Unsupervised neural networks for Maxwell fluid flow and heat transfer over a curved surface with nonlinear convection and temperature‐dependent properties

Maxwell fluid flow over a curved surface with the impacts of nonlinear convection and radiation, temperature‐dependent properties, and magnetic field are investigated. The governing equations of the physical system are solved using wavelet based physics informed neural network, a machine learning te...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 96; no. 9; pp. 1576 - 1591
Main Authors Ganga, Sai, Uddin, Ziya, Asthana, Rishi
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.09.2024
Subjects
Online AccessGet full text
ISSN0271-2091
1097-0363
DOI10.1002/fld.5298

Cover

Abstract Maxwell fluid flow over a curved surface with the impacts of nonlinear convection and radiation, temperature‐dependent properties, and magnetic field are investigated. The governing equations of the physical system are solved using wavelet based physics informed neural network, a machine learning technique. This is an unsupervised method, and the solutions have been obtained without knowing the numerical solution to the problem. Given the nonlinearity of the coupled equations, the methodology used is flexible to implement, and the activation function used improves the accuracy of the solution. We approximate the unknown functions using different neural network models and determine the solution by training the network. The special case of the obtained results is examined with the available results in the literature for validation of the proposed methodology. It is observed that the proposed approach gives reliable results for the analyzed problem of study. Further, an analysis of the influence of flow parameters (deborah number, variable thermal conductivity and viscosity parameter, velocity slip parameter, temperature ratio parameter, suction parameter, and convection parameters) on temperature and fluid flow velocity is carried out. It is observed that as the flow parameter Deborah number, velocity slip parameter, and viscosity parameter increase, there is a decline in velocity and an enhancement in temperature. This study of fluid flow over a curved surface has applications in the polymer industry, which plays an important role in the manufacturing of contact lenses. Wavelet‐based physics‐informed neural networks without utilizing any labeled data sets are employed to examine the study of non‐Newtonian Maxwell fluid flow over a curved surface. We have used three different models to approximate different solutions to non‐linear coupled equations that were trained parallely. We have also employed a wavelet activation function for improved accuracy. The proposed method is very flexible to implement in comparison to the existing numerical schemes and gives accurate results for all the flow parameters.
AbstractList Maxwell fluid flow over a curved surface with the impacts of nonlinear convection and radiation, temperature‐dependent properties, and magnetic field are investigated. The governing equations of the physical system are solved using wavelet based physics informed neural network, a machine learning technique. This is an unsupervised method, and the solutions have been obtained without knowing the numerical solution to the problem. Given the nonlinearity of the coupled equations, the methodology used is flexible to implement, and the activation function used improves the accuracy of the solution. We approximate the unknown functions using different neural network models and determine the solution by training the network. The special case of the obtained results is examined with the available results in the literature for validation of the proposed methodology. It is observed that the proposed approach gives reliable results for the analyzed problem of study. Further, an analysis of the influence of flow parameters (deborah number, variable thermal conductivity and viscosity parameter, velocity slip parameter, temperature ratio parameter, suction parameter, and convection parameters) on temperature and fluid flow velocity is carried out. It is observed that as the flow parameter Deborah number, velocity slip parameter, and viscosity parameter increase, there is a decline in velocity and an enhancement in temperature. This study of fluid flow over a curved surface has applications in the polymer industry, which plays an important role in the manufacturing of contact lenses. Wavelet‐based physics‐informed neural networks without utilizing any labeled data sets are employed to examine the study of non‐Newtonian Maxwell fluid flow over a curved surface. We have used three different models to approximate different solutions to non‐linear coupled equations that were trained parallely. We have also employed a wavelet activation function for improved accuracy. The proposed method is very flexible to implement in comparison to the existing numerical schemes and gives accurate results for all the flow parameters.
Maxwell fluid flow over a curved surface with the impacts of nonlinear convection and radiation, temperature‐dependent properties, and magnetic field are investigated. The governing equations of the physical system are solved using wavelet based physics informed neural network, a machine learning technique. This is an unsupervised method, and the solutions have been obtained without knowing the numerical solution to the problem. Given the nonlinearity of the coupled equations, the methodology used is flexible to implement, and the activation function used improves the accuracy of the solution. We approximate the unknown functions using different neural network models and determine the solution by training the network. The special case of the obtained results is examined with the available results in the literature for validation of the proposed methodology. It is observed that the proposed approach gives reliable results for the analyzed problem of study. Further, an analysis of the influence of flow parameters (deborah number, variable thermal conductivity and viscosity parameter, velocity slip parameter, temperature ratio parameter, suction parameter, and convection parameters) on temperature and fluid flow velocity is carried out. It is observed that as the flow parameter Deborah number, velocity slip parameter, and viscosity parameter increase, there is a decline in velocity and an enhancement in temperature. This study of fluid flow over a curved surface has applications in the polymer industry, which plays an important role in the manufacturing of contact lenses.
Author Ganga, Sai
Asthana, Rishi
Uddin, Ziya
Author_xml – sequence: 1
  givenname: Sai
  orcidid: 0000-0003-0967-4012
  surname: Ganga
  fullname: Ganga, Sai
  email: sai.ganga.21pd@bmu.edu.in
  organization: BML Munjal University
– sequence: 2
  givenname: Ziya
  surname: Uddin
  fullname: Uddin, Ziya
  email: ziya.uddin@bmu.edu.in
  organization: BML Munjal University
– sequence: 3
  givenname: Rishi
  surname: Asthana
  fullname: Asthana, Rishi
  organization: BML Munjal University
BookMark eNp1kE1uFDEQha0oSEwCEkewxCabHmw307aXUX4AaRAbsm5V7LLixLEH2z2d7DgCB-B0nARPhlUUNlVS6av3qt4ROYwpIiHvOFtyxsQHF-xyJbQ6IAvOtOxYP_SHZMGE5J1gmr8mR6XcMsa0UP2C_L6KZdpg3vqClkacMoTW6pzyXaEuZfoVHmYMgbowedtqmilES28QKq0ZYnGYadq2AtRMedtkypQdGKSzrze03Rd8RMjUpLhFU32KTwoV75sx1Cnjn5-_LG4wWoyVbnJq8-qxvCGvHISCb__1Y3J1efH97HO3_vbpy9npujNC96oDKwZYCXDXVjpjYGCgtORcICou0SEMqDVyqeAjWAbIV6j0IHuulFTsuj8m7_e6zfrHhKWOt2nKsVmOPVOSrwamhkad7CmTUykZ3bjJ_h7y48jZuMt-bNmPu-wbunyGGl9h93lLzIeXFrr9wuwDPv5XeLxcnz_xfwEkJpzL
CitedBy_id crossref_primary_10_1016_j_cnsns_2024_108378
crossref_primary_10_1016_j_ijthermalsci_2025_109765
Cites_doi 10.1093/imammb/dqu001
10.1016/j.padiff.2021.100064
10.1016/j.csite.2022.102048
10.1007/s13369-018-3599-y
10.1016/j.surfin.2021.101107
10.3390/fluids6070260
10.1007/s10915-022-01939-z
10.1098/rstl.1867.0004
10.1016/j.csite.2021.101544
10.1016/j.icheatmasstransfer.2022.106165
10.1063/1.4831795
10.1016/j.icheatmasstransfer.2022.105890
10.1016/j.aej.2017.03.037
10.1016/j.physleta.2018.05.008
10.1016/j.icheatmasstransfer.2020.104707
10.1038/s41598-021-04581-1
10.1177/0954408918821780
10.1007/s12043-018-1690-2
10.1142/S0217979222501879
10.1016/j.jppr.2017.01.002
10.1088/0253-6102/70/4/423
10.1007/s00466-020-01952-9
10.1007/s10409-021-01148-1
10.1016/j.surfin.2020.100829
10.1016/j.icheatmasstransfer.2020.104973
10.1016/j.tsep.2021.100887
10.1016/j.surfin.2020.100749
10.1615/HeatTransRes.2018025939
10.1016/j.jcis.2017.04.060
10.1016/j.icheatmasstransfer.2022.106107
10.1134/S1810232813040061
10.4028/www.scientific.net/DDF.387.428
10.1016/j.aej.2017.11.009
10.1155/2020/9685482
10.1140/epjp/i2018-12180-1
10.1016/j.csite.2022.102062
10.1007/s12648-018-1206-4
10.1177/16878132221082848
10.1016/j.rinp.2018.03.034
10.1016/j.csite.2021.101348
10.1115/1.4050542
10.1038/s41598-020-73142-9
10.1016/j.cmpb.2019.105193
10.1038/s41598-023-29806-3
10.3390/math9090921
10.1119/1.1482065
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/fld.5298
DatabaseName CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1097-0363
EndPage 1591
ExternalDocumentID 10_1002_fld_5298
FLD5298
Genre researchArticle
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~A~
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-ad26a52afbd7fcca60a897112ee817efea6e99e178a4ad0ae15e89673188780b3
IEDL.DBID DR2
ISSN 0271-2091
IngestDate Fri Jul 25 12:29:32 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Wed Oct 01 02:49:48 EDT 2025
Wed Jan 22 17:17:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-ad26a52afbd7fcca60a897112ee817efea6e99e178a4ad0ae15e89673188780b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0967-4012
PQID 3087156086
PQPubID 996375
PageCount 16
ParticipantIDs proquest_journals_3087156086
crossref_primary_10_1002_fld_5298
crossref_citationtrail_10_1002_fld_5298
wiley_primary_10_1002_fld_5298_FLD5298
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2021; 24
2017; 6
2021; 27
2021; 6
2022; 132
2023; 13
2013; 25
2019; 92
2021; 4
2018; 382
2021; 23
2021; 67
2021; 22
2019; 50
2022; 92
2013; 22
2021; 28
2018; 387
2015; 32
1867; 157
2021; 120
2020; 189
2020; 10
2021; 143
2022; 135
2018; 9
2018; 133
2021; 37
2020; 2020
2022
2021
2019; 44
2022; 34
2022; 12
2018; 92
2018; 70
2020; 116
2022; 36
2022; 14
2002; 70
2020; 21
2019; 233
2017; 501
2018; 57
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_48_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
Pandey AK (e_1_2_8_27_1) 2021
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – start-page: 1
  year: 2021
  end-page: 20
  article-title: Mixed convective flow of Ag– magnetic nanofluid over a curved surface with volumetric heat generation and temperature‐dependent viscosity
  publication-title: Heat Transf
– volume: 157
  start-page: 49
  year: 1867
  end-page: 88
  article-title: On the dynamical theory of gases
  publication-title: Phil Trans R Soc Lond
– volume: 34
  year: 2022
  article-title: Bioconvection attribution for effective thermal transportation of upper convicted Maxwell nanofluid flow due to an extending cylindrical surface
  publication-title: Case Stud Thermal Eng
– volume: 34
  year: 2022
  article-title: Effects of Cattaneo‐Christov heat flux and nonlinear thermal radiation on MHD Maxwell nanofluid with Arrhenius activation energy
  publication-title: Case Stud Thermal Eng
– volume: 135
  year: 2022
  article-title: Slanting transport of hybrid (MWCNTs‐SWCNTs/H2O) nanofluid upon a Riga plate with temperature dependent viscosity and thermal jump condition
  publication-title: Int Commun Heat Mass Transf
– volume: 27
  year: 2021
  article-title: Numerical computation of melting heat transfer in nonlinear radiative flow of hybrid nanofluids due to permeable stretching curved surface
  publication-title: Case Stud Thermal Eng
– volume: 2020
  year: 2020
  article-title: Analysis of MHD fluids around a linearly stretching sheet in porous media with thermophoresis, radiation, and chemical reaction, mathematical problems in engineering
  publication-title: Math Prob Eng
– volume: 387
  start-page: 428
  year: 2018
  end-page: 441
  article-title: Non‐linear convection in chemically reacting fluid with an induced magnetic field across a vertical porous plate in the presence of heat source/sink
  publication-title: Defect Diff Forum
– volume: 25
  year: 2013
  article-title: Dynamics of a pre‐lens tear film after a blink: model, evolution, and rupture
  publication-title: Phys Fluids
– volume: 189
  year: 2020
  article-title: Inspection of hybrid based nanofluid flow over a curved surface
  publication-title: Comput Methods Programs Biomed
– volume: 92
  start-page: 17
  year: 2019
  article-title: Heat transfer enhancement for Maxwell nanofluid flow subject to convective heat transport
  publication-title: Pramana J Phys
– volume: 57
  start-page: 1927
  year: 2018
  end-page: 1935
  article-title: Nonlinear convection in nano Maxwell fluid with nonlinear thermal radiation: a three‐dimensional study
  publication-title: Alex Eng J
– volume: 32
  start-page: 209
  year: 2015
  end-page: 238
  article-title: Modelling the evaporation of a tear film over a contact lens
  publication-title: Math Med Biol
– volume: 57
  start-page: 3189
  issue: 4
  year: 2018
  end-page: 3197
  article-title: Combined impact of viscosity variation and Lorentz force on slip flow of radiative nanofluid towards a vertical stretching surface with convective heat and mass transfer
  publication-title: Alex Eng J
– volume: 22
  year: 2021
  article-title: Transient flow of Maxwell Nanofluid over a shrinking surface: numerical solutions and stability analysis
  publication-title: Surf Interf
– volume: 21
  year: 2020
  article-title: Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy
  publication-title: Surf Interf
– volume: 37
  start-page: 1727
  year: 2021
  end-page: 1738
  article-title: George Em Karniadakis, physics‐informed neural networks (PINNs) for fluid mechanics: a review
  publication-title: Acta Mech Sin
– volume: 50
  start-page: 581
  issue: 6
  year: 2019
  end-page: 603
  article-title: Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with nonuniform heat source/sink
  publication-title: Heat Transf Res
– volume: 133
  issue: 9
  year: 2018
  article-title: Velocity slip in mixed convective oblique transport of titanium oxide/water (nano‐polymer) with temperature‐dependent viscosity
  publication-title: Eur Phys J Plus
– volume: 120
  year: 2021
  article-title: Numerical investigation of MHD impact on Maxwell Nanofluid
  publication-title: Int Commun Heat Mass Transf
– volume: 70
  start-page: 781
  year: 2002
  article-title: An introduction to magnetohydrodynamics
  publication-title: Am J Phys
– volume: 14
  start-page: 1
  issue: 3
  year: 2022
  end-page: 10
  article-title: Mixed convection and thermally radiative hybrid nanofluid flow over a curved surface
  publication-title: Adv Mech Eng
– volume: 22
  start-page: 337
  issue: 4
  year: 2013
  end-page: 345
  article-title: Heat transfer analysis for stretching flow over a curved surface with magnetic field
  publication-title: J Eng Thermophys
– volume: 6
  start-page: 31
  issue: 1
  year: 2017
  end-page: 40
  article-title: Unsteady flow of a Maxwell nanofluid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects
  publication-title: Propul Power Res
– volume: 70
  start-page: 423
  issue: 4
  year: 2018
  end-page: 429
  article-title: Impact of internal heat source on mixed convective transverse transport of Viscoplastic material under viscosity variation
  publication-title: Commun Theor Phys
– volume: 24
  year: 2021
  article-title: Design of intelligent computing networks for numerical treatment of thin film flow of Maxwell nanofluid over a stretched and rotating surface
  publication-title: Surf Interf
– volume: 92
  start-page: 88
  year: 2022
  article-title: Scientific machine learning through physics‐informed neural networks: where we are and What's next
  publication-title: J Sci Comput
– volume: 9
  start-page: 851
  year: 2018
  end-page: 857
  article-title: Impact of heat source/sink on radiative heat transfer to Maxwell nanofluid subject to revised mass flux condition
  publication-title: Result Phys
– volume: 6
  start-page: 260
  year: 2021
  article-title: Numerical investigation of mixed convective Williamson fluid flow over an exponentially stretching permeable curved surface
  publication-title: Fluids
– volume: 10
  year: 2020
  article-title: Nanofuid fow with autocatalytic chemical reaction over a curved surface with nonlinear thermal radiation and slip condition
  publication-title: Sci Rep
– volume: 67
  start-page: 619
  year: 2021
  end-page: 635
  article-title: Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics‐informed neural networks
  publication-title: Comput Mech
– volume: 135
  year: 2022
  article-title: Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip
  publication-title: Int Commun Heat Mass Transf
– volume: 4
  year: 2021
  article-title: Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect
  publication-title: Partial Diff Equ Appl Math
– volume: 233
  start-page: 1013
  issue: 5
  year: 2019
  end-page: 1023
  article-title: Crosswise stream of methanol–iron oxide (CH3OH–Fe3O4) with temperature‐dependent viscosity and suction/injection effects
  publication-title: Proc Inst Mech Eng Pt E J Process Mech Eng
– volume: 132
  year: 2022
  article-title: On the application of physics informed neural networks (PINN) to solve boundary layer thermal‐fluid problems
  publication-title: Int Commun Heat Mass Transf
– year: 2022
– volume: 36
  issue: 27
  year: 2022
  article-title: Heat and mass transfer aspects of a transient bio‐convective Maxwell nanofluid subject to convective boundary conditions with curved surface
  publication-title: Int J Mod Phys
– volume: 143
  year: 2021
  article-title: Physics‐informed neural networks for heat transfer problems
  publication-title: J Heat Transfer
– volume: 9
  start-page: 921
  year: 2021
  article-title: Magnetic field effect on sisko fluid flow containing gold nanoparticles through a porous curved surface in the presence of radiation and partial slip
  publication-title: Mathematics
– volume: 23
  year: 2021
  article-title: Thermal transport of radiative Williamson fluid over stretchable curved surface
  publication-title: Thermal Sci Eng Progr
– volume: 44
  start-page: 1525
  year: 2019
  end-page: 1541
  article-title: Thermal slip in oblique radiative nano‐polymer gel transport with temperature‐dependent viscosity: solar collector nanomaterial coating manufacturing simulation
  publication-title: Arab J Sci Eng
– volume: 92
  start-page: 1271
  issue: 10
  year: 2018
  end-page: 1280
  article-title: Transverse transport of Fe3O4–H2O with viscosity variation under pure internal heating
  publication-title: India J Phys
– volume: 13
  start-page: 2882
  year: 2023
  article-title: Wavelets based physics informed neural networks to solve non‐linear differential equations
  publication-title: Sci Rep
– volume: 12
  start-page: 278
  year: 2022
  article-title: Exploring the magnetohydrodynamic stretched fow of Williamson Maxwell nanofuid through porous matrix over a permeated sheet with bioconvection and activation energy
  publication-title: Sci Rep
– volume: 28
  year: 2021
  article-title: Heat transfer characteristics of MHD flow of Williamson nanofluid over an exponential permeable stretching curved surface with variable thermal conductivity
  publication-title: Case Stud Thermal Eng
– volume: 382
  start-page: 1992
  issue: 30
  year: 2018
  end-page: 2002
  article-title: Modern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transport
  publication-title: Phys Lett A
– volume: 116
  year: 2020
  article-title: Comparative study on heat transfer in CNTs‐water nanofluid over a curved surface
  publication-title: Int Commun Heat Mass Transf
– volume: 501
  start-page: 304
  year: 2017
  end-page: 310
  article-title: Impact of viscosity variation and micro rotation on oblique transport of Cu‐water fluid
  publication-title: J Colloid Interface Sci
– ident: e_1_2_8_3_1
  doi: 10.1093/imammb/dqu001
– ident: e_1_2_8_13_1
  doi: 10.1016/j.padiff.2021.100064
– ident: e_1_2_8_17_1
  doi: 10.1016/j.csite.2022.102048
– ident: e_1_2_8_39_1
  doi: 10.1007/s13369-018-3599-y
– ident: e_1_2_8_5_1
  doi: 10.1016/j.surfin.2021.101107
– ident: e_1_2_8_45_1
– ident: e_1_2_8_29_1
  doi: 10.3390/fluids6070260
– ident: e_1_2_8_48_1
  doi: 10.1007/s10915-022-01939-z
– ident: e_1_2_8_4_1
  doi: 10.1098/rstl.1867.0004
– ident: e_1_2_8_23_1
  doi: 10.1016/j.csite.2021.101544
– ident: e_1_2_8_36_1
  doi: 10.1016/j.icheatmasstransfer.2022.106165
– ident: e_1_2_8_2_1
  doi: 10.1063/1.4831795
– ident: e_1_2_8_44_1
  doi: 10.1016/j.icheatmasstransfer.2022.105890
– ident: e_1_2_8_40_1
  doi: 10.1016/j.aej.2017.03.037
– ident: e_1_2_8_8_1
  doi: 10.1016/j.physleta.2018.05.008
– ident: e_1_2_8_21_1
  doi: 10.1016/j.icheatmasstransfer.2020.104707
– ident: e_1_2_8_16_1
  doi: 10.1038/s41598-021-04581-1
– ident: e_1_2_8_32_1
  doi: 10.1177/0954408918821780
– ident: e_1_2_8_10_1
  doi: 10.1007/s12043-018-1690-2
– ident: e_1_2_8_18_1
  doi: 10.1142/S0217979222501879
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jppr.2017.01.002
– ident: e_1_2_8_37_1
  doi: 10.1088/0253-6102/70/4/423
– ident: e_1_2_8_43_1
  doi: 10.1007/s00466-020-01952-9
– ident: e_1_2_8_47_1
  doi: 10.1007/s10409-021-01148-1
– ident: e_1_2_8_11_1
  doi: 10.1016/j.surfin.2020.100829
– ident: e_1_2_8_14_1
  doi: 10.1016/j.icheatmasstransfer.2020.104973
– ident: e_1_2_8_28_1
  doi: 10.1016/j.tsep.2021.100887
– ident: e_1_2_8_12_1
  doi: 10.1016/j.surfin.2020.100749
– ident: e_1_2_8_19_1
  doi: 10.1615/HeatTransRes.2018025939
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jcis.2017.04.060
– ident: e_1_2_8_30_1
  doi: 10.1016/j.icheatmasstransfer.2022.106107
– ident: e_1_2_8_49_1
  doi: 10.1134/S1810232813040061
– ident: e_1_2_8_41_1
  doi: 10.4028/www.scientific.net/DDF.387.428
– ident: e_1_2_8_34_1
  doi: 10.1016/j.aej.2017.11.009
– ident: e_1_2_8_6_1
  doi: 10.1155/2020/9685482
– ident: e_1_2_8_38_1
  doi: 10.1140/epjp/i2018-12180-1
– ident: e_1_2_8_15_1
  doi: 10.1016/j.csite.2022.102062
– start-page: 1
  year: 2021
  ident: e_1_2_8_27_1
  article-title: Mixed convective flow of Ag–H2O$$ {H}_2O $$ magnetic nanofluid over a curved surface with volumetric heat generation and temperature‐dependent viscosity
  publication-title: Heat Transf
– ident: e_1_2_8_35_1
  doi: 10.1007/s12648-018-1206-4
– ident: e_1_2_8_26_1
  doi: 10.1177/16878132221082848
– ident: e_1_2_8_9_1
  doi: 10.1016/j.rinp.2018.03.034
– ident: e_1_2_8_24_1
  doi: 10.1016/j.csite.2021.101348
– ident: e_1_2_8_42_1
  doi: 10.1115/1.4050542
– ident: e_1_2_8_22_1
  doi: 10.1038/s41598-020-73142-9
– ident: e_1_2_8_20_1
  doi: 10.1016/j.cmpb.2019.105193
– ident: e_1_2_8_46_1
  doi: 10.1038/s41598-023-29806-3
– ident: e_1_2_8_25_1
  doi: 10.3390/math9090921
– ident: e_1_2_8_31_1
  doi: 10.1119/1.1482065
SSID ssj0009283
Score 2.462912
Snippet Maxwell fluid flow over a curved surface with the impacts of nonlinear convection and radiation, temperature‐dependent properties, and magnetic field are...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1576
SubjectTerms Contact lenses
Convection
curved surface
Deborah number
Flow velocity
Fluid flow
Heat transfer
Machine learning
Magnetic field
Magnetic fields
Magnetic lenses
Magnetic properties
Maxwell fluid
Maxwell fluids
Neural networks
nonlinear convection
nonlinear radiation
Nonlinear systems
Nonlinearity
Parameters
Physics
PINN
Polymers
Suction
Temperature
Temperature dependence
Temperature ratio
temperature‐dependent properties
Thermal conductivity
Unsupervised learning
Velocity
Viscosity
Title Unsupervised neural networks for Maxwell fluid flow and heat transfer over a curved surface with nonlinear convection and temperature‐dependent properties
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.5298
https://www.proquest.com/docview/3087156086
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: AMVHM
  dateStart: 20120710
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0271-2091
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PSxwxFA-yJz1Uq5ZutSWC1NOuM9nMTHIU6yLiepAuLHgYMpMESpfpMn9UPPUj9AP00_WT-F4y467SQvEyc3kJCe9Pfkne-4WQw1wEnNs4HGi8W-cc73e1Ow4TuKHgQjtNT67i8ym_mEWzNqsSa2E8P8TTgRt6hovX6OAqq46XpKF2rocRk1jnG45it5u6XjJHSeYZOFkSgiHIsOOdDdhx1_D5SrSEl6sg1a0y401y043PJ5d8HzZ1NswfXlA3vm4CW-RNCz7pibeWt2TNFNtkswWitHXzaptsrLAU7pDf06JqFhhTKpBCAkzoo_Dp4xUF0Esn6h7PAKmdN980fH_cUVVoinGe1g4Zm5JirihVNG_KW-imakqrckPxHJgWfjqqpC4J3pVauB6QOKtlff7z81f3YG9NF3iFUCIX7C6Zjs--np4P2kcdBjkgCzFQmsUqYspmOrFgPnGghEwA9RkjwsRYo2IjpQkTobjSgTJhZISMEzAekYggG70jPRiVeU8ohGYRaRaNpGXcaJNFAK9yDi2kBJQY9MlRp-A0bxnP8eGNeeq5mlkKKkhRBX1y8CS58Cwff5HZ72wkbf28SpFPEWvRRdwnn52y_9k-HV9-wf-H_xXcI-sMEJRPaNsnvbpszEdAQHX2ydn6I6liBzc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VcoAeKC1UXVrASAhOu01cJ7HFCQGrpez2gLpSD0iREztS1VVY5QcQJx6hD8DT8STM2Em3VFRCXJLL2LI1P_48Hn8GeJ7LQIgiDoeGztaFoPNd49JhkjYUQhqn6dlxPJmLo9PodA1e9XdhPD_EZcKNPMPFa3JwSkgfrFhDi4UZRVzJW3BbxLhNIUT0ccUdpbjn4ORJiKagwp55NuAHfcs_16IVwLwKU906M96ET_0IfXnJ-ahtslH-_Rp5439O4T7c6_Ane-0NZgvWbLkNmx0WZZ2n19uwcYWo8AH8nJd1u6SwUqMUcWBiH6WvIK8Z4l42098oDciKRXtm8Pv5K9OlYRTqWePAsa0YlYsyzfK2-oLd1G1V6NwySgWz0s9HV8zVwbvbFq4H4s7qiJ9__bjo3-xt2JJOESqig30I8_G7kzeTYfeuwzBHcCGH2vBYR1wXmUkKtKA40FIlCPyslWFiC6tjq5QNE6mFNoG2YWSlihO0H5nIIDvcgXUcld0FhtFZRoZHh6rgwhqbRYiwcoEtlEKgGAzgZa_hNO9Iz-ntjUXq6Zp5iipISQUDeHYpufREH3-R2e-NJO1cvU6JUpGuo8t4AC-ctm9sn46nb-n_6F8Fn8Kdyclsmk7fH3_Yg7scAZWvb9uH9aZq7WMERE32xBn-bwpQC1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dahQxFD7UCmIvWq2Kq1UjiF7tdibNzCR4Ja5L1baIuNALYchMEhCX6TI_tvTKR_ABfDqfxHOSmW4VBfFmcnMSEs5Pvjk5-QLwpJSREC6Nx4bO1oWg813j02GSfiiENF7Th0fp_ly8OU6O1-D5cBcm8ENcJNzIM3y8Jge3S-N2V6yhbmEmCVfyClwViZJUzzd9v-KOUjxwcPIsRlNQ8cA8G_Hdoeeve9EKYF6GqX6fmW3Bx2GGobzk86Rri0l5_ht5438u4QZs9viTvQgGcxPWbLUNWz0WZb2nN9uwcYmo8BZ8n1dNt6Sw0qAUcWDiGFWoIG8Y4l52qM8oDcjcovtk8HtyynRlGIV61npwbGtG5aJMs7Krv-AwTVc7XVpGqWBWhfXomvk6eH_bwo9A3Fk98fOPr9-GN3tbtqRThJroYG_DfPbqw8v9cf-uw7hEcCHH2vBUJ1y7wmQOLSiNtFQZAj9rZZxZZ3VqlbJxJrXQJtI2TqxUaYb2IzMZFXt3YB1nZe8Cw-gsE8OTPeW4sMYWCSKsUmAPpRAoRiN4Nmg4L3vSc3p7Y5EHumaeowpyUsEIHl9ILgPRxx9kdgYjyXtXb3KiVKTr6DIdwVOv7b_2z2cHU2rv_avgI7j2bjrLD14fvb0P1zniqVDetgPrbd3ZB4iH2uKht_ufpGUK3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+neural+networks+for+Maxwell+fluid+flow+and+heat+transfer+over+a+curved+surface+with+nonlinear+convection+and+temperature%E2%80%90dependent+properties&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Ganga%2C+Sai&rft.au=Uddin%2C+Ziya&rft.au=Asthana%2C+Rishi&rft.date=2024-09-01&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=96&rft.issue=9&rft.spage=1576&rft.epage=1591&rft_id=info:doi/10.1002%2Ffld.5298&rft.externalDBID=10.1002%252Ffld.5298&rft.externalDocID=FLD5298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon