A self‐learning artificial bee colony algorithm based on reinforcement learning for a flexible job‐shop scheduling problem
Summary The flexible job‐shop scheduling problem (FJSP) is currently one of the most critical issues in process planning and manufacturing. The FJSP is studied with the goal of achieving the shortest makespan. Recently, some intelligent optimization algorithms have been applied to solve FJSP, but th...
Saved in:
| Published in | Concurrency and computation Vol. 34; no. 4 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
15.02.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0626 1532-0634 |
| DOI | 10.1002/cpe.6658 |
Cover
| Abstract | Summary
The flexible job‐shop scheduling problem (FJSP) is currently one of the most critical issues in process planning and manufacturing. The FJSP is studied with the goal of achieving the shortest makespan. Recently, some intelligent optimization algorithms have been applied to solve FJSP, but the key parameters of intelligent optimization algorithms cannot be dynamically adjusted during the solution process. Thus, the solutions cannot best meet the needs of production. To solve the problems of slow convergence speed and reaching a local optimum with the artificial bee colony (ABC) algorithm, an improved self‐learning artificial bee colony algorithm (SLABC) based on reinforcement learning (RL) is proposed. In the SLABC algorithm, the number of updated dimensions of the ABC algorithm can be intelligently selected according to the RL algorithm, which improves the convergence speed and accuracy. In addition, a self‐learning model of the SLABC algorithm is constructed and analyzed using Q‐learning as the learning method of the algorithm, and the state determination and reward methods of the RL algorithm are designed and included in the environment of the artificial bee colony algorithm. Finally, this article verifies that SLABC has excellent convergence speed and accuracy in solving FJSP through Brandimarte instances. |
|---|---|
| AbstractList | The flexible job‐shop scheduling problem (FJSP) is currently one of the most critical issues in process planning and manufacturing. The FJSP is studied with the goal of achieving the shortest makespan. Recently, some intelligent optimization algorithms have been applied to solve FJSP, but the key parameters of intelligent optimization algorithms cannot be dynamically adjusted during the solution process. Thus, the solutions cannot best meet the needs of production. To solve the problems of slow convergence speed and reaching a local optimum with the artificial bee colony (ABC) algorithm, an improved self‐learning artificial bee colony algorithm (SLABC) based on reinforcement learning (RL) is proposed. In the SLABC algorithm, the number of updated dimensions of the ABC algorithm can be intelligently selected according to the RL algorithm, which improves the convergence speed and accuracy. In addition, a self‐learning model of the SLABC algorithm is constructed and analyzed using Q‐learning as the learning method of the algorithm, and the state determination and reward methods of the RL algorithm are designed and included in the environment of the artificial bee colony algorithm. Finally, this article verifies that SLABC has excellent convergence speed and accuracy in solving FJSP through Brandimarte instances. Summary The flexible job‐shop scheduling problem (FJSP) is currently one of the most critical issues in process planning and manufacturing. The FJSP is studied with the goal of achieving the shortest makespan. Recently, some intelligent optimization algorithms have been applied to solve FJSP, but the key parameters of intelligent optimization algorithms cannot be dynamically adjusted during the solution process. Thus, the solutions cannot best meet the needs of production. To solve the problems of slow convergence speed and reaching a local optimum with the artificial bee colony (ABC) algorithm, an improved self‐learning artificial bee colony algorithm (SLABC) based on reinforcement learning (RL) is proposed. In the SLABC algorithm, the number of updated dimensions of the ABC algorithm can be intelligently selected according to the RL algorithm, which improves the convergence speed and accuracy. In addition, a self‐learning model of the SLABC algorithm is constructed and analyzed using Q‐learning as the learning method of the algorithm, and the state determination and reward methods of the RL algorithm are designed and included in the environment of the artificial bee colony algorithm. Finally, this article verifies that SLABC has excellent convergence speed and accuracy in solving FJSP through Brandimarte instances. |
| Author | Qi, Xing Xu, Wenlong Zhou, Kai Jin, Tianguo Long, Xiaojun Zhang, Jingtao |
| Author_xml | – sequence: 1 givenname: Xiaojun orcidid: 0000-0001-9265-6960 surname: Long fullname: Long, Xiaojun organization: Shandong Agricultural University – sequence: 2 givenname: Jingtao surname: Zhang fullname: Zhang, Jingtao organization: Shandong Agricultural University – sequence: 3 givenname: Xing surname: Qi fullname: Qi, Xing organization: Shandong Agricultural University – sequence: 4 givenname: Wenlong surname: Xu fullname: Xu, Wenlong organization: Shandong Agricultural University – sequence: 5 givenname: Tianguo surname: Jin fullname: Jin, Tianguo organization: Harbin Institute of Technology – sequence: 6 givenname: Kai orcidid: 0000-0001-9660-5423 surname: Zhou fullname: Zhou, Kai email: zhoukai2017@sdau.edu.cn organization: Shandong Agricultural University |
| BookMark | eNp1kM1KAzEUhYNUsK2CjxBw42ZqfmYyM8tS6g8UdKHrIZO5aVPSpCZTtBvxEXxGn8SplS5EV_dy73fOgTNAPecdIHROyYgSwq7UGkZCZMUR6tOMs4QInvYOOxMnaBDjkhBKCad99DbGEaz-fP-wIIMzbo5laI02ykiLawCsvPVui6Wd-2DaxQrXMkKDvcMBjNM-KFiBa_FB352wxNrCq6kt4KWvO_e48Gsc1QKajd1B6-C75-oUHWtpI5z9zCF6up4-Tm6T2f3N3WQ8SxQreZFQ3hRNCjSTmkFBa9EIVeRQZrnWgkJa5hwY12nGcyVVqWvKMkYIlyzTtYaMD9HF3rfLfd5AbKul3wTXRVZMMFrkBS1FR13uKRV8jAF0tQ5mJcO2oqTatVt17Va7djt09AtVppWt8a4N0ti_BMle8GIsbP81riYP02_-CzQqkM0 |
| CitedBy_id | crossref_primary_10_3390_a15030088 crossref_primary_10_1016_j_asoc_2022_109717 crossref_primary_10_1016_j_cie_2023_109423 crossref_primary_10_1049_cim2_12099 crossref_primary_10_3233_JIFS_224624 crossref_primary_10_3390_pr10030571 crossref_primary_10_1007_s10845_023_02227_9 crossref_primary_10_1007_s40747_024_01772_x crossref_primary_10_1016_j_cie_2022_108786 crossref_primary_10_48175_IJARSCT_13692 crossref_primary_10_1016_j_cor_2024_106929 crossref_primary_10_1016_j_engappai_2024_109557 crossref_primary_10_46740_alku_1390397 crossref_primary_10_3390_machines10030210 crossref_primary_10_1016_j_engappai_2024_109851 crossref_primary_10_1016_j_eswa_2023_121723 crossref_primary_10_3390_electronics12061358 crossref_primary_10_1016_j_compeleceng_2024_110044 crossref_primary_10_1016_j_eswa_2023_121303 crossref_primary_10_3233_JIFS_236981 crossref_primary_10_1016_j_compeleceng_2024_109780 |
| Cites_doi | 10.15888/j.cnki.csa.007579 10.1007/s10489-018-1160-z 10.13196/j.cims.2015.02.023 10.1016/j.knosys.2019.05.020 10.13462/j.cnki.mmtamt.2018.05.042 10.1007/s00521-017-2880-4 10.13195/j.kzyjc.2018.0336 10.1007/s10898-007-9149-x 10.1109/TSMCC.2002.1009117 10.1007/s10489-016-0786-y 10.1002/cpe.4405 10.1002/cpe.5654 10.1016/j.knosys.2012.04.001 10.3969/j.issn.1004-132X.2020.23.004 10.1016/j.procs.2013.09.245 10.1016/j.asoc.2007.05.007 10.1080/00207543.2018.1524165 10.1007/s10489-017-0993-1 10.3969/j.issn.1005-152X.2010.12.023 10.1109/ACCESS.2018.2833552 10.1016/j.cie.2021.107194 10.16731/j.cnki.1671-3133.2021.07.001 10.1016/j.cie.2020.106778 10.15888/j.cnki.csa.007196 10.1007/978-3-642-38715-9_46 10.1007/s10489-008-0134-y 10.13196/j.cims.2011.07.153.lixl.020 10.19344/j.cnki.issn1671-5276.2021.04.002 10.11772/j.issn.1001-9081.2017.02.0523 10.14081/j.cnki.hgdxb.2020.04.003 10.1007/BF02023073 10.3969/j.issn.1001-2265.2004.02.012 10.1002/cpe.6281 10.1007/s00366-018-0676-5 10.1007/s00521-015-2070-1 10.1109/TNN.1998.712192 10.3969/j.issn.1001-3695.2013.08.041 10.1016/j.procs.2017.08.174 10.1016/j.cie.2017.05.026 10.1023/B:APIN.0000027769.48098.91 10.1007/BF02973453 10.7641/CTA.2019.90544 10.1155/2020/9134695 10.1016/j.cor.2007.02.014 10.1002/cpe.5137 10.3969/j.issn.1004-132X.2020.11.011 10.1002/cpe.2870 10.3969/j.issn.1001-3695.2016.12.014 10.1109/TNNLS.2018.2832025 10.1016/j.rcim.2006.06.004 10.19734/j.issn.1001-3695.2017.11.0993 10.13195/j.kzyjc.2014.1949 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons, Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.6658 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_6658 CPE6658 |
| Genre | article |
| GrantInformation_xml | – fundername: National Defense Basic Scientific Research Program of China funderid: JCKY2016204A502 – fundername: China Postdoctoral Science Foundation funderid: 2019M662410 – fundername: Agriculture Research System of China funderid: CARS‐24‐D‐01 |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 1OB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2938-13d8d4e15af2e81b6d6c87e957ff61e4973e23f4537cac9fb1252003a25fbfe53 |
| IEDL.DBID | DR2 |
| ISSN | 1532-0626 |
| IngestDate | Wed Aug 13 07:01:07 EDT 2025 Wed Oct 01 00:59:50 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Wed Jan 22 16:27:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2938-13d8d4e15af2e81b6d6c87e957ff61e4973e23f4537cac9fb1252003a25fbfe53 |
| Notes | Funding information Agriculture Research System of China, CARS‐24‐D‐01; China Postdoctoral Science Foundation, 2019M662410; National Defense Basic Scientific Research Program of China, JCKY2016204A502 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9660-5423 0000-0001-9265-6960 |
| PQID | 2621878196 |
| PQPubID | 2045170 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2621878196 crossref_primary_10_1002_cpe_6658 crossref_citationtrail_10_1002_cpe_6658 wiley_primary_10_1002_cpe_6658_CPE6658 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 15 February 2022 |
| PublicationDateYYYYMMDD | 2022-02-15 |
| PublicationDate_xml | – month: 02 year: 2022 text: 15 February 2022 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2004; 21 2007; 39 2010; 32 2013; 25 2019; 35 2019; 57 2019; 34 2013; 20 2002; 32 2019; 36 1993; 41 2020; 149 2016; 31 2020; 37 2008; 8 2008; 35 2004 2020; 32 2017; 110 2011; 17 2021; 50 2012; 36 2017; 112 2018; 48 2016; 33 2004; 10 2018; 6 2019; 180 2020; 2020 2021; 33 2006; 23 2020; 31 2017; 37 2021 2010; 29 2018; 531 2015; 21 2013; 30 2008; 28 2019; 28 2020; 49 2018; 30 2021; 155 2016; 27 2016; 45 1998; 9 2020; 29 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Wang C (e_1_2_9_45_1) 2008; 28 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 180 start-page: 75 issue: September 15 year: 2019 end-page: 90 article-title: Adaptive and large‐scale service composition based on deep reinforcement learning publication-title: Knowl Based Syst – volume: 57 start-page: 3020 issue: 9‐10 year: 2019 end-page: 3035 article-title: A heuristic model for dynamic flexible job shop scheduling problem considering variable processing times publication-title: Int J Prod Res – volume: 33 start-page: 3579 issue: 12 year: 2016 end-page: 3581 article-title: Solving flexible job‐shop scheduling with elite evolution strategy publication-title: Appl Res Comput – volume: 29 start-page: 71 issue: 12 year: 2010 end-page: 72 article-title: Application of bee colony algorithm in job‐shop scheduling publication-title: Logist Technol – volume: 31 start-page: 2798 issue: 23 year: 2020 article-title: Review on hybrid flow shop scheduling problems publication-title: China Mech Eng – volume: 6 start-page: 26231 year: 2018 end-page: 26240 article-title: Application of grey wolf optimization for solving combinatorial problems: job shop and flexible job shop scheduling cases publication-title: IEEE Access – start-page: 1 issue: 07 year: 2021 end-page: 9 article-title: Genetic algorithm for flexible job shop scheduling under disturbance mechanism publication-title: Modern Manuf Eng – volume: 23 start-page: 503 issue: 5 year: 2006 end-page: 516 article-title: Flexible job‐shop scheduling with routing flexibility and separable setup times using ant colony optimisation method publication-title: Robot Comput Integr Manuf – volume: 155 issue: 11 year: 2021 article-title: Two layered approaches integrating harmony search with genetic algorithm for the integrated process planning and scheduling problem publication-title: Comput Ind Eng – volume: 37 start-page: 523 issue: 02 year: 2017 end-page: 529 article-title: Optimization of integrated flexible process planning and job shop scheduling based on artificial bee colony publication-title: J Comput Appl – volume: 33 start-page: 1 issue: 16 year: 2021 end-page: 6 article-title: Workflow scheduling using particle swarm optimization and gray wolf optimization algorithm in cloud computing publication-title: Concurr Comput Pract Exper – volume: 31 start-page: 1 issue: 01 year: 2016 end-page: 11 article-title: Survey on optimization algorithms for distributed shop scheduling publication-title: Control Decis – volume: 32 start-page: 47 issue: 1 year: 2010 end-page: 59 article-title: A hybrid approach to large‐scale job shop scheduling publication-title: Appl Intell – volume: 30 start-page: 1 issue: 11 year: 2018 end-page: 17 article-title: Maximizing availability for task scheduling in on‐demand computing–based transaction processing system using ant colony optimization publication-title: Concurr Comput Pract Exper – volume: 2020 year: 2020 article-title: Cloud service optimization method based on dynamic artificial ant‐bee colony algorithm in agricultural equipment manufacturing publication-title: Math Probl Eng – volume: 31 start-page: 1344 issue: 11 year: 2020 end-page: 1350 article-title: Research on multi‐objective green flexible job‐shop scheduling based on improved ABC algorithm publication-title: China Mech Eng – volume: 110 start-page: 75 issue: August year: 2017 end-page: 82 article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling publication-title: Comput Ind Eng – volume: 10 start-page: 1150 year: 2004 end-page: 1152 article-title: Research on job shop scheduling based on wasp colony algorithm publication-title: Mech Sci Technol – volume: 35 start-page: 3202 issue: 10 year: 2008 end-page: 3212 article-title: A genetic algorithm for the flexible job‐shop scheduling problem publication-title: Comput Oper Res – volume: 112 start-page: 81 year: 2017 end-page: 90 article-title: Multi agent model based on chemical reaction optimization with greedy algorithm for flexible job shop scheduling problem publication-title: Proc Comput Sci – volume: 49 start-page: 24 issue: 04 year: 2020 end-page: 32 article-title: A survey of researches on artificial bee colony for production scheduling publication-title: J Hebei Univ Technol – volume: 30 start-page: 1 issue: 1 year: 2018 end-page: 12 article-title: Optimal synchronization control of multiagent systems with input saturation via off‐policy reinforcement learning publication-title: IEEE Trans Neural Netw Learn Syst – volume: 20 start-page: 96 year: 2013 end-page: 101 article-title: A hybrid artificial bee colony algorithm with local search for flexible job‐shop scheduling problem publication-title: Proc Comput Sci – volume: 48 start-page: 3707 issue: 10 year: 2018 end-page: 3734 article-title: A hybrid estimation of distribution algorithm for flexible job‐shop scheduling problems with process plan flexibility publication-title: Appl Intell – volume: 39 start-page: 459 issue: 3 year: 2007 end-page: 471 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J Glob Optim – volume: 32 start-page: 1 issue: 1 year: 2002 end-page: 13 article-title: Approach by localization and multiobjective evolutionary optimization for flexible job‐shop scheduling problems publication-title: IEEE Trans Syst Man Cybern C – volume: 21 start-page: 495 issue: 02 year: 2015 end-page: 502 article-title: Flexible job shop scheduling based on double chains quantum genetic algorithm publication-title: Comput Integr Manuf Syst – volume: 34 start-page: 2527 issue: 12 year: 2019 end-page: 2536 article-title: Improved artificial bee colony algorithm for distributed and flexible job‐shop scheduling problem publication-title: Control Decis – start-page: 49 issue: 002 year: 2004 end-page: 50 article-title: The appliance of wasp colony algorithm to realize dynamic job shop scheduling publication-title: Modul Mach Tool Automat Manuf Techniq – volume: 35 start-page: 1475 issue: 4 year: 2019 end-page: 1490 article-title: A novel scheduling with multi‐criteria for high‐performance computing systems: an improved genetic algorithm‐based approach publication-title: Eng Comput – volume: 149 issue: 1993 year: 2020 article-title: A self‐learning genetic algorithm based on reinforcement learning for flexible job‐shop scheduling problem publication-title: Comput Ind Eng – volume: 17 start-page: 1495 issue: 07 year: 2011 end-page: 1500 article-title: Hybrid bee colony algorithm for flexible job shop scheduling problem publication-title: Comput Integr Manuf Syst – volume: 531 start-page: 161 issue: 05 year: 2018 end-page: 164 article-title: Improved artificial bee colony algorithm for flexible job shop scheduling problem publication-title: Modul Mach Tool Automat Manuf Techniq – volume: 50 start-page: 9 issue: 04 year: 2021 end-page: 13 article-title: Improved particle swarm optimization algorithm for distributed multi‐plants production scheduling publication-title: Mach Build Automat – volume: 8 start-page: 687 issue: 1 year: 2008 end-page: 697 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl Soft Comput – volume: 32 issue: 4 year: 2020 article-title: A modified hybrid whale optimization algorithm for the scheduling problem in multimedia data objects publication-title: Concurr Comput Pract Exper – volume: 41 start-page: 157 issue: 3 year: 1993 end-page: 183 article-title: Routing and scheduling in a flexible job shop by TABU search publication-title: Ann Oper Res – volume: 9 start-page: 1054 issue: 5 year: 1998 article-title: Reinforcement learning: an introduction publication-title: IEEE Trans Neural Netw – volume: 21 start-page: 99 issue: 1 year: 2004 end-page: 109 article-title: Local search genetic algorithms for the job shop scheduling problem publication-title: Appl Intell – volume: 30 start-page: 2935 year: 2018 end-page: 2951 article-title: A hybrid algorithm using a genetic algorithm and multiagent reinforcement learning heuristic to solve the traveling salesman problem publication-title: Neural Comput Appl – volume: 25 start-page: 2002 issue: 14 year: 2013 end-page: 2015 article-title: Optimal tracking agent: a new framework of reinforcement learning for multi‐agent systems publication-title: Concurr Comput Pract Exper – volume: 45 start-page: 1 issue: 3 year: 2016 end-page: 21 article-title: Hybrid metaheuristics for scheduling of machines and transport robots in job shop environment publication-title: Appl Intell – volume: 48 start-page: 1423 issue: 6 year: 2018 end-page: 1441 article-title: An effective operations permutation‐based discrete harmony search approach for the flexible job shop scheduling problem with makespan criterion publication-title: Appl Intell – volume: 27 start-page: 2333 issue: 8 year: 2016 end-page: 2350 article-title: A Q‐learning‐based swarm optimization algorithm for economic dispatch problem publication-title: Neural Comput & Applic – volume: 36 start-page: 236 year: 2012 end-page: 244 article-title: An efficient knowledge‐based algorithm for the flexible job shop scheduling problem publication-title: Knowl‐Based Syst – volume: 29 start-page: 218 issue: 11 year: 2020 end-page: 226 article-title: Job shop dynamic scheduling based on Q‐learning algorithm publication-title: Comput Syst Appl – volume: 36 start-page: 972 issue: 04 year: 2019 end-page: 974 article-title: Study on multi‐objective flexible job‐shop scheduling problem based on hybrid artificial bee colony algorithm publication-title: Appl Res Comput – volume: 37 start-page: 1284 issue: 06 year: 2020 end-page: 1292 article-title: An improved artificial bee colony algorithm for fuzzy flexible job‐shop scheduling problem publication-title: Control Theory Appl – volume: 28 start-page: 3268 issue: 12 year: 2008 end-page: 3270 article-title: Application of improved Q‐learning algorithm to job‐shop problem publication-title: Comput Appl – volume: 30 start-page: 2405 issue: 08 year: 2013 end-page: 2409 article-title: Improved discrete particle swarm optimization algorithm for typical job‐shop scheduling problem publication-title: Appl Res Comput – volume: 32 issue: 11 year: 2020 article-title: Task scheduling based on deep reinforcement learning in a cloud manufacturing environment publication-title: Concurr Comput Pract Exper – volume: 28 start-page: 195 issue: 12 year: 2019 end-page: 199 article-title: Reinforcement learning algorithm for permutation flow shop scheduling to minimize Makespan publication-title: Comput Syst Appl – ident: e_1_2_9_28_1 doi: 10.15888/j.cnki.csa.007579 – ident: e_1_2_9_13_1 doi: 10.1007/s10489-018-1160-z – ident: e_1_2_9_21_1 doi: 10.13196/j.cims.2015.02.023 – ident: e_1_2_9_41_1 doi: 10.1016/j.knosys.2019.05.020 – ident: e_1_2_9_10_1 doi: 10.13462/j.cnki.mmtamt.2018.05.042 – ident: e_1_2_9_49_1 doi: 10.1007/s00521-017-2880-4 – ident: e_1_2_9_9_1 doi: 10.13195/j.kzyjc.2018.0336 – ident: e_1_2_9_8_1 doi: 10.1007/s10898-007-9149-x – ident: e_1_2_9_51_1 doi: 10.1109/TSMCC.2002.1009117 – ident: e_1_2_9_15_1 doi: 10.1007/s10489-016-0786-y – ident: e_1_2_9_4_1 doi: 10.1002/cpe.4405 – ident: e_1_2_9_22_1 doi: 10.1002/cpe.5654 – ident: e_1_2_9_34_1 doi: 10.1016/j.knosys.2012.04.001 – ident: e_1_2_9_27_1 doi: 10.3969/j.issn.1004-132X.2020.23.004 – ident: e_1_2_9_11_1 doi: 10.1016/j.procs.2013.09.245 – volume: 28 start-page: 3268 issue: 12 year: 2008 ident: e_1_2_9_45_1 article-title: Application of improved Q‐learning algorithm to job‐shop problem publication-title: Comput Appl – ident: e_1_2_9_24_1 doi: 10.1016/j.asoc.2007.05.007 – ident: e_1_2_9_12_1 doi: 10.1080/00207543.2018.1524165 – ident: e_1_2_9_23_1 doi: 10.1007/s10489-017-0993-1 – ident: e_1_2_9_37_1 doi: 10.3969/j.issn.1005-152X.2010.12.023 – ident: e_1_2_9_50_1 doi: 10.1109/ACCESS.2018.2833552 – ident: e_1_2_9_25_1 doi: 10.1016/j.cie.2021.107194 – ident: e_1_2_9_20_1 doi: 10.16731/j.cnki.1671-3133.2021.07.001 – ident: e_1_2_9_5_1 doi: 10.1016/j.cie.2020.106778 – ident: e_1_2_9_42_1 doi: 10.15888/j.cnki.csa.007196 – ident: e_1_2_9_54_1 doi: 10.1007/978-3-642-38715-9_46 – ident: e_1_2_9_14_1 doi: 10.1007/s10489-008-0134-y – ident: e_1_2_9_2_1 doi: 10.13196/j.cims.2011.07.153.lixl.020 – ident: e_1_2_9_18_1 doi: 10.19344/j.cnki.issn1671-5276.2021.04.002 – ident: e_1_2_9_33_1 doi: 10.11772/j.issn.1001-9081.2017.02.0523 – ident: e_1_2_9_36_1 doi: 10.14081/j.cnki.hgdxb.2020.04.003 – ident: e_1_2_9_48_1 doi: 10.1007/BF02023073 – ident: e_1_2_9_38_1 doi: 10.3969/j.issn.1001-2265.2004.02.012 – ident: e_1_2_9_19_1 doi: 10.1002/cpe.6281 – ident: e_1_2_9_7_1 doi: 10.1007/s00366-018-0676-5 – ident: e_1_2_9_47_1 doi: 10.1007/s00521-015-2070-1 – ident: e_1_2_9_53_1 doi: 10.1109/TNN.1998.712192 – ident: e_1_2_9_29_1 doi: 10.3969/j.issn.1001-3695.2013.08.041 – ident: e_1_2_9_52_1 doi: 10.1016/j.procs.2017.08.174 – ident: e_1_2_9_46_1 doi: 10.1016/j.cie.2017.05.026 – ident: e_1_2_9_6_1 doi: 10.1023/B:APIN.0000027769.48098.91 – ident: e_1_2_9_17_1 doi: 10.1007/BF02973453 – ident: e_1_2_9_31_1 doi: 10.7641/CTA.2019.90544 – ident: e_1_2_9_39_1 doi: 10.1155/2020/9134695 – ident: e_1_2_9_44_1 doi: 10.1016/j.cor.2007.02.014 – ident: e_1_2_9_16_1 doi: 10.1002/cpe.5137 – ident: e_1_2_9_32_1 doi: 10.3969/j.issn.1004-132X.2020.11.011 – ident: e_1_2_9_40_1 doi: 10.1002/cpe.2870 – ident: e_1_2_9_30_1 doi: 10.3969/j.issn.1001-3695.2016.12.014 – ident: e_1_2_9_43_1 doi: 10.1109/TNNLS.2018.2832025 – ident: e_1_2_9_3_1 doi: 10.1016/j.rcim.2006.06.004 – ident: e_1_2_9_35_1 doi: 10.19734/j.issn.1001-3695.2017.11.0993 – ident: e_1_2_9_26_1 doi: 10.13195/j.kzyjc.2014.1949 |
| SSID | ssj0011031 |
| Score | 2.4125473 |
| Snippet | Summary
The flexible job‐shop scheduling problem (FJSP) is currently one of the most critical issues in process planning and manufacturing. The FJSP is studied... The flexible job‐shop scheduling problem (FJSP) is currently one of the most critical issues in process planning and manufacturing. The FJSP is studied with... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | artificial bee colony Convergence flexible job‐shop scheduling problem Machine learning Optimization Optimization algorithms Process planning reinforcement learning Scheduling Search algorithms self‐learning artificial bee colony Swarm intelligence |
| Title | A self‐learning artificial bee colony algorithm based on reinforcement learning for a flexible job‐shop scheduling problem |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6658 https://www.proquest.com/docview/2621878196 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-0634 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: ADMLS dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA7iyYuuj2XHFyWInnrsyasnRxFFBEVEQfDQdNIV3d2xe5gZD3oQf4K_0V9ipR_j7rILsqeGJhW6U6nUVyH5Psa2yaWJdrwf6czoSCouIxtbEUntvJe57COGrYHTM318JU-u1XVzqjLchan5IaYbbiEyqvU6BHhmx3sfpKFuiF1N-ZOW357QVTV1MWWO6gX1gpoqlUcxgfaWdzbme63h75noA17-ClKrLHO0wG7a76sPl_zsPkxs1z39Qd34fz_whc034BP269myyGawWGILrbADNHG-zJ73YYwD__by2ohK3EKYYTXZBFhECFzXxSNkg9ty9H1ydw8hG-ZQFjDCiovVVduOMLWnV5CBD_SbdoDwo7TU-_iuHAKV15Tuwq14aNRtVtjV0eHlwXHUCDVEjtACVaEi7-cSeyrzHAkH61y7foJGJd7rHkqTCOTCSyUSlznjLaGqcCgu48pbj0p8ZbNFWeA3BlQxWyNMbBNCalqjQW-UN5iZPE6cEB222zotdQ2LeRDTGKQ1_zJPaVjTMKwdtjVtOayZO_7SZr31e9rE7jjlmmBPQkhJd9hO5cB_2qcH54fhufrZhmtsjof7E0FRRq2z2cnoATcI1UzsZjV_3wFoBPez |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5iPOjF-MTVqCWInmYz26_ZxlMICasmQSSBHIRhuqc6UdeZZXdz0IP4E_yN_hKr57FRURBPA0PXMNPVNfVV0f19AE_YpZnxYpyYwppEaaESlzqZKONDUKUaE8XWwMGhmRyrlyf6ZA2e92dhWn6IVcMtRkbzv44BHhvSWxesoX5GQ8MJ9BJcVobLlIiI3qy4o0ZRv6AlSxVJyrC9Z55NxVZv-WsuugCYP8PUJs_sbcDb_g3b7SUfhudLN_SffyNv_M9PuA7XOvyJ2-2CuQFrVN2EjV7bAbtQvwVftnFB0_D967dOV-IU4yJr-SbQEWGku64-YTE9refvlmcfMSbEEusK59TQsfqm84gre76FBYbIwOmmhO9rx09fnNUz5AqbM148GI-dwM1tON7bPdqZJJ1WQ-IZMHAhKstxqWikiyCIobApjR9nZHUWghmRspkkIYPSMvOFt8ExsIr74gqhgwuk5R1Yr-qK7gJy0eystKnLGKwZQ5aC1cFSYcs081IO4Fnvtdx3ROZRT2OatxTMIudpzeO0DuDxauSsJe_4w5jN3vF5F76LXBhGPhmDJTOAp40H_2qf77zejdd7_zrwEVyZHB3s5_svDl_dh6siHqeIAjN6E9aX83N6wCBn6R42i_kH3RP71A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5qC-JLa6viadUVRJ9yze2vZOlTaXtUraWIhT4IIbuZba1nctxdH_Sh9E_o3-hf4mx-XGtREJ8CYSckOzuZb4bd7wN4RS5NtONppHOjI6m4jGxsRSS1814WMkUMrYEPB3rvSL47VscLsNmdhWn4IeYNtxAZ9f86BDiOC79xzRrqxtjXlEDvwJJUJg37-XY-zrmjBkG_oCFL5VFMsL1jno35Rmf5ey66Bpg3YWqdZ4Yr8Ll7w2Z7ydf--cz23Y9b5I3_-Qn3YbnFn2yrWTCrsIDlGqx02g6sDfUHcLHFpjjyPy-vWl2JExYWWcM3wSwiC3TX5XeWj06qyZfZ6TcWEmLBqpJNsKZjdXXnkc3t6RbLmQ8MnHaE7Kyy9PTpaTVmVGFTxgsH41krcPMQjoa7n7b3olarIXIEGKgQFUVaSByo3HMkKKwL7dIEjUq81wOUJhHIhZdKJC53xlsCVmFfXM6Vtx6VeASLZVXiY2BUNFsjTGwTAmtao0FvlDeYmyJOnBA9eNN5LXMtkXnQ0xhlDQUzz2haszCtPXg5HzluyDv-MGa9c3zWhu8045qQT0JgSffgde3Bv9pn24e74frkXwe-gLuHO8Ns_-3B-6dwj4fTFEFfRq3D4mxyjs8I48zs83ot_wKMKPtY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self%E2%80%90learning+artificial+bee+colony+algorithm+based+on+reinforcement+learning+for+a+flexible+job%E2%80%90shop+scheduling+problem&rft.jtitle=Concurrency+and+computation&rft.au=Long%2C+Xiaojun&rft.au=Zhang%2C+Jingtao&rft.au=Qi%2C+Xing&rft.au=Xu%2C+Wenlong&rft.date=2022-02-15&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=4&rft_id=info:doi/10.1002%2Fcpe.6658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_6658 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |