radiation, temperature‐dependent properties, and magnetic field are investigated. The governing equations of the physical system are solved using wavelet based physics informed neural network, a machine learning technique. This is an unsupervised method, and the solutions have been obtained without knowing the numerical solution to the problem. Given the nonlinearity of the coupled equations, the methodology used is flexible to implement, and the activation function used improves the accuracy of the solution. We approximate the unknown functions using different neural network models and determine the solution by training the network. The special case of the obtained results is examined with the available results in the literature for validation of the proposed methodology. It is observed that the proposed approach gives reliable results for the analyzed problem of study. Further, an analysis of the influence of flow parameters (deborah number, variable thermal conductivity and viscosity parameter, velocity slip parameter, temperature ratio parameter, suction parameter, and convection parameters) on temperature and fluid flow velocity is carried out. It is observed that as the flow parameter Deborah number, velocity slip parameter, and viscosity parameter increase, there is a decline in velocity and an enhancement in temperature. This study of fluid flow over a curved surface has applications in the polymer industry, which plays an important role in the manufacturing of contact lenses.
Wavelet‐based physics‐informed neural networks without utilizing any labeled data sets are employed to examine the study of non‐Newtonian Maxwell fluid flow over a curved surface. We have used three different models to approximate different solutions to non‐linear coupled equations that were trained parallely. We have also employed a wavelet activation function for improved accuracy. The proposed method is very flexible to implement in comparison to the existing numerical schemes and gives accurate results for all the flow parameters. | 
    
|---|---|
| AbstractList | Maxwell fluid flow over a curved surface with the impacts of nonlinear convection and radiation, temperature‐dependent properties, and magnetic field are investigated. The governing equations of the physical system are solved using wavelet based physics informed neural network, a machine learning technique. This is an unsupervised method, and the solutions have been obtained without knowing the numerical solution to the problem. Given the nonlinearity of the coupled equations, the methodology used is flexible to implement, and the activation function used improves the accuracy of the solution. We approximate the unknown functions using different neural network models and determine the solution by training the network. The special case of the obtained results is examined with the available results in the literature for validation of the proposed methodology. It is observed that the proposed approach gives reliable results for the analyzed problem of study. Further, an analysis of the influence of flow parameters (deborah number, variable thermal conductivity and viscosity parameter, velocity slip parameter, temperature ratio parameter, suction parameter, and convection parameters) on temperature and fluid flow velocity is carried out. It is observed that as the flow parameter Deborah number, velocity slip parameter, and viscosity parameter increase, there is a decline in velocity and an enhancement in temperature. This study of fluid flow over a curved surface has applications in the polymer industry, which plays an important role in the manufacturing of contact lenses.
Wavelet‐based physics‐informed neural networks without utilizing any labeled data sets are employed to examine the study of non‐Newtonian Maxwell fluid flow over a curved surface. We have used three different models to approximate different solutions to non‐linear coupled equations that were trained parallely. We have also employed a wavelet activation function for improved accuracy. The proposed method is very flexible to implement in comparison to the existing numerical schemes and gives accurate results for all the flow parameters. Maxwell fluid flow over a curved surface with the impacts of nonlinear convection and radiation, temperature‐dependent properties, and magnetic field are investigated. The governing equations of the physical system are solved using wavelet based physics informed neural network, a machine learning technique. This is an unsupervised method, and the solutions have been obtained without knowing the numerical solution to the problem. Given the nonlinearity of the coupled equations, the methodology used is flexible to implement, and the activation function used improves the accuracy of the solution. We approximate the unknown functions using different neural network models and determine the solution by training the network. The special case of the obtained results is examined with the available results in the literature for validation of the proposed methodology. It is observed that the proposed approach gives reliable results for the analyzed problem of study. Further, an analysis of the influence of flow parameters (deborah number, variable thermal conductivity and viscosity parameter, velocity slip parameter, temperature ratio parameter, suction parameter, and convection parameters) on temperature and fluid flow velocity is carried out. It is observed that as the flow parameter Deborah number, velocity slip parameter, and viscosity parameter increase, there is a decline in velocity and an enhancement in temperature. This study of fluid flow over a curved surface has applications in the polymer industry, which plays an important role in the manufacturing of contact lenses.  | 
    
| Author | Ganga, Sai Asthana, Rishi Uddin, Ziya  | 
    
| Author_xml | – sequence: 1 givenname: Sai orcidid: 0000-0003-0967-4012 surname: Ganga fullname: Ganga, Sai email: sai.ganga.21pd@bmu.edu.in organization: BML Munjal University – sequence: 2 givenname: Ziya surname: Uddin fullname: Uddin, Ziya email: ziya.uddin@bmu.edu.in organization: BML Munjal University – sequence: 3 givenname: Rishi surname: Asthana fullname: Asthana, Rishi organization: BML Munjal University  | 
    
| BookMark | eNp1kE1uFDEQha0oSEwCEkewxCabHmw307aXUX4AaRAbsm5V7LLixLEH2z2d7DgCB-B0nARPhlUUNlVS6av3qt4ROYwpIiHvOFtyxsQHF-xyJbQ6IAvOtOxYP_SHZMGE5J1gmr8mR6XcMsa0UP2C_L6KZdpg3vqClkacMoTW6pzyXaEuZfoVHmYMgbowedtqmilES28QKq0ZYnGYadq2AtRMedtkypQdGKSzrze03Rd8RMjUpLhFU32KTwoV75sx1Cnjn5-_LG4wWoyVbnJq8-qxvCGvHISCb__1Y3J1efH97HO3_vbpy9npujNC96oDKwZYCXDXVjpjYGCgtORcICou0SEMqDVyqeAjWAbIV6j0IHuulFTsuj8m7_e6zfrHhKWOt2nKsVmOPVOSrwamhkad7CmTUykZ3bjJ_h7y48jZuMt-bNmPu-wbunyGGl9h93lLzIeXFrr9wuwDPv5XeLxcnz_xfwEkJpzL | 
    
| CitedBy_id | crossref_primary_10_1016_j_cnsns_2024_108378 crossref_primary_10_1016_j_ijthermalsci_2025_109765  | 
    
| Cites_doi | 10.1093/imammb/dqu001 10.1016/j.padiff.2021.100064 10.1016/j.csite.2022.102048 10.1007/s13369-018-3599-y 10.1016/j.surfin.2021.101107 10.3390/fluids6070260 10.1007/s10915-022-01939-z 10.1098/rstl.1867.0004 10.1016/j.csite.2021.101544 10.1016/j.icheatmasstransfer.2022.106165 10.1063/1.4831795 10.1016/j.icheatmasstransfer.2022.105890 10.1016/j.aej.2017.03.037 10.1016/j.physleta.2018.05.008 10.1016/j.icheatmasstransfer.2020.104707 10.1038/s41598-021-04581-1 10.1177/0954408918821780 10.1007/s12043-018-1690-2 10.1142/S0217979222501879 10.1016/j.jppr.2017.01.002 10.1088/0253-6102/70/4/423 10.1007/s00466-020-01952-9 10.1007/s10409-021-01148-1 10.1016/j.surfin.2020.100829 10.1016/j.icheatmasstransfer.2020.104973 10.1016/j.tsep.2021.100887 10.1016/j.surfin.2020.100749 10.1615/HeatTransRes.2018025939 10.1016/j.jcis.2017.04.060 10.1016/j.icheatmasstransfer.2022.106107 10.1134/S1810232813040061 10.4028/www.scientific.net/DDF.387.428 10.1016/j.aej.2017.11.009 10.1155/2020/9685482 10.1140/epjp/i2018-12180-1 10.1016/j.csite.2022.102062 10.1007/s12648-018-1206-4 10.1177/16878132221082848 10.1016/j.rinp.2018.03.034 10.1016/j.csite.2021.101348 10.1115/1.4050542 10.1038/s41598-020-73142-9 10.1016/j.cmpb.2019.105193 10.1038/s41598-023-29806-3 10.3390/math9090921 10.1119/1.1482065  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd.  | 
    
| Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd.  | 
    
| DBID | AAYXX CITATION 7QH 7SC 7TB 7U5 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D  | 
    
| DOI | 10.1002/fld.5298 | 
    
| DatabaseName | CrossRef Aqualine Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitleList | CrossRef Civil Engineering Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering Physics  | 
    
| EISSN | 1097-0363 | 
    
| EndPage | 1591 | 
    
| ExternalDocumentID | 10_1002_fld_5298 FLD5298  | 
    
| Genre | researchArticle | 
    
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 VOH W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~A~ ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION 7QH 7SC 7TB 7U5 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c2938-ad26a52afbd7fcca60a897112ee817efea6e99e178a4ad0ae15e89673188780b3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0271-2091 | 
    
| IngestDate | Fri Jul 25 12:29:32 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Wed Oct 01 02:49:48 EDT 2025 Wed Jan 22 17:17:25 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2938-ad26a52afbd7fcca60a897112ee817efea6e99e178a4ad0ae15e89673188780b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-0967-4012 | 
    
| PQID | 3087156086 | 
    
| PQPubID | 996375 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_3087156086 crossref_primary_10_1002_fld_5298 crossref_citationtrail_10_1002_fld_5298 wiley_primary_10_1002_fld_5298_FLD5298  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September 2024 2024-09-00 20240901  | 
    
| PublicationDateYYYYMMDD | 2024-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Bognor Regis | 
    
| PublicationPlace_xml | – name: Bognor Regis | 
    
| PublicationTitle | International journal for numerical methods in fluids | 
    
| PublicationYear | 2024 | 
    
| Publisher | Wiley Subscription Services, Inc | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc | 
    
| References | 2021; 9 2021; 24 2017; 6 2021; 27 2021; 6 2022; 132 2023; 13 2013; 25 2019; 92 2021; 4 2018; 382 2021; 23 2021; 67 2021; 22 2019; 50 2022; 92 2013; 22 2021; 28 2018; 387 2015; 32 1867; 157 2021; 120 2020; 189 2020; 10 2021; 143 2022; 135 2018; 9 2018; 133 2021; 37 2020; 2020 2022 2021 2019; 44 2022; 34 2022; 12 2018; 92 2018; 70 2020; 116 2022; 36 2022; 14 2002; 70 2020; 21 2019; 233 2017; 501 2018; 57 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_48_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 Pandey AK (e_1_2_8_27_1) 2021 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1  | 
    
| References_xml | – start-page: 1 year: 2021 end-page: 20 article-title: Mixed convective flow of Ag– magnetic nanofluid over a curved surface with volumetric heat generation and temperature‐dependent viscosity publication-title: Heat Transf – volume: 157 start-page: 49 year: 1867 end-page: 88 article-title: On the dynamical theory of gases publication-title: Phil Trans R Soc Lond – volume: 34 year: 2022 article-title: Bioconvection attribution for effective thermal transportation of upper convicted Maxwell nanofluid flow due to an extending cylindrical surface publication-title: Case Stud Thermal Eng – volume: 34 year: 2022 article-title: Effects of Cattaneo‐Christov heat flux and nonlinear thermal radiation on MHD Maxwell nanofluid with Arrhenius activation energy publication-title: Case Stud Thermal Eng – volume: 135 year: 2022 article-title: Slanting transport of hybrid (MWCNTs‐SWCNTs/H2O) nanofluid upon a Riga plate with temperature dependent viscosity and thermal jump condition publication-title: Int Commun Heat Mass Transf – volume: 27 year: 2021 article-title: Numerical computation of melting heat transfer in nonlinear radiative flow of hybrid nanofluids due to permeable stretching curved surface publication-title: Case Stud Thermal Eng – volume: 2020 year: 2020 article-title: Analysis of MHD fluids around a linearly stretching sheet in porous media with thermophoresis, radiation, and chemical reaction, mathematical problems in engineering publication-title: Math Prob Eng – volume: 387 start-page: 428 year: 2018 end-page: 441 article-title: Non‐linear convection in chemically reacting fluid with an induced magnetic field across a vertical porous plate in the presence of heat source/sink publication-title: Defect Diff Forum – volume: 25 year: 2013 article-title: Dynamics of a pre‐lens tear film after a blink: model, evolution, and rupture publication-title: Phys Fluids – volume: 189 year: 2020 article-title: Inspection of hybrid based nanofluid flow over a curved surface publication-title: Comput Methods Programs Biomed – volume: 92 start-page: 17 year: 2019 article-title: Heat transfer enhancement for Maxwell nanofluid flow subject to convective heat transport publication-title: Pramana J Phys – volume: 57 start-page: 1927 year: 2018 end-page: 1935 article-title: Nonlinear convection in nano Maxwell fluid with nonlinear thermal radiation: a three‐dimensional study publication-title: Alex Eng J – volume: 32 start-page: 209 year: 2015 end-page: 238 article-title: Modelling the evaporation of a tear film over a contact lens publication-title: Math Med Biol – volume: 57 start-page: 3189 issue: 4 year: 2018 end-page: 3197 article-title: Combined impact of viscosity variation and Lorentz force on slip flow of radiative nanofluid towards a vertical stretching surface with convective heat and mass transfer publication-title: Alex Eng J – volume: 22 year: 2021 article-title: Transient flow of Maxwell Nanofluid over a shrinking surface: numerical solutions and stability analysis publication-title: Surf Interf – volume: 21 year: 2020 article-title: Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy publication-title: Surf Interf – volume: 37 start-page: 1727 year: 2021 end-page: 1738 article-title: George Em Karniadakis, physics‐informed neural networks (PINNs) for fluid mechanics: a review publication-title: Acta Mech Sin – volume: 50 start-page: 581 issue: 6 year: 2019 end-page: 603 article-title: Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with nonuniform heat source/sink publication-title: Heat Transf Res – volume: 133 issue: 9 year: 2018 article-title: Velocity slip in mixed convective oblique transport of titanium oxide/water (nano‐polymer) with temperature‐dependent viscosity publication-title: Eur Phys J Plus – volume: 120 year: 2021 article-title: Numerical investigation of MHD impact on Maxwell Nanofluid publication-title: Int Commun Heat Mass Transf – volume: 70 start-page: 781 year: 2002 article-title: An introduction to magnetohydrodynamics publication-title: Am J Phys – volume: 14 start-page: 1 issue: 3 year: 2022 end-page: 10 article-title: Mixed convection and thermally radiative hybrid nanofluid flow over a curved surface publication-title: Adv Mech Eng – volume: 22 start-page: 337 issue: 4 year: 2013 end-page: 345 article-title: Heat transfer analysis for stretching flow over a curved surface with magnetic field publication-title: J Eng Thermophys – volume: 6 start-page: 31 issue: 1 year: 2017 end-page: 40 article-title: Unsteady flow of a Maxwell nanofluid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects publication-title: Propul Power Res – volume: 70 start-page: 423 issue: 4 year: 2018 end-page: 429 article-title: Impact of internal heat source on mixed convective transverse transport of Viscoplastic material under viscosity variation publication-title: Commun Theor Phys – volume: 24 year: 2021 article-title: Design of intelligent computing networks for numerical treatment of thin film flow of Maxwell nanofluid over a stretched and rotating surface publication-title: Surf Interf – volume: 92 start-page: 88 year: 2022 article-title: Scientific machine learning through physics‐informed neural networks: where we are and What's next publication-title: J Sci Comput – volume: 9 start-page: 851 year: 2018 end-page: 857 article-title: Impact of heat source/sink on radiative heat transfer to Maxwell nanofluid subject to revised mass flux condition publication-title: Result Phys – volume: 6 start-page: 260 year: 2021 article-title: Numerical investigation of mixed convective Williamson fluid flow over an exponentially stretching permeable curved surface publication-title: Fluids – volume: 10 year: 2020 article-title: Nanofuid fow with autocatalytic chemical reaction over a curved surface with nonlinear thermal radiation and slip condition publication-title: Sci Rep – volume: 67 start-page: 619 year: 2021 end-page: 635 article-title: Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics‐informed neural networks publication-title: Comput Mech – volume: 135 year: 2022 article-title: Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip publication-title: Int Commun Heat Mass Transf – volume: 4 year: 2021 article-title: Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect publication-title: Partial Diff Equ Appl Math – volume: 233 start-page: 1013 issue: 5 year: 2019 end-page: 1023 article-title: Crosswise stream of methanol–iron oxide (CH3OH–Fe3O4) with temperature‐dependent viscosity and suction/injection effects publication-title: Proc Inst Mech Eng Pt E J Process Mech Eng – volume: 132 year: 2022 article-title: On the application of physics informed neural networks (PINN) to solve boundary layer thermal‐fluid problems publication-title: Int Commun Heat Mass Transf – year: 2022 – volume: 36 issue: 27 year: 2022 article-title: Heat and mass transfer aspects of a transient bio‐convective Maxwell nanofluid subject to convective boundary conditions with curved surface publication-title: Int J Mod Phys – volume: 143 year: 2021 article-title: Physics‐informed neural networks for heat transfer problems publication-title: J Heat Transfer – volume: 9 start-page: 921 year: 2021 article-title: Magnetic field effect on sisko fluid flow containing gold nanoparticles through a porous curved surface in the presence of radiation and partial slip publication-title: Mathematics – volume: 23 year: 2021 article-title: Thermal transport of radiative Williamson fluid over stretchable curved surface publication-title: Thermal Sci Eng Progr – volume: 44 start-page: 1525 year: 2019 end-page: 1541 article-title: Thermal slip in oblique radiative nano‐polymer gel transport with temperature‐dependent viscosity: solar collector nanomaterial coating manufacturing simulation publication-title: Arab J Sci Eng – volume: 92 start-page: 1271 issue: 10 year: 2018 end-page: 1280 article-title: Transverse transport of Fe3O4–H2O with viscosity variation under pure internal heating publication-title: India J Phys – volume: 13 start-page: 2882 year: 2023 article-title: Wavelets based physics informed neural networks to solve non‐linear differential equations publication-title: Sci Rep – volume: 12 start-page: 278 year: 2022 article-title: Exploring the magnetohydrodynamic stretched fow of Williamson Maxwell nanofuid through porous matrix over a permeated sheet with bioconvection and activation energy publication-title: Sci Rep – volume: 28 year: 2021 article-title: Heat transfer characteristics of MHD flow of Williamson nanofluid over an exponential permeable stretching curved surface with variable thermal conductivity publication-title: Case Stud Thermal Eng – volume: 382 start-page: 1992 issue: 30 year: 2018 end-page: 2002 article-title: Modern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transport publication-title: Phys Lett A – volume: 116 year: 2020 article-title: Comparative study on heat transfer in CNTs‐water nanofluid over a curved surface publication-title: Int Commun Heat Mass Transf – volume: 501 start-page: 304 year: 2017 end-page: 310 article-title: Impact of viscosity variation and micro rotation on oblique transport of Cu‐water fluid publication-title: J Colloid Interface Sci – ident: e_1_2_8_3_1 doi: 10.1093/imammb/dqu001 – ident: e_1_2_8_13_1 doi: 10.1016/j.padiff.2021.100064 – ident: e_1_2_8_17_1 doi: 10.1016/j.csite.2022.102048 – ident: e_1_2_8_39_1 doi: 10.1007/s13369-018-3599-y – ident: e_1_2_8_5_1 doi: 10.1016/j.surfin.2021.101107 – ident: e_1_2_8_45_1 – ident: e_1_2_8_29_1 doi: 10.3390/fluids6070260 – ident: e_1_2_8_48_1 doi: 10.1007/s10915-022-01939-z – ident: e_1_2_8_4_1 doi: 10.1098/rstl.1867.0004 – ident: e_1_2_8_23_1 doi: 10.1016/j.csite.2021.101544 – ident: e_1_2_8_36_1 doi: 10.1016/j.icheatmasstransfer.2022.106165 – ident: e_1_2_8_2_1 doi: 10.1063/1.4831795 – ident: e_1_2_8_44_1 doi: 10.1016/j.icheatmasstransfer.2022.105890 – ident: e_1_2_8_40_1 doi: 10.1016/j.aej.2017.03.037 – ident: e_1_2_8_8_1 doi: 10.1016/j.physleta.2018.05.008 – ident: e_1_2_8_21_1 doi: 10.1016/j.icheatmasstransfer.2020.104707 – ident: e_1_2_8_16_1 doi: 10.1038/s41598-021-04581-1 – ident: e_1_2_8_32_1 doi: 10.1177/0954408918821780 – ident: e_1_2_8_10_1 doi: 10.1007/s12043-018-1690-2 – ident: e_1_2_8_18_1 doi: 10.1142/S0217979222501879 – ident: e_1_2_8_7_1 doi: 10.1016/j.jppr.2017.01.002 – ident: e_1_2_8_37_1 doi: 10.1088/0253-6102/70/4/423 – ident: e_1_2_8_43_1 doi: 10.1007/s00466-020-01952-9 – ident: e_1_2_8_47_1 doi: 10.1007/s10409-021-01148-1 – ident: e_1_2_8_11_1 doi: 10.1016/j.surfin.2020.100829 – ident: e_1_2_8_14_1 doi: 10.1016/j.icheatmasstransfer.2020.104973 – ident: e_1_2_8_28_1 doi: 10.1016/j.tsep.2021.100887 – ident: e_1_2_8_12_1 doi: 10.1016/j.surfin.2020.100749 – ident: e_1_2_8_19_1 doi: 10.1615/HeatTransRes.2018025939 – ident: e_1_2_8_33_1 doi: 10.1016/j.jcis.2017.04.060 – ident: e_1_2_8_30_1 doi: 10.1016/j.icheatmasstransfer.2022.106107 – ident: e_1_2_8_49_1 doi: 10.1134/S1810232813040061 – ident: e_1_2_8_41_1 doi: 10.4028/www.scientific.net/DDF.387.428 – ident: e_1_2_8_34_1 doi: 10.1016/j.aej.2017.11.009 – ident: e_1_2_8_6_1 doi: 10.1155/2020/9685482 – ident: e_1_2_8_38_1 doi: 10.1140/epjp/i2018-12180-1 – ident: e_1_2_8_15_1 doi: 10.1016/j.csite.2022.102062 – start-page: 1 year: 2021 ident: e_1_2_8_27_1 article-title: Mixed convective flow of Ag–H2O$$ {H}_2O $$ magnetic nanofluid over a curved surface with volumetric heat generation and temperature‐dependent viscosity publication-title: Heat Transf – ident: e_1_2_8_35_1 doi: 10.1007/s12648-018-1206-4 – ident: e_1_2_8_26_1 doi: 10.1177/16878132221082848 – ident: e_1_2_8_9_1 doi: 10.1016/j.rinp.2018.03.034 – ident: e_1_2_8_24_1 doi: 10.1016/j.csite.2021.101348 – ident: e_1_2_8_42_1 doi: 10.1115/1.4050542 – ident: e_1_2_8_22_1 doi: 10.1038/s41598-020-73142-9 – ident: e_1_2_8_20_1 doi: 10.1016/j.cmpb.2019.105193 – ident: e_1_2_8_46_1 doi: 10.1038/s41598-023-29806-3 – ident: e_1_2_8_25_1 doi: 10.3390/math9090921 – ident: e_1_2_8_31_1 doi: 10.1119/1.1482065  | 
    
| SSID | ssj0009283 | 
    
| Score | 2.462912 | 
    
| Snippet | Maxwell fluid flow over a curved surface with the impacts of nonlinear convection and radiation, temperature‐dependent properties, and magnetic field are... | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1576 | 
    
| SubjectTerms | Contact lenses Convection curved surface Deborah number Flow velocity Fluid flow Heat transfer Machine learning Magnetic field Magnetic fields Magnetic lenses Magnetic properties Maxwell fluid Maxwell fluids Neural networks nonlinear convection nonlinear radiation Nonlinear systems Nonlinearity Parameters Physics PINN Polymers Suction Temperature Temperature dependence Temperature ratio temperature‐dependent properties Thermal conductivity Unsupervised learning Velocity Viscosity  | 
    
| Title | Unsupervised neural networks for Maxwell fluid flow and heat transfer over a curved surface with nonlinear convection and temperature‐dependent properties | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.5298 https://www.proquest.com/docview/3087156086  | 
    
| Volume | 96 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1097-0363 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0009283 issn: 0271-2091 databaseCode: AMVHM dateStart: 20120710 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0271-2091 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0363 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009283 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PSxwxFA-yJz1Uq5ZutSWC1NOuM9nMTHIU6yLiepAuLHgYMpMESpfpMn9UPPUj9AP00_WT-F4y467SQvEyc3kJCe9Pfkne-4WQw1wEnNs4HGi8W-cc73e1Ow4TuKHgQjtNT67i8ym_mEWzNqsSa2E8P8TTgRt6hovX6OAqq46XpKF2rocRk1jnG45it5u6XjJHSeYZOFkSgiHIsOOdDdhx1_D5SrSEl6sg1a0y401y043PJ5d8HzZ1NswfXlA3vm4CW-RNCz7pibeWt2TNFNtkswWitHXzaptsrLAU7pDf06JqFhhTKpBCAkzoo_Dp4xUF0Esn6h7PAKmdN980fH_cUVVoinGe1g4Zm5JirihVNG_KW-imakqrckPxHJgWfjqqpC4J3pVauB6QOKtlff7z81f3YG9NF3iFUCIX7C6Zjs--np4P2kcdBjkgCzFQmsUqYspmOrFgPnGghEwA9RkjwsRYo2IjpQkTobjSgTJhZISMEzAekYggG70jPRiVeU8ohGYRaRaNpGXcaJNFAK9yDi2kBJQY9MlRp-A0bxnP8eGNeeq5mlkKKkhRBX1y8CS58Cwff5HZ72wkbf28SpFPEWvRRdwnn52y_9k-HV9-wf-H_xXcI-sMEJRPaNsnvbpszEdAQHX2ydn6I6liBzc | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VcoAeKC1UXVrASAhOu01cJ7HFCQGrpez2gLpSD0iREztS1VVY5QcQJx6hD8DT8STM2Em3VFRCXJLL2LI1P_48Hn8GeJ7LQIgiDoeGztaFoPNd49JhkjYUQhqn6dlxPJmLo9PodA1e9XdhPD_EZcKNPMPFa3JwSkgfrFhDi4UZRVzJW3BbxLhNIUT0ccUdpbjn4ORJiKagwp55NuAHfcs_16IVwLwKU906M96ET_0IfXnJ-ahtslH-_Rp5439O4T7c6_Ane-0NZgvWbLkNmx0WZZ2n19uwcYWo8AH8nJd1u6SwUqMUcWBiH6WvIK8Z4l42098oDciKRXtm8Pv5K9OlYRTqWePAsa0YlYsyzfK2-oLd1G1V6NwySgWz0s9HV8zVwbvbFq4H4s7qiJ9__bjo3-xt2JJOESqig30I8_G7kzeTYfeuwzBHcCGH2vBYR1wXmUkKtKA40FIlCPyslWFiC6tjq5QNE6mFNoG2YWSlihO0H5nIIDvcgXUcld0FhtFZRoZHh6rgwhqbRYiwcoEtlEKgGAzgZa_hNO9Iz-ntjUXq6Zp5iipISQUDeHYpufREH3-R2e-NJO1cvU6JUpGuo8t4AC-ctm9sn46nb-n_6F8Fn8Kdyclsmk7fH3_Yg7scAZWvb9uH9aZq7WMERE32xBn-bwpQC1g | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dahQxFD7UCmIvWq2Kq1UjiF7tdibNzCR4Ja5L1baIuNALYchMEhCX6TI_tvTKR_ABfDqfxHOSmW4VBfFmcnMSEs5Pvjk5-QLwpJSREC6Nx4bO1oWg813j02GSfiiENF7Th0fp_ly8OU6O1-D5cBcm8ENcJNzIM3y8Jge3S-N2V6yhbmEmCVfyClwViZJUzzd9v-KOUjxwcPIsRlNQ8cA8G_Hdoeeve9EKYF6GqX6fmW3Bx2GGobzk86Rri0l5_ht5438u4QZs9viTvQgGcxPWbLUNWz0WZb2nN9uwcYmo8BZ8n1dNt6Sw0qAUcWDiGFWoIG8Y4l52qM8oDcjcovtk8HtyynRlGIV61npwbGtG5aJMs7Krv-AwTVc7XVpGqWBWhfXomvk6eH_bwo9A3Fk98fOPr9-GN3tbtqRThJroYG_DfPbqw8v9cf-uw7hEcCHH2vBUJ1y7wmQOLSiNtFQZAj9rZZxZZ3VqlbJxJrXQJtI2TqxUaYb2IzMZFXt3YB1nZe8Cw-gsE8OTPeW4sMYWCSKsUmAPpRAoRiN4Nmg4L3vSc3p7Y5EHumaeowpyUsEIHl9ILgPRxx9kdgYjyXtXb3KiVKTr6DIdwVOv7b_2z2cHU2rv_avgI7j2bjrLD14fvb0P1zniqVDetgPrbd3ZB4iH2uKht_ufpGUK3A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+neural+networks+for+Maxwell+fluid+flow+and+heat+transfer+over+a+curved+surface+with+nonlinear+convection+and+temperature%E2%80%90dependent+properties&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Ganga%2C+Sai&rft.au=Uddin%2C+Ziya&rft.au=Asthana%2C+Rishi&rft.date=2024-09-01&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=96&rft.issue=9&rft.spage=1576&rft.epage=1591&rft_id=info:doi/10.1002%2Ffld.5298&rft.externalDBID=10.1002%252Ffld.5298&rft.externalDocID=FLD5298 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |