Spatiotemporal patterns in a diffusive predator–prey system with Leslie–Gower term and social behavior for the prey
In this paper, we deal with a new approximation of a diffusive predator–prey model with Leslie–Gower term and social behavior for the prey subject to Neumann boundary conditions. A new approach for a predator–prey interaction in the presence of prey social behavior has been considered. Our main topi...
Saved in:
Published in | Mathematical methods in the applied sciences Vol. 44; no. 18; pp. 13920 - 13944 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Freiburg
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0170-4214 1099-1476 |
DOI | 10.1002/mma.7666 |
Cover
Abstract | In this paper, we deal with a new approximation of a diffusive predator–prey model with Leslie–Gower term and social behavior for the prey subject to Neumann boundary conditions. A new approach for a predator–prey interaction in the presence of prey social behavior has been considered. Our main topic in this work is to study the influence of the prey's herd shape on the predator–prey interaction in the presence of Leslie–Gower term. First of all, we examine briefly the system without spatial diffusion. By analyzing the distribution of the eigenvalues associated with the constant equilibria, the local stability of the equilibrium points and the existence of Hopf bifurcation have been investigated. Then, the spatiotemporal dynamics introduced by self‐diffusion was determined, where the existence of the positive solution, Hopf bifurcation, Turing‐driven instability, and Turing–Hopf bifurcation point have been derived. Further, the effect of the prey's herd shape rate on the prey and predator equilibrium densities as well as on the Hopf bifurcating points has been discussed. Finally, by using the normal form theory on the center manifold, the direction and stability of the bifurcating periodic solutions have also been obtained. To illustrate the theoretical results, some graphical representations are given. |
---|---|
AbstractList | In this paper, we deal with a new approximation of a diffusive predator–prey model with Leslie–Gower term and social behavior for the prey subject to Neumann boundary conditions. A new approach for a predator–prey interaction in the presence of prey social behavior has been considered. Our main topic in this work is to study the influence of the prey's herd shape on the predator–prey interaction in the presence of Leslie–Gower term. First of all, we examine briefly the system without spatial diffusion. By analyzing the distribution of the eigenvalues associated with the constant equilibria, the local stability of the equilibrium points and the existence of Hopf bifurcation have been investigated. Then, the spatiotemporal dynamics introduced by self‐diffusion was determined, where the existence of the positive solution, Hopf bifurcation, Turing‐driven instability, and Turing–Hopf bifurcation point have been derived. Further, the effect of the prey's herd shape rate on the prey and predator equilibrium densities as well as on the Hopf bifurcating points has been discussed. Finally, by using the normal form theory on the center manifold, the direction and stability of the bifurcating periodic solutions have also been obtained. To illustrate the theoretical results, some graphical representations are given. |
Author | Souna, Fethi Lakmeche, Abdelkader |
Author_xml | – sequence: 1 givenname: Fethi orcidid: 0000-0001-5575-7957 surname: Souna fullname: Souna, Fethi email: fethiou91@gmail.com organization: Djillali Liabés University – sequence: 2 givenname: Abdelkader surname: Lakmeche fullname: Lakmeche, Abdelkader email: lakmeche@yahoo.fr organization: Djillali Liabés University |
BookMark | eNp1kE9PwyAchomZids08SOQePHSCf1D6XFZdJps8aCeCS2QsbSlAlvTm9_Bb-gnkW2ejB4IEJ73-YV3AkataSUA1xjNMELxXdPwWU4IOQNjjIoiwmlORmCMcI6iNMbpBZg4t0UIUYzjMehfOu618bLpjOU1DDcvbeugbiGHQiu1c3ovYWel4N7Yr4_PcBygG1zIwF77DVxJV2sZXpamlxaGfAN5K6AzlQ7KUm74XhsLVVh-c3QNl-Bc8drJq599Ct4e7l8Xj9Hqefm0mK-iKi4SEqksTxQlcUxoUtACqVhQVOW8LJOsFFWBqgQVKhElCX-lKsOpkEQQKqmgpEppMgU3J29nzftOOs-2ZmfbMJLFWZEHbZLiQN2eqMoa56xUrLO64XZgGLFDrSzUyg61BnT2C620P1TYest1_VcgOgV6XcvhXzFbr-dH_hvw-44l |
CitedBy_id | crossref_primary_10_3934_math_2024520 crossref_primary_10_1007_s12346_022_00700_z crossref_primary_10_1007_s12190_022_01768_1 crossref_primary_10_1142_S1793524522501005 crossref_primary_10_1002_mma_9262 crossref_primary_10_1038_s41598_023_28409_2 crossref_primary_10_1142_S1793524523500912 crossref_primary_10_3390_fractalfract7040312 crossref_primary_10_1186_s13661_023_01771_w crossref_primary_10_1038_s41598_023_28324_6 crossref_primary_10_1186_s13661_022_01685_z |
Cites_doi | 10.1016/j.ecocom.2013.01.004 10.1016/j.nonrwa.2018.01.011 10.1002/mma.5999 10.1016/j.chaos.2019.01.022 10.3934/mbe.2019070 10.2307/1467324 10.1142/S1793524520500308 10.1016/j.cnsns.2003.08.006 10.1016/j.ecocom.2012.01.002 10.1016/j.chaos.2019.109428 10.1002/mma.6036 10.1142/S1793524512600066 10.1186/s13662-020-03177-9 10.1016/j.physa.2018.06.072 10.1016/j.nonrwa.2016.02.006 10.1007/s12190-017-1137-9 10.1016/j.apm.2019.09.003 10.1016/j.cnsns.2015.10.002 10.1007/s10440-019-00291-z 10.1051/mmnp/2019044 10.1038/2231133a0 10.1016/j.nonrwa.2011.12.014 10.2307/3866 10.1016/j.amc.2013.08.057 10.1007/s40840-015-0261-7 10.1016/j.jde.2008.10.024 10.1016/j.chaos.2020.110180 10.1007/s12190-020-01373-0 10.1016/j.matcom.2017.04.009 10.1111/sapm.12165 10.1093/biomet/47.3-4.219 10.1007/s11071-016-2873-3 10.4039/Ent91293-5 10.1142/5815 10.1016/j.camwa.2018.03.044 10.1016/j.physd.2004.05.007 10.1016/j.aml.2009.06.004 10.1016/j.chaos.2020.109954 10.1016/j.chaos.2009.03.020 10.1016/j.chaos.2020.109960 10.1016/j.nonrwa.2018.06.006 10.1016/j.camwa.2014.04.015 10.1016/j.aml.2016.06.013 10.1007/s11071-013-1121-3 10.1016/j.nonrwa.2011.02.002 10.1016/j.aml.2007.10.026 10.2307/1936298 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
DOI | 10.1002/mma.7666 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-1476 |
EndPage | 13944 |
ExternalDocumentID | 10_1002_mma_7666 MMA7666 |
Genre | article |
GrantInformation_xml | – fundername: Direction Générale de la Recherche Scientifique et du Développement Technologique funderid: C00L03UN220120180004; C00L03UN220120200003 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION 7TB 8FD FR3 JQ2 KR7 |
ID | FETCH-LOGICAL-c2936-f573f86226839890f2d80c7abb35bdc90c309f3db60998f514de6d68e8d86c483 |
IEDL.DBID | DR2 |
ISSN | 0170-4214 |
IngestDate | Fri Jul 25 12:15:16 EDT 2025 Thu Apr 24 22:50:56 EDT 2025 Wed Oct 01 00:37:20 EDT 2025 Wed Jan 22 16:28:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2936-f573f86226839890f2d80c7abb35bdc90c309f3db60998f514de6d68e8d86c483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5575-7957 |
PQID | 2597683341 |
PQPubID | 1016386 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2597683341 crossref_primary_10_1002_mma_7666 crossref_citationtrail_10_1002_mma_7666 wiley_primary_10_1002_mma_7666_MMA7666 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Freiburg |
PublicationPlace_xml | – name: Freiburg |
PublicationTitle | Mathematical methods in the applied sciences |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 40 1965; 97 2009; 42 2020; 64 1975; 56 2019; 16 2016; 31 2020; 15 2020; 13 2011; 12 2020; 169 2012; 13 2018; 44 2012; 11 2018; 42 2014; 67 2019; 120 1907; 26 2016; 33 2013; 14 1960; 47 2020; 130 2020; 138 2016; 86 2008; 21 1975; 44 1981 2020; 43 2011; 29 2018; 75 2009; 246 2009; 22 2019; 9 2020; 140 1989; 8 2018; 509 2013; 224 1994 2005 2020; 77 1992 1969; 223 2017; 139 2018; 25 1959; 91 2021 2004; 196 2005; 10 2016; 62 2017; 141 2012; 05 2016; 29 1901; 23 2018; 58 2014; 76 e_1_2_10_23_1 e_1_2_10_46_1 Holling CS (e_1_2_10_19_1) 1965; 97 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_6_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 Lotka AJ (e_1_2_10_2_1) 1907; 26 e_1_2_10_11_1 e_1_2_10_32_1 Boudjema I (e_1_2_10_50_1) 2018; 25 e_1_2_10_30_1 e_1_2_10_51_1 Hassard B (e_1_2_10_53_1) 1981 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Djilali S (e_1_2_10_31_1) 2019; 9 Pal PJ (e_1_2_10_16_1) 2011; 29 Zhou XY (e_1_2_10_17_1) 2016; 29 e_1_2_10_52_1 e_1_2_10_5_1 e_1_2_10_38_1 Ye Q (e_1_2_10_55_1) 1994 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 Volterra V (e_1_2_10_3_1) 1901; 23 e_1_2_10_28_1 e_1_2_10_49_1 Pao C (e_1_2_10_54_1) 1992 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – year: 1981 – volume: 44 start-page: 331 issue: 1 year: 1975 end-page: 340 article-title: Mutual interference between parasites or predators and its effect on searching efficiency publication-title: J Anim Ecol – volume: 56 start-page: 881 issue: 4 year: 1975 end-page: 892 article-title: A model for tropic interaction publication-title: Ecology – year: 2005 – volume: 75 start-page: 4490 issue: 12 year: 2018 end-page: 4504 article-title: Spatiotemporal dynamics near steady state of a planktonic system publication-title: Comp Math Appl – volume: 10 start-page: 681 issue: 6 year: 2005 end-page: 691 article-title: Stability analysis of a prey–predator model incorporating a prey refuge publication-title: Comm Nonl Scie Numer Simu – volume: 43 start-page: 1736 issue: 4 year: 2020 end-page: 1752 article-title: Mathematical and numerical analysis of a three‐species n predator‐prey model with herd behavior and time fractional‐order derivative publication-title: Math Meth Appl Sci – volume: 91 start-page: 293 year: 1959 end-page: 320 article-title: The components of predation as revealed by a study of small‐mammal predation of the European pine sawfly publication-title: Can Entomol – volume: 05 start-page: 93 issue: 3 year: 2012 end-page: 110 article-title: Dynamics on a Holling predator–prey model with state‐dependent impulsive control publication-title: Int J Biomath – volume: 139 start-page: 371 issue: 3 year: 2017 end-page: 404 article-title: Stability, steady‐state bifurcations, and Turing patterns in a predator–prey model with herd behavior and prey‐taxis publication-title: Stud Appl Math – volume: 76 start-page: 201 issue: 1 year: 2014 end-page: 220 article-title: A delayed ratio‐dependent predator–prey model of interacting populations with Holling type functional response publication-title: Nonlinear Dyn – year: 1994 – volume: 40 start-page: 51 issue: 1 year: 2017 end-page: 73 article-title: The effect of delay on a diffusive predator–prey system with modified Leslie–Gower functional response publication-title: Bull Malays Math Sci Soc – volume: 15 start-page: 23 year: 2020 end-page: 24 article-title: Mathematical analysis of a diffusive predator‐prey model with herd behavior and prey escaping publication-title: Math Model Nat Phenom – year: 2021 article-title: The influence of an infectious disease on a prey‐predator model equipped with a fractional‐order derivative publication-title: Adv Differ Equ – volume: 246 start-page: 1944 issue: 5 year: 2009 end-page: 1977 article-title: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system publication-title: J Diff Equat – volume: 138 year: 2020 article-title: Turing–Hopf bifurcation in a diffusive mussel‐algae model with time‐fractional‐order derivative publication-title: Chaos, Solitons & Fractals – volume: 130 start-page: 109 year: 2020 end-page: 428 article-title: Pattern dynamics in a diffusive predator‐prey model with hunting cooperations publication-title: Chaos Solitons Fractals – volume: 21 start-page: 1215 issue: 11 year: 2008 end-page: 1220 article-title: Global asymptotic stability of positive steady states of a diffusive ratio‐dependent prey–predator model publication-title: Appl Math Lett – volume: 29 start-page: 781 issue: 3 year: 2011 end-page: 802 article-title: Mean square stability in a modified Leslie–Gower and Holling‐type predator–prey model publication-title: J Appl Math Inform – volume: 14 start-page: 37 year: 2013 end-page: 47 article-title: Spatiotemporal behavior of a prey–predator system with a group defense for prey publication-title: Ecol Complex – volume: 9 start-page: 638 issue: 2 year: 2019 end-page: 654 article-title: Effect of herd shape in a diffusive predator‐prey model with time delay publication-title: J Appl Anal Comput – volume: 120 start-page: 139 year: 2019 end-page: 148 article-title: Impact of prey herd shape on the predator‐prey interaction publication-title: Chaos, Solitons Fractals – volume: 33 start-page: 229 year: 2016 end-page: 258 article-title: Turing–Hopf bifurcation in the reaction diffusion equations and its applications publication-title: Commun Nonlinear Sci Numer Simul – volume: 58 start-page: 125 year: 2018 end-page: 149 article-title: Herd behavior in a predator–prey model with spatial diffusion: Bifurcation analysis and Turing instability publication-title: J Appl Math Comput – volume: 140 year: 2020 article-title: Spatiotemporal patterns in a diffusive predator‐prey model with protection zone and predator harvesting publication-title: Chaos Solitons Fractals – volume: 22 start-page: 1690 year: 2009 end-page: 1693 article-title: Global properties for virus dynamics model with Beddington‐DeAngelis functional response publication-title: Appl Math Lett – volume: 224 start-page: 196 year: 2013 end-page: 204 article-title: Effect of weak prey in Leslie–Gower predator–prey model publication-title: Appl Math Comput – volume: 138 year: 2020 article-title: Mathematical analysis of a fractional‐order predator‐prey model with prey social behavior and infection developed in predator population publication-title: Chaos, Solitons Fractals – volume: 11 start-page: 12 year: 2012 end-page: 27 article-title: Bifurcation analysis of a ratio‐dependent prey–predator model with the Allee effect publication-title: Ecol Complex – volume: 509 start-page: 982 year: 2018 end-page: 988 article-title: Bistability and Turing patterns induced by cross fraction diffusion in a predator‐prey model publication-title: Physica a – volume: 44 start-page: 589 year: 2018 end-page: 615 article-title: Positive steady states for a prey‐predator model with population flux by attractive transition publication-title: Nonlinear Anal Real World Appl – volume: 42 start-page: 1337 issue: 3 year: 2009 end-page: 1346 article-title: Dynamics of a three species food chain model with Crowley‐Martin type functional response publication-title: Chaos, Solitons Fractals – volume: 8 start-page: 211 issue: 3 year: 1989 end-page: 221 article-title: Functional responses and interference within and between year classes of a dragonfly population publication-title: JN Am Benthol Soc – volume: 77 start-page: 1373 issue: 2 year: 2020 end-page: 1390 article-title: Simple efficient simulation of the complex dynamics of some nonlinear hyperbolic predator–prey models with spatial diffusion publication-title: App Math Model – volume: 86 start-page: 73 issue: 1 year: 2016 end-page: 89 article-title: Turing–Hopf bifurcation analysis of a predator‐prey model with herd behavior and cross diffusion publication-title: Nonlinear Dyn – volume: 196 start-page: 172 issue: 1–2, 192 year: 2004 article-title: Stationary patterns for a prey–predator model with prey‐dependent and ratio‐dependent functional responses and diffusion publication-title: Physica D: Nonlinear Phenomena – volume: 25 start-page: 665 issue: 3 year: 2018 end-page: 687 article-title: Turing–Hopf bifurcation in Gauss‐type model with cross diffusion and its application publication-title: Nonlinear Stud – volume: 13 start-page: 1837 year: 2012 end-page: 1843 article-title: Predator–prey dynamics with square root functional responses publication-title: Nonlinear Anal Real World Appl – year: 1992 – volume: 23 start-page: 436 year: 1901 end-page: 458 article-title: Sui tentativi di applicazione della matematiche alle scienze bio‐ logiche e sociali publication-title: G degl Econ – volume: 13 issue: 4 year: 2020 article-title: Spatiotemporal patterns induced by cross‐diffusion in predator–prey model with prey herd shape effect publication-title: Int J Biomath – volume: 64 start-page: 665 year: 2020 end-page: 690 article-title: The effect of the defensive strategy taken by the prey on predator–prey interaction publication-title: J Appl Math Comput – volume: 67 start-page: 1978 year: 2014 end-page: 1997 article-title: Spatiotemporal dynamics in a diffusive ratio‐dependent predator‐prey model near a Hopf–Turing bifurcation point publication-title: Comput Math Appl – volume: 97 start-page: 1 issue: 45 year: 1965 end-page: 60 article-title: The functional response of predators to prey density and its role in mimicry and population dynamics publication-title: Mem Entomol Soc Can – volume: 16 start-page: 1445 issue: 3 year: 2019 end-page: 1470 article-title: A diffusive predator‐prey system with prey refuge and predator cannibalism publication-title: Math Biosci Eng – volume: 31 start-page: 356 year: 2016 end-page: 387 article-title: Spatial resonance and Turing–Hopf bifurcations in the Gierer–Meinhardt model publication-title: Nonlinear Anal Real World Appl – volume: 62 start-page: 42 year: 2016 end-page: 48 article-title: Global dynamics of a predator‐prey model with defence mechanism for prey publication-title: Appl Math Lett – volume: 223 start-page: 1133 year: 1969 end-page: 1137 article-title: New inductive population model for insect parasites and its bearing on biological control publication-title: Nature – volume: 12 start-page: 2319 issue: 4 year: 2011 end-page: 2338 article-title: Modeling herd behavior in population systems publication-title: Nonlinear Anal Real World Appl – volume: 26 start-page: 21 year: 1907 end-page: 22 article-title: Relation between birth rates and death rates publication-title: Adv Sci – volume: 141 start-page: 40 year: 2017 end-page: 55 article-title: Shape effects on herd behavior in ecological interacting population models publication-title: Math Comput Simulat – volume: 43 start-page: 2233 issue: 5 year: 2020 end-page: 2250 article-title: Pattern formation of a diffusive predator‐prey model with herd behavior and nonlocal prey competition publication-title: Math Meth Appl Scie – volume: 29 start-page: 141 year: 2016 end-page: 147 article-title: The coexistence of a modified Holling‐ type predator–prey model with Michaelis–Menten type prey harvesting publication-title: Basi Scie J Textile Universities – volume: 47 start-page: 219 issue: 3–4 year: 1960 end-page: 234 article-title: The properties of a stochastic model for the predator–prey type of interaction between two species publication-title: Biometrika – volume: 169 start-page: 125 year: 2020 end-page: 143 article-title: Spatiotemporal patterns in a diffusive predator‐prey model with prey social behavior publication-title: Acta Appl Math – volume: 42 start-page: 448 year: 2018 end-page: 477 article-title: Bifurcation and spatio‐temporal patterns in a diffusive predator‐prey system publication-title: Nonlinear Anal Real World Appl – ident: e_1_2_10_30_1 doi: 10.1016/j.ecocom.2013.01.004 – ident: e_1_2_10_10_1 doi: 10.1016/j.nonrwa.2018.01.011 – ident: e_1_2_10_32_1 doi: 10.1002/mma.5999 – ident: e_1_2_10_9_1 doi: 10.1016/j.chaos.2019.01.022 – ident: e_1_2_10_43_1 doi: 10.3934/mbe.2019070 – ident: e_1_2_10_25_1 doi: 10.2307/1467324 – ident: e_1_2_10_49_1 doi: 10.1142/S1793524520500308 – ident: e_1_2_10_4_1 doi: 10.1016/j.cnsns.2003.08.006 – ident: e_1_2_10_5_1 doi: 10.1016/j.ecocom.2012.01.002 – ident: e_1_2_10_52_1 doi: 10.1016/j.chaos.2019.109428 – ident: e_1_2_10_48_1 doi: 10.1002/mma.6036 – volume-title: Nonlinear Parabolic and Elliptic Equations year: 1992 ident: e_1_2_10_54_1 – ident: e_1_2_10_20_1 doi: 10.1142/S1793524512600066 – ident: e_1_2_10_34_1 doi: 10.1186/s13662-020-03177-9 – ident: e_1_2_10_47_1 doi: 10.1016/j.physa.2018.06.072 – volume: 97 start-page: 1 issue: 45 year: 1965 ident: e_1_2_10_19_1 article-title: The functional response of predators to prey density and its role in mimicry and population dynamics publication-title: Mem Entomol Soc Can – ident: e_1_2_10_46_1 doi: 10.1016/j.nonrwa.2016.02.006 – ident: e_1_2_10_11_1 doi: 10.1007/s12190-017-1137-9 – ident: e_1_2_10_51_1 doi: 10.1016/j.apm.2019.09.003 – ident: e_1_2_10_41_1 doi: 10.1016/j.cnsns.2015.10.002 – ident: e_1_2_10_12_1 doi: 10.1007/s10440-019-00291-z – ident: e_1_2_10_38_1 doi: 10.1051/mmnp/2019044 – ident: e_1_2_10_14_1 doi: 10.1038/2231133a0 – volume: 25 start-page: 665 issue: 3 year: 2018 ident: e_1_2_10_50_1 article-title: Turing–Hopf bifurcation in Gauss‐type model with cross diffusion and its application publication-title: Nonlinear Stud – ident: e_1_2_10_27_1 doi: 10.1016/j.nonrwa.2011.12.014 – ident: e_1_2_10_21_1 doi: 10.2307/3866 – volume-title: Theory and Application of Hopf Bifurcation year: 1981 ident: e_1_2_10_53_1 – ident: e_1_2_10_36_1 doi: 10.1016/j.amc.2013.08.057 – volume: 26 start-page: 21 year: 1907 ident: e_1_2_10_2_1 article-title: Relation between birth rates and death rates publication-title: Adv Sci – ident: e_1_2_10_37_1 doi: 10.1007/s40840-015-0261-7 – volume-title: Introduction to Reaction‐Diffusion Equations year: 1994 ident: e_1_2_10_55_1 – volume: 29 start-page: 141 year: 2016 ident: e_1_2_10_17_1 article-title: The coexistence of a modified Holling‐IV type predator–prey model with Michaelis–Menten type prey harvesting publication-title: Basi Scie J Textile Universities – ident: e_1_2_10_58_1 doi: 10.1016/j.jde.2008.10.024 – volume: 29 start-page: 781 issue: 3 year: 2011 ident: e_1_2_10_16_1 article-title: Mean square stability in a modified Leslie–Gower and Holling‐type II predator–prey model publication-title: J Appl Math Inform – ident: e_1_2_10_39_1 doi: 10.1016/j.chaos.2020.110180 – ident: e_1_2_10_28_1 doi: 10.1007/s12190-020-01373-0 – ident: e_1_2_10_8_1 doi: 10.1016/j.matcom.2017.04.009 – ident: e_1_2_10_6_1 doi: 10.1111/sapm.12165 – ident: e_1_2_10_35_1 doi: 10.1093/biomet/47.3-4.219 – ident: e_1_2_10_42_1 doi: 10.1007/s11071-016-2873-3 – ident: e_1_2_10_18_1 doi: 10.4039/Ent91293-5 – ident: e_1_2_10_57_1 doi: 10.1142/5815 – ident: e_1_2_10_44_1 doi: 10.1016/j.camwa.2018.03.044 – ident: e_1_2_10_7_1 doi: 10.1016/j.physd.2004.05.007 – ident: e_1_2_10_23_1 doi: 10.1016/j.aml.2009.06.004 – ident: e_1_2_10_13_1 doi: 10.1016/j.chaos.2020.109954 – ident: e_1_2_10_24_1 doi: 10.1016/j.chaos.2009.03.020 – ident: e_1_2_10_33_1 doi: 10.1016/j.chaos.2020.109960 – ident: e_1_2_10_45_1 doi: 10.1016/j.nonrwa.2018.06.006 – volume: 23 start-page: 436 year: 1901 ident: e_1_2_10_3_1 article-title: Sui tentativi di applicazione della matematiche alle scienze bio‐ logiche e sociali publication-title: G degl Econ – ident: e_1_2_10_40_1 doi: 10.1016/j.camwa.2014.04.015 – ident: e_1_2_10_29_1 doi: 10.1016/j.aml.2016.06.013 – ident: e_1_2_10_15_1 doi: 10.1007/s11071-013-1121-3 – volume: 9 start-page: 638 issue: 2 year: 2019 ident: e_1_2_10_31_1 article-title: Effect of herd shape in a diffusive predator‐prey model with time delay publication-title: J Appl Anal Comput – ident: e_1_2_10_26_1 doi: 10.1016/j.nonrwa.2011.02.002 – ident: e_1_2_10_56_1 doi: 10.1016/j.aml.2007.10.026 – ident: e_1_2_10_22_1 doi: 10.2307/1936298 |
SSID | ssj0008112 |
Score | 2.340672 |
Snippet | In this paper, we deal with a new approximation of a diffusive predator–prey model with Leslie–Gower term and social behavior for the prey subject to Neumann... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13920 |
SubjectTerms | Bifurcation theory Boundary conditions Canonical forms Eigenvalues general biology and biomathematics Graphical representations herd shape Hopf bifurcation Leslie–Gower term Predators predator–prey model Stability Turing‐driven instability Turing–Hopf bifurcation |
Title | Spatiotemporal patterns in a diffusive predator–prey system with Leslie–Gower term and social behavior for the prey |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.7666 https://www.proquest.com/docview/2597683341 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0170-4214 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008112 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUqVu2CV4sYmFYXqeKxyODEieMsUdXpqOqwoCAhsYj8ioSAMJrMCMGKf-AP-yW9dpIZQCAhVokUO3JsX99z7ZNzCfkuU61To8LAhtYEcZroQESSB0kWSlqgZVLtCbKHfHAS_z5NThtWpfsXptaHmG24Ocvw67UzcKmq_blo6NWV7KUIvnH5DVniT2iP5spRIvQHnU4dJoijMG51Z2m031Z86onm8PIxSPVepr9Eztr21eSSi950onr67pl04_s-YJksNuATDurZskI-2HKVfBrOlFurVbLSGHsFu40i9d5ncvPX864bGatLGHlRzrKC8xIkuBwrU8eCh9HYGhfE_7t_wNtbqGWiwe31wh-LiNbik18uLxs4jwCyNFBv2kMrFwAIogHb4951-4Wc9H8e_xgETcaGQCNs4EGRpKzAGCniiLtERovICKpTqRRLlNEZ1YxmBTOKIzAVBYI1Y7nhwgojuI4FWyML5XVp1wmwuEAsRHWcMRqHUipcm9BJJMoapgxXHbLTjl6uGzlzl1XjMq-FmKMc-zd3_dshW7OSo1rC44Uy3XYC5I0RVzlGhhiMMfTzHbLtR_LV-vlweOCuG28tuEk-Ro4d44kxXbIwGU_tV4Q3E_XNT-T_OvX61A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VcgAOpS0glpYySIifQ7ZOnDiOOFVAWWC3B2ilHpAi_0Wq2oZVd1dVe-o79A15EsZOsgsIJMQpkTKOHNvj-WY8-QbgmcqNya2OIxc7G6V5ZiKZKBFlRaxYRZrJTEiQ3RODg_TjYXa4BK-7f2Eafoh5wM1rRtivvYL7gPT2gjX09FT1c0LfN-CmP57zWvn284I7SsbhqNPzw0RpEqcd8yxLtruWv9qiBcD8GaYGO7N7F752PWzSS477s6num8vfyBv_8xNWYaXFn7jTLJg1WHL1OtwZzclbJ-uw1ur7BF-2pNSv7sH5l5B63TJZneA48HLWEzyqUaEvszLzifA4PnPW-_Hfr67p9gIbpmj04V4cOgK1jp6896XZ0BsFVLXFJm6PHWMAEo5G6o9_18V9ONh9t_9mELVFGyJDyEFEVZbzitykRBD0kgWrEiuZyZXWPNPWFMxwVlTcakHYVFaE16wTVkgnrRQmlfwBLNffavcQkKcVwSFm0oKzNFZK0_ZEdiLTznJthe7Bi276StMymvvCGidlw8WclDS-pR_fHjydS44bFo8_yGx2K6Bs9XhSknNI_hgnU9-D52Eq_9q-HI12_PXRvwo-gVuD_dGwHH7Y-7QBtxOfLBPyZDZheXo2c48J7Uz1VljVPwDT_v7w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEMdHUCRED0ALqEsLDBLi45CtEzuOc6yApUC3QkClShwif0Wq2oZVd1eoPfEOvCFPwthJdgGBhDglUuwosT2e_ziTnwEe6cLawpk08al3iShym6hMyyQvU81qskxmY4Lsvtw9EG8O88MuqzL8C9PyIRYLbsEy4nwdDHzi6u0lNPT0VA8LEt-X4YqQFFwFQfR-iY5SafzSGfAwichS0YNnWbbd1_zVFS315c8qNbqZ0Q341D9gm11yPJzPzNBe_MZu_L83uAnXO_WJO-1wWYNLvlmH1fEC3Tpdh7XO2qf4tENSP7sFXz7ExOuOY3WCk0jlbKZ41KDGsMnKPKTB4-TMuxDFf__6jU7PseVEY1jsxT1PktbTlVdhYzYMLgF147BdtceeF4CkopGeJ9zr_DYcjF5-fL6bdFs2JJZ0g0zqvOA1BUmZJOGlSlZnTjFbaGN4bpwtmeWsrLkzkpSpqkmtOS-dVF45Ja1Q_A6sNJ8bvwHIRU1iiFlRciZSrQ1NTuQlcuMdN06aATzpe6-yHc88bKtxUrUk5qyi9q1C-w7g4aLkpGV4_KHMVj8Aqs6KpxWFhhSNcXL0A3gce_Kv9avxeCcc7_5rwQdw9d2LUbX3ev_tJlzLQqZMTJLZgpXZ2dzfI6kzM_fjmP4B6Yr9nw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+patterns+in+a+diffusive+predator%E2%80%93prey+system+with+Leslie%E2%80%93Gower+term+and+social+behavior+for+the+prey&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Souna%2C+Fethi&rft.au=Lakmeche%2C+Abdelkader&rft.date=2021-12-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=44&rft.issue=18&rft.spage=13920&rft.epage=13944&rft_id=info:doi/10.1002%2Fmma.7666&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_7666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon |