A self‐learning artificial bee colony algorithm based on reinforcement learning for a flexible job‐shop scheduling problem

Summary The flexible job‐shop scheduling problem (FJSP) is currently one of the most critical issues in process planning and manufacturing. The FJSP is studied with the goal of achieving the shortest makespan. Recently, some intelligent optimization algorithms have been applied to solve FJSP, but th...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 34; no. 4
Main Authors Long, Xiaojun, Zhang, Jingtao, Qi, Xing, Xu, Wenlong, Jin, Tianguo, Zhou, Kai
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 15.02.2022
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.6658

Cover

Abstract Summary The flexible job‐shop scheduling problem (FJSP) is currently one of the most critical issues in process planning and manufacturing. The FJSP is studied with the goal of achieving the shortest makespan. Recently, some intelligent optimization algorithms have been applied to solve FJSP, but the key parameters of intelligent optimization algorithms cannot be dynamically adjusted during the solution process. Thus, the solutions cannot best meet the needs of production. To solve the problems of slow convergence speed and reaching a local optimum with the artificial bee colony (ABC) algorithm, an improved self‐learning artificial bee colony algorithm (SLABC) based on reinforcement learning (RL) is proposed. In the SLABC algorithm, the number of updated dimensions of the ABC algorithm can be intelligently selected according to the RL algorithm, which improves the convergence speed and accuracy. In addition, a self‐learning model of the SLABC algorithm is constructed and analyzed using Q‐learning as the learning method of the algorithm, and the state determination and reward methods of the RL algorithm are designed and included in the environment of the artificial bee colony algorithm. Finally, this article verifies that SLABC has excellent convergence speed and accuracy in solving FJSP through Brandimarte instances.
AbstractList The flexible job‐shop scheduling problem (FJSP) is currently one of the most critical issues in process planning and manufacturing. The FJSP is studied with the goal of achieving the shortest makespan. Recently, some intelligent optimization algorithms have been applied to solve FJSP, but the key parameters of intelligent optimization algorithms cannot be dynamically adjusted during the solution process. Thus, the solutions cannot best meet the needs of production. To solve the problems of slow convergence speed and reaching a local optimum with the artificial bee colony (ABC) algorithm, an improved self‐learning artificial bee colony algorithm (SLABC) based on reinforcement learning (RL) is proposed. In the SLABC algorithm, the number of updated dimensions of the ABC algorithm can be intelligently selected according to the RL algorithm, which improves the convergence speed and accuracy. In addition, a self‐learning model of the SLABC algorithm is constructed and analyzed using Q‐learning as the learning method of the algorithm, and the state determination and reward methods of the RL algorithm are designed and included in the environment of the artificial bee colony algorithm. Finally, this article verifies that SLABC has excellent convergence speed and accuracy in solving FJSP through Brandimarte instances.
Summary The flexible job‐shop scheduling problem (FJSP) is currently one of the most critical issues in process planning and manufacturing. The FJSP is studied with the goal of achieving the shortest makespan. Recently, some intelligent optimization algorithms have been applied to solve FJSP, but the key parameters of intelligent optimization algorithms cannot be dynamically adjusted during the solution process. Thus, the solutions cannot best meet the needs of production. To solve the problems of slow convergence speed and reaching a local optimum with the artificial bee colony (ABC) algorithm, an improved self‐learning artificial bee colony algorithm (SLABC) based on reinforcement learning (RL) is proposed. In the SLABC algorithm, the number of updated dimensions of the ABC algorithm can be intelligently selected according to the RL algorithm, which improves the convergence speed and accuracy. In addition, a self‐learning model of the SLABC algorithm is constructed and analyzed using Q‐learning as the learning method of the algorithm, and the state determination and reward methods of the RL algorithm are designed and included in the environment of the artificial bee colony algorithm. Finally, this article verifies that SLABC has excellent convergence speed and accuracy in solving FJSP through Brandimarte instances.
Author Qi, Xing
Xu, Wenlong
Zhou, Kai
Jin, Tianguo
Long, Xiaojun
Zhang, Jingtao
Author_xml – sequence: 1
  givenname: Xiaojun
  orcidid: 0000-0001-9265-6960
  surname: Long
  fullname: Long, Xiaojun
  organization: Shandong Agricultural University
– sequence: 2
  givenname: Jingtao
  surname: Zhang
  fullname: Zhang, Jingtao
  organization: Shandong Agricultural University
– sequence: 3
  givenname: Xing
  surname: Qi
  fullname: Qi, Xing
  organization: Shandong Agricultural University
– sequence: 4
  givenname: Wenlong
  surname: Xu
  fullname: Xu, Wenlong
  organization: Shandong Agricultural University
– sequence: 5
  givenname: Tianguo
  surname: Jin
  fullname: Jin, Tianguo
  organization: Harbin Institute of Technology
– sequence: 6
  givenname: Kai
  orcidid: 0000-0001-9660-5423
  surname: Zhou
  fullname: Zhou, Kai
  email: zhoukai2017@sdau.edu.cn
  organization: Shandong Agricultural University
BookMark eNp1kM1KAzEUhYNUsK2CjxBw42ZqfmYyM8tS6g8UdKHrIZO5aVPSpCZTtBvxEXxGn8SplS5EV_dy73fOgTNAPecdIHROyYgSwq7UGkZCZMUR6tOMs4QInvYOOxMnaBDjkhBKCad99DbGEaz-fP-wIIMzbo5laI02ykiLawCsvPVui6Wd-2DaxQrXMkKDvcMBjNM-KFiBa_FB352wxNrCq6kt4KWvO_e48Gsc1QKajd1B6-C75-oUHWtpI5z9zCF6up4-Tm6T2f3N3WQ8SxQreZFQ3hRNCjSTmkFBa9EIVeRQZrnWgkJa5hwY12nGcyVVqWvKMkYIlyzTtYaMD9HF3rfLfd5AbKul3wTXRVZMMFrkBS1FR13uKRV8jAF0tQ5mJcO2oqTatVt17Va7djt09AtVppWt8a4N0ti_BMle8GIsbP81riYP02_-CzQqkM0
CitedBy_id crossref_primary_10_3390_a15030088
crossref_primary_10_1016_j_asoc_2022_109717
crossref_primary_10_1016_j_cie_2023_109423
crossref_primary_10_1049_cim2_12099
crossref_primary_10_3233_JIFS_224624
crossref_primary_10_3390_pr10030571
crossref_primary_10_1007_s10845_023_02227_9
crossref_primary_10_1007_s40747_024_01772_x
crossref_primary_10_1016_j_cie_2022_108786
crossref_primary_10_48175_IJARSCT_13692
crossref_primary_10_1016_j_cor_2024_106929
crossref_primary_10_1016_j_engappai_2024_109557
crossref_primary_10_46740_alku_1390397
crossref_primary_10_3390_machines10030210
crossref_primary_10_1016_j_engappai_2024_109851
crossref_primary_10_1016_j_eswa_2023_121723
crossref_primary_10_3390_electronics12061358
crossref_primary_10_1016_j_compeleceng_2024_110044
crossref_primary_10_1016_j_eswa_2023_121303
crossref_primary_10_3233_JIFS_236981
crossref_primary_10_1016_j_compeleceng_2024_109780
Cites_doi 10.15888/j.cnki.csa.007579
10.1007/s10489-018-1160-z
10.13196/j.cims.2015.02.023
10.1016/j.knosys.2019.05.020
10.13462/j.cnki.mmtamt.2018.05.042
10.1007/s00521-017-2880-4
10.13195/j.kzyjc.2018.0336
10.1007/s10898-007-9149-x
10.1109/TSMCC.2002.1009117
10.1007/s10489-016-0786-y
10.1002/cpe.4405
10.1002/cpe.5654
10.1016/j.knosys.2012.04.001
10.3969/j.issn.1004-132X.2020.23.004
10.1016/j.procs.2013.09.245
10.1016/j.asoc.2007.05.007
10.1080/00207543.2018.1524165
10.1007/s10489-017-0993-1
10.3969/j.issn.1005-152X.2010.12.023
10.1109/ACCESS.2018.2833552
10.1016/j.cie.2021.107194
10.16731/j.cnki.1671-3133.2021.07.001
10.1016/j.cie.2020.106778
10.15888/j.cnki.csa.007196
10.1007/978-3-642-38715-9_46
10.1007/s10489-008-0134-y
10.13196/j.cims.2011.07.153.lixl.020
10.19344/j.cnki.issn1671-5276.2021.04.002
10.11772/j.issn.1001-9081.2017.02.0523
10.14081/j.cnki.hgdxb.2020.04.003
10.1007/BF02023073
10.3969/j.issn.1001-2265.2004.02.012
10.1002/cpe.6281
10.1007/s00366-018-0676-5
10.1007/s00521-015-2070-1
10.1109/TNN.1998.712192
10.3969/j.issn.1001-3695.2013.08.041
10.1016/j.procs.2017.08.174
10.1016/j.cie.2017.05.026
10.1023/B:APIN.0000027769.48098.91
10.1007/BF02973453
10.7641/CTA.2019.90544
10.1155/2020/9134695
10.1016/j.cor.2007.02.014
10.1002/cpe.5137
10.3969/j.issn.1004-132X.2020.11.011
10.1002/cpe.2870
10.3969/j.issn.1001-3695.2016.12.014
10.1109/TNNLS.2018.2832025
10.1016/j.rcim.2006.06.004
10.19734/j.issn.1001-3695.2017.11.0993
10.13195/j.kzyjc.2014.1949
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.6658
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_6658
CPE6658
Genre article
GrantInformation_xml – fundername: National Defense Basic Scientific Research Program of China
  funderid: JCKY2016204A502
– fundername: China Postdoctoral Science Foundation
  funderid: 2019M662410
– fundername: Agriculture Research System of China
  funderid: CARS‐24‐D‐01
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-13d8d4e15af2e81b6d6c87e957ff61e4973e23f4537cac9fb1252003a25fbfe53
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Wed Aug 13 07:01:07 EDT 2025
Wed Oct 01 00:59:50 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Wed Jan 22 16:27:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-13d8d4e15af2e81b6d6c87e957ff61e4973e23f4537cac9fb1252003a25fbfe53
Notes Funding information
Agriculture Research System of China, CARS‐24‐D‐01; China Postdoctoral Science Foundation, 2019M662410; National Defense Basic Scientific Research Program of China, JCKY2016204A502
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9660-5423
0000-0001-9265-6960
PQID 2621878196
PQPubID 2045170
PageCount 20
ParticipantIDs proquest_journals_2621878196
crossref_primary_10_1002_cpe_6658
crossref_citationtrail_10_1002_cpe_6658
wiley_primary_10_1002_cpe_6658_CPE6658
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 February 2022
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 15 February 2022
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 21
2007; 39
2010; 32
2013; 25
2019; 35
2019; 57
2019; 34
2013; 20
2002; 32
2019; 36
1993; 41
2020; 149
2016; 31
2020; 37
2008; 8
2008; 35
2004
2020; 32
2017; 110
2011; 17
2021; 50
2012; 36
2017; 112
2018; 48
2016; 33
2004; 10
2018; 6
2019; 180
2020; 2020
2021; 33
2006; 23
2020; 31
2017; 37
2021
2010; 29
2018; 531
2015; 21
2013; 30
2008; 28
2019; 28
2020; 49
2018; 30
2021; 155
2016; 27
2016; 45
1998; 9
2020; 29
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Wang C (e_1_2_9_45_1) 2008; 28
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 180
  start-page: 75
  issue: September 15
  year: 2019
  end-page: 90
  article-title: Adaptive and large‐scale service composition based on deep reinforcement learning
  publication-title: Knowl Based Syst
– volume: 57
  start-page: 3020
  issue: 9‐10
  year: 2019
  end-page: 3035
  article-title: A heuristic model for dynamic flexible job shop scheduling problem considering variable processing times
  publication-title: Int J Prod Res
– volume: 33
  start-page: 3579
  issue: 12
  year: 2016
  end-page: 3581
  article-title: Solving flexible job‐shop scheduling with elite evolution strategy
  publication-title: Appl Res Comput
– volume: 29
  start-page: 71
  issue: 12
  year: 2010
  end-page: 72
  article-title: Application of bee colony algorithm in job‐shop scheduling
  publication-title: Logist Technol
– volume: 31
  start-page: 2798
  issue: 23
  year: 2020
  article-title: Review on hybrid flow shop scheduling problems
  publication-title: China Mech Eng
– volume: 6
  start-page: 26231
  year: 2018
  end-page: 26240
  article-title: Application of grey wolf optimization for solving combinatorial problems: job shop and flexible job shop scheduling cases
  publication-title: IEEE Access
– start-page: 1
  issue: 07
  year: 2021
  end-page: 9
  article-title: Genetic algorithm for flexible job shop scheduling under disturbance mechanism
  publication-title: Modern Manuf Eng
– volume: 23
  start-page: 503
  issue: 5
  year: 2006
  end-page: 516
  article-title: Flexible job‐shop scheduling with routing flexibility and separable setup times using ant colony optimisation method
  publication-title: Robot Comput Integr Manuf
– volume: 155
  issue: 11
  year: 2021
  article-title: Two layered approaches integrating harmony search with genetic algorithm for the integrated process planning and scheduling problem
  publication-title: Comput Ind Eng
– volume: 37
  start-page: 523
  issue: 02
  year: 2017
  end-page: 529
  article-title: Optimization of integrated flexible process planning and job shop scheduling based on artificial bee colony
  publication-title: J Comput Appl
– volume: 33
  start-page: 1
  issue: 16
  year: 2021
  end-page: 6
  article-title: Workflow scheduling using particle swarm optimization and gray wolf optimization algorithm in cloud computing
  publication-title: Concurr Comput Pract Exper
– volume: 31
  start-page: 1
  issue: 01
  year: 2016
  end-page: 11
  article-title: Survey on optimization algorithms for distributed shop scheduling
  publication-title: Control Decis
– volume: 32
  start-page: 47
  issue: 1
  year: 2010
  end-page: 59
  article-title: A hybrid approach to large‐scale job shop scheduling
  publication-title: Appl Intell
– volume: 30
  start-page: 1
  issue: 11
  year: 2018
  end-page: 17
  article-title: Maximizing availability for task scheduling in on‐demand computing–based transaction processing system using ant colony optimization
  publication-title: Concurr Comput Pract Exper
– volume: 2020
  year: 2020
  article-title: Cloud service optimization method based on dynamic artificial ant‐bee colony algorithm in agricultural equipment manufacturing
  publication-title: Math Probl Eng
– volume: 31
  start-page: 1344
  issue: 11
  year: 2020
  end-page: 1350
  article-title: Research on multi‐objective green flexible job‐shop scheduling based on improved ABC algorithm
  publication-title: China Mech Eng
– volume: 110
  start-page: 75
  issue: August
  year: 2017
  end-page: 82
  article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling
  publication-title: Comput Ind Eng
– volume: 10
  start-page: 1150
  year: 2004
  end-page: 1152
  article-title: Research on job shop scheduling based on wasp colony algorithm
  publication-title: Mech Sci Technol
– volume: 35
  start-page: 3202
  issue: 10
  year: 2008
  end-page: 3212
  article-title: A genetic algorithm for the flexible job‐shop scheduling problem
  publication-title: Comput Oper Res
– volume: 112
  start-page: 81
  year: 2017
  end-page: 90
  article-title: Multi agent model based on chemical reaction optimization with greedy algorithm for flexible job shop scheduling problem
  publication-title: Proc Comput Sci
– volume: 49
  start-page: 24
  issue: 04
  year: 2020
  end-page: 32
  article-title: A survey of researches on artificial bee colony for production scheduling
  publication-title: J Hebei Univ Technol
– volume: 30
  start-page: 1
  issue: 1
  year: 2018
  end-page: 12
  article-title: Optimal synchronization control of multiagent systems with input saturation via off‐policy reinforcement learning
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 20
  start-page: 96
  year: 2013
  end-page: 101
  article-title: A hybrid artificial bee colony algorithm with local search for flexible job‐shop scheduling problem
  publication-title: Proc Comput Sci
– volume: 48
  start-page: 3707
  issue: 10
  year: 2018
  end-page: 3734
  article-title: A hybrid estimation of distribution algorithm for flexible job‐shop scheduling problems with process plan flexibility
  publication-title: Appl Intell
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  end-page: 471
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J Glob Optim
– volume: 32
  start-page: 1
  issue: 1
  year: 2002
  end-page: 13
  article-title: Approach by localization and multiobjective evolutionary optimization for flexible job‐shop scheduling problems
  publication-title: IEEE Trans Syst Man Cybern C
– volume: 21
  start-page: 495
  issue: 02
  year: 2015
  end-page: 502
  article-title: Flexible job shop scheduling based on double chains quantum genetic algorithm
  publication-title: Comput Integr Manuf Syst
– volume: 34
  start-page: 2527
  issue: 12
  year: 2019
  end-page: 2536
  article-title: Improved artificial bee colony algorithm for distributed and flexible job‐shop scheduling problem
  publication-title: Control Decis
– start-page: 49
  issue: 002
  year: 2004
  end-page: 50
  article-title: The appliance of wasp colony algorithm to realize dynamic job shop scheduling
  publication-title: Modul Mach Tool Automat Manuf Techniq
– volume: 35
  start-page: 1475
  issue: 4
  year: 2019
  end-page: 1490
  article-title: A novel scheduling with multi‐criteria for high‐performance computing systems: an improved genetic algorithm‐based approach
  publication-title: Eng Comput
– volume: 149
  issue: 1993
  year: 2020
  article-title: A self‐learning genetic algorithm based on reinforcement learning for flexible job‐shop scheduling problem
  publication-title: Comput Ind Eng
– volume: 17
  start-page: 1495
  issue: 07
  year: 2011
  end-page: 1500
  article-title: Hybrid bee colony algorithm for flexible job shop scheduling problem
  publication-title: Comput Integr Manuf Syst
– volume: 531
  start-page: 161
  issue: 05
  year: 2018
  end-page: 164
  article-title: Improved artificial bee colony algorithm for flexible job shop scheduling problem
  publication-title: Modul Mach Tool Automat Manuf Techniq
– volume: 50
  start-page: 9
  issue: 04
  year: 2021
  end-page: 13
  article-title: Improved particle swarm optimization algorithm for distributed multi‐plants production scheduling
  publication-title: Mach Build Automat
– volume: 8
  start-page: 687
  issue: 1
  year: 2008
  end-page: 697
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl Soft Comput
– volume: 32
  issue: 4
  year: 2020
  article-title: A modified hybrid whale optimization algorithm for the scheduling problem in multimedia data objects
  publication-title: Concurr Comput Pract Exper
– volume: 41
  start-page: 157
  issue: 3
  year: 1993
  end-page: 183
  article-title: Routing and scheduling in a flexible job shop by TABU search
  publication-title: Ann Oper Res
– volume: 9
  start-page: 1054
  issue: 5
  year: 1998
  article-title: Reinforcement learning: an introduction
  publication-title: IEEE Trans Neural Netw
– volume: 21
  start-page: 99
  issue: 1
  year: 2004
  end-page: 109
  article-title: Local search genetic algorithms for the job shop scheduling problem
  publication-title: Appl Intell
– volume: 30
  start-page: 2935
  year: 2018
  end-page: 2951
  article-title: A hybrid algorithm using a genetic algorithm and multiagent reinforcement learning heuristic to solve the traveling salesman problem
  publication-title: Neural Comput Appl
– volume: 25
  start-page: 2002
  issue: 14
  year: 2013
  end-page: 2015
  article-title: Optimal tracking agent: a new framework of reinforcement learning for multi‐agent systems
  publication-title: Concurr Comput Pract Exper
– volume: 45
  start-page: 1
  issue: 3
  year: 2016
  end-page: 21
  article-title: Hybrid metaheuristics for scheduling of machines and transport robots in job shop environment
  publication-title: Appl Intell
– volume: 48
  start-page: 1423
  issue: 6
  year: 2018
  end-page: 1441
  article-title: An effective operations permutation‐based discrete harmony search approach for the flexible job shop scheduling problem with makespan criterion
  publication-title: Appl Intell
– volume: 27
  start-page: 2333
  issue: 8
  year: 2016
  end-page: 2350
  article-title: A Q‐learning‐based swarm optimization algorithm for economic dispatch problem
  publication-title: Neural Comput & Applic
– volume: 36
  start-page: 236
  year: 2012
  end-page: 244
  article-title: An efficient knowledge‐based algorithm for the flexible job shop scheduling problem
  publication-title: Knowl‐Based Syst
– volume: 29
  start-page: 218
  issue: 11
  year: 2020
  end-page: 226
  article-title: Job shop dynamic scheduling based on Q‐learning algorithm
  publication-title: Comput Syst Appl
– volume: 36
  start-page: 972
  issue: 04
  year: 2019
  end-page: 974
  article-title: Study on multi‐objective flexible job‐shop scheduling problem based on hybrid artificial bee colony algorithm
  publication-title: Appl Res Comput
– volume: 37
  start-page: 1284
  issue: 06
  year: 2020
  end-page: 1292
  article-title: An improved artificial bee colony algorithm for fuzzy flexible job‐shop scheduling problem
  publication-title: Control Theory Appl
– volume: 28
  start-page: 3268
  issue: 12
  year: 2008
  end-page: 3270
  article-title: Application of improved Q‐learning algorithm to job‐shop problem
  publication-title: Comput Appl
– volume: 30
  start-page: 2405
  issue: 08
  year: 2013
  end-page: 2409
  article-title: Improved discrete particle swarm optimization algorithm for typical job‐shop scheduling problem
  publication-title: Appl Res Comput
– volume: 32
  issue: 11
  year: 2020
  article-title: Task scheduling based on deep reinforcement learning in a cloud manufacturing environment
  publication-title: Concurr Comput Pract Exper
– volume: 28
  start-page: 195
  issue: 12
  year: 2019
  end-page: 199
  article-title: Reinforcement learning algorithm for permutation flow shop scheduling to minimize Makespan
  publication-title: Comput Syst Appl
– ident: e_1_2_9_28_1
  doi: 10.15888/j.cnki.csa.007579
– ident: e_1_2_9_13_1
  doi: 10.1007/s10489-018-1160-z
– ident: e_1_2_9_21_1
  doi: 10.13196/j.cims.2015.02.023
– ident: e_1_2_9_41_1
  doi: 10.1016/j.knosys.2019.05.020
– ident: e_1_2_9_10_1
  doi: 10.13462/j.cnki.mmtamt.2018.05.042
– ident: e_1_2_9_49_1
  doi: 10.1007/s00521-017-2880-4
– ident: e_1_2_9_9_1
  doi: 10.13195/j.kzyjc.2018.0336
– ident: e_1_2_9_8_1
  doi: 10.1007/s10898-007-9149-x
– ident: e_1_2_9_51_1
  doi: 10.1109/TSMCC.2002.1009117
– ident: e_1_2_9_15_1
  doi: 10.1007/s10489-016-0786-y
– ident: e_1_2_9_4_1
  doi: 10.1002/cpe.4405
– ident: e_1_2_9_22_1
  doi: 10.1002/cpe.5654
– ident: e_1_2_9_34_1
  doi: 10.1016/j.knosys.2012.04.001
– ident: e_1_2_9_27_1
  doi: 10.3969/j.issn.1004-132X.2020.23.004
– ident: e_1_2_9_11_1
  doi: 10.1016/j.procs.2013.09.245
– volume: 28
  start-page: 3268
  issue: 12
  year: 2008
  ident: e_1_2_9_45_1
  article-title: Application of improved Q‐learning algorithm to job‐shop problem
  publication-title: Comput Appl
– ident: e_1_2_9_24_1
  doi: 10.1016/j.asoc.2007.05.007
– ident: e_1_2_9_12_1
  doi: 10.1080/00207543.2018.1524165
– ident: e_1_2_9_23_1
  doi: 10.1007/s10489-017-0993-1
– ident: e_1_2_9_37_1
  doi: 10.3969/j.issn.1005-152X.2010.12.023
– ident: e_1_2_9_50_1
  doi: 10.1109/ACCESS.2018.2833552
– ident: e_1_2_9_25_1
  doi: 10.1016/j.cie.2021.107194
– ident: e_1_2_9_20_1
  doi: 10.16731/j.cnki.1671-3133.2021.07.001
– ident: e_1_2_9_5_1
  doi: 10.1016/j.cie.2020.106778
– ident: e_1_2_9_42_1
  doi: 10.15888/j.cnki.csa.007196
– ident: e_1_2_9_54_1
  doi: 10.1007/978-3-642-38715-9_46
– ident: e_1_2_9_14_1
  doi: 10.1007/s10489-008-0134-y
– ident: e_1_2_9_2_1
  doi: 10.13196/j.cims.2011.07.153.lixl.020
– ident: e_1_2_9_18_1
  doi: 10.19344/j.cnki.issn1671-5276.2021.04.002
– ident: e_1_2_9_33_1
  doi: 10.11772/j.issn.1001-9081.2017.02.0523
– ident: e_1_2_9_36_1
  doi: 10.14081/j.cnki.hgdxb.2020.04.003
– ident: e_1_2_9_48_1
  doi: 10.1007/BF02023073
– ident: e_1_2_9_38_1
  doi: 10.3969/j.issn.1001-2265.2004.02.012
– ident: e_1_2_9_19_1
  doi: 10.1002/cpe.6281
– ident: e_1_2_9_7_1
  doi: 10.1007/s00366-018-0676-5
– ident: e_1_2_9_47_1
  doi: 10.1007/s00521-015-2070-1
– ident: e_1_2_9_53_1
  doi: 10.1109/TNN.1998.712192
– ident: e_1_2_9_29_1
  doi: 10.3969/j.issn.1001-3695.2013.08.041
– ident: e_1_2_9_52_1
  doi: 10.1016/j.procs.2017.08.174
– ident: e_1_2_9_46_1
  doi: 10.1016/j.cie.2017.05.026
– ident: e_1_2_9_6_1
  doi: 10.1023/B:APIN.0000027769.48098.91
– ident: e_1_2_9_17_1
  doi: 10.1007/BF02973453
– ident: e_1_2_9_31_1
  doi: 10.7641/CTA.2019.90544
– ident: e_1_2_9_39_1
  doi: 10.1155/2020/9134695
– ident: e_1_2_9_44_1
  doi: 10.1016/j.cor.2007.02.014
– ident: e_1_2_9_16_1
  doi: 10.1002/cpe.5137
– ident: e_1_2_9_32_1
  doi: 10.3969/j.issn.1004-132X.2020.11.011
– ident: e_1_2_9_40_1
  doi: 10.1002/cpe.2870
– ident: e_1_2_9_30_1
  doi: 10.3969/j.issn.1001-3695.2016.12.014
– ident: e_1_2_9_43_1
  doi: 10.1109/TNNLS.2018.2832025
– ident: e_1_2_9_3_1
  doi: 10.1016/j.rcim.2006.06.004
– ident: e_1_2_9_35_1
  doi: 10.19734/j.issn.1001-3695.2017.11.0993
– ident: e_1_2_9_26_1
  doi: 10.13195/j.kzyjc.2014.1949
SSID ssj0011031
Score 2.4125473
Snippet Summary The flexible job‐shop scheduling problem (FJSP) is currently one of the most critical issues in process planning and manufacturing. The FJSP is studied...
The flexible job‐shop scheduling problem (FJSP) is currently one of the most critical issues in process planning and manufacturing. The FJSP is studied with...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms artificial bee colony
Convergence
flexible job‐shop scheduling problem
Machine learning
Optimization
Optimization algorithms
Process planning
reinforcement learning
Scheduling
Search algorithms
self‐learning artificial bee colony
Swarm intelligence
Title A self‐learning artificial bee colony algorithm based on reinforcement learning for a flexible job‐shop scheduling problem
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6658
https://www.proquest.com/docview/2621878196
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: ADMLS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA7iyYuuj2XHFyWInnrsyasnRxFFBEVEQfDQdNIV3d2xe5gZD3oQf4K_0V9ipR_j7rILsqeGJhW6U6nUVyH5Psa2yaWJdrwf6czoSCouIxtbEUntvJe57COGrYHTM318JU-u1XVzqjLchan5IaYbbiEyqvU6BHhmx3sfpKFuiF1N-ZOW357QVTV1MWWO6gX1gpoqlUcxgfaWdzbme63h75noA17-ClKrLHO0wG7a76sPl_zsPkxs1z39Qd34fz_whc034BP269myyGawWGILrbADNHG-zJ73YYwD__by2ohK3EKYYTXZBFhECFzXxSNkg9ty9H1ydw8hG-ZQFjDCiovVVduOMLWnV5CBD_SbdoDwo7TU-_iuHAKV15Tuwq14aNRtVtjV0eHlwXHUCDVEjtACVaEi7-cSeyrzHAkH61y7foJGJd7rHkqTCOTCSyUSlznjLaGqcCgu48pbj0p8ZbNFWeA3BlQxWyNMbBNCalqjQW-UN5iZPE6cEB222zotdQ2LeRDTGKQ1_zJPaVjTMKwdtjVtOayZO_7SZr31e9rE7jjlmmBPQkhJd9hO5cB_2qcH54fhufrZhmtsjof7E0FRRq2z2cnoATcI1UzsZjV_3wFoBPez
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5iPOjF-MTVqCWInmYz26_ZxlMICasmQSSBHIRhuqc6UdeZZXdz0IP4E_yN_hKr57FRURBPA0PXMNPVNfVV0f19AE_YpZnxYpyYwppEaaESlzqZKONDUKUaE8XWwMGhmRyrlyf6ZA2e92dhWn6IVcMtRkbzv44BHhvSWxesoX5GQ8MJ9BJcVobLlIiI3qy4o0ZRv6AlSxVJyrC9Z55NxVZv-WsuugCYP8PUJs_sbcDb_g3b7SUfhudLN_SffyNv_M9PuA7XOvyJ2-2CuQFrVN2EjV7bAbtQvwVftnFB0_D967dOV-IU4yJr-SbQEWGku64-YTE9refvlmcfMSbEEusK59TQsfqm84gre76FBYbIwOmmhO9rx09fnNUz5AqbM148GI-dwM1tON7bPdqZJJ1WQ-IZMHAhKstxqWikiyCIobApjR9nZHUWghmRspkkIYPSMvOFt8ExsIr74gqhgwuk5R1Yr-qK7gJy0eystKnLGKwZQ5aC1cFSYcs081IO4Fnvtdx3ROZRT2OatxTMIudpzeO0DuDxauSsJe_4w5jN3vF5F76LXBhGPhmDJTOAp40H_2qf77zejdd7_zrwEVyZHB3s5_svDl_dh6siHqeIAjN6E9aX83N6wCBn6R42i_kH3RP71A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5qC-JLa6viadUVRJ9yze2vZOlTaXtUraWIhT4IIbuZba1nctxdH_Sh9E_o3-hf4mx-XGtREJ8CYSckOzuZb4bd7wN4RS5NtONppHOjI6m4jGxsRSS1814WMkUMrYEPB3rvSL47VscLsNmdhWn4IeYNtxAZ9f86BDiOC79xzRrqxtjXlEDvwJJUJg37-XY-zrmjBkG_oCFL5VFMsL1jno35Rmf5ey66Bpg3YWqdZ4Yr8Ll7w2Z7ydf--cz23Y9b5I3_-Qn3YbnFn2yrWTCrsIDlGqx02g6sDfUHcLHFpjjyPy-vWl2JExYWWcM3wSwiC3TX5XeWj06qyZfZ6TcWEmLBqpJNsKZjdXXnkc3t6RbLmQ8MnHaE7Kyy9PTpaTVmVGFTxgsH41krcPMQjoa7n7b3olarIXIEGKgQFUVaSByo3HMkKKwL7dIEjUq81wOUJhHIhZdKJC53xlsCVmFfXM6Vtx6VeASLZVXiY2BUNFsjTGwTAmtao0FvlDeYmyJOnBA9eNN5LXMtkXnQ0xhlDQUzz2haszCtPXg5HzluyDv-MGa9c3zWhu8045qQT0JgSffgde3Bv9pn24e74frkXwe-gLuHO8Ns_-3B-6dwj4fTFEFfRq3D4mxyjs8I48zs83ot_wKMKPtY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self%E2%80%90learning+artificial+bee+colony+algorithm+based+on+reinforcement+learning+for+a+flexible+job%E2%80%90shop+scheduling+problem&rft.jtitle=Concurrency+and+computation&rft.au=Long%2C+Xiaojun&rft.au=Zhang%2C+Jingtao&rft.au=Qi%2C+Xing&rft.au=Xu%2C+Wenlong&rft.date=2022-02-15&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=4&rft_id=info:doi/10.1002%2Fcpe.6658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_6658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon