Spatiotemporal patterns in a diffusive predator–prey system with Leslie–Gower term and social behavior for the prey

In this paper, we deal with a new approximation of a diffusive predator–prey model with Leslie–Gower term and social behavior for the prey subject to Neumann boundary conditions. A new approach for a predator–prey interaction in the presence of prey social behavior has been considered. Our main topi...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 44; no. 18; pp. 13920 - 13944
Main Authors Souna, Fethi, Lakmeche, Abdelkader
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.7666

Cover

Abstract In this paper, we deal with a new approximation of a diffusive predator–prey model with Leslie–Gower term and social behavior for the prey subject to Neumann boundary conditions. A new approach for a predator–prey interaction in the presence of prey social behavior has been considered. Our main topic in this work is to study the influence of the prey's herd shape on the predator–prey interaction in the presence of Leslie–Gower term. First of all, we examine briefly the system without spatial diffusion. By analyzing the distribution of the eigenvalues associated with the constant equilibria, the local stability of the equilibrium points and the existence of Hopf bifurcation have been investigated. Then, the spatiotemporal dynamics introduced by self‐diffusion was determined, where the existence of the positive solution, Hopf bifurcation, Turing‐driven instability, and Turing–Hopf bifurcation point have been derived. Further, the effect of the prey's herd shape rate on the prey and predator equilibrium densities as well as on the Hopf bifurcating points has been discussed. Finally, by using the normal form theory on the center manifold, the direction and stability of the bifurcating periodic solutions have also been obtained. To illustrate the theoretical results, some graphical representations are given.
AbstractList In this paper, we deal with a new approximation of a diffusive predator–prey model with Leslie–Gower term and social behavior for the prey subject to Neumann boundary conditions. A new approach for a predator–prey interaction in the presence of prey social behavior has been considered. Our main topic in this work is to study the influence of the prey's herd shape on the predator–prey interaction in the presence of Leslie–Gower term. First of all, we examine briefly the system without spatial diffusion. By analyzing the distribution of the eigenvalues associated with the constant equilibria, the local stability of the equilibrium points and the existence of Hopf bifurcation have been investigated. Then, the spatiotemporal dynamics introduced by self‐diffusion was determined, where the existence of the positive solution, Hopf bifurcation, Turing‐driven instability, and Turing–Hopf bifurcation point have been derived. Further, the effect of the prey's herd shape rate on the prey and predator equilibrium densities as well as on the Hopf bifurcating points has been discussed. Finally, by using the normal form theory on the center manifold, the direction and stability of the bifurcating periodic solutions have also been obtained. To illustrate the theoretical results, some graphical representations are given.
Author Souna, Fethi
Lakmeche, Abdelkader
Author_xml – sequence: 1
  givenname: Fethi
  orcidid: 0000-0001-5575-7957
  surname: Souna
  fullname: Souna, Fethi
  email: fethiou91@gmail.com
  organization: Djillali Liabés University
– sequence: 2
  givenname: Abdelkader
  surname: Lakmeche
  fullname: Lakmeche, Abdelkader
  email: lakmeche@yahoo.fr
  organization: Djillali Liabés University
BookMark eNp1kE9PwyAchomZids08SOQePHSCf1D6XFZdJps8aCeCS2QsbSlAlvTm9_Bb-gnkW2ejB4IEJ73-YV3AkataSUA1xjNMELxXdPwWU4IOQNjjIoiwmlORmCMcI6iNMbpBZg4t0UIUYzjMehfOu618bLpjOU1DDcvbeugbiGHQiu1c3ovYWel4N7Yr4_PcBygG1zIwF77DVxJV2sZXpamlxaGfAN5K6AzlQ7KUm74XhsLVVh-c3QNl-Bc8drJq599Ct4e7l8Xj9Hqefm0mK-iKi4SEqksTxQlcUxoUtACqVhQVOW8LJOsFFWBqgQVKhElCX-lKsOpkEQQKqmgpEppMgU3J29nzftOOs-2ZmfbMJLFWZEHbZLiQN2eqMoa56xUrLO64XZgGLFDrSzUyg61BnT2C620P1TYest1_VcgOgV6XcvhXzFbr-dH_hvw-44l
CitedBy_id crossref_primary_10_3934_math_2024520
crossref_primary_10_1007_s12346_022_00700_z
crossref_primary_10_1007_s12190_022_01768_1
crossref_primary_10_1142_S1793524522501005
crossref_primary_10_1002_mma_9262
crossref_primary_10_1038_s41598_023_28409_2
crossref_primary_10_1142_S1793524523500912
crossref_primary_10_3390_fractalfract7040312
crossref_primary_10_1186_s13661_023_01771_w
crossref_primary_10_1038_s41598_023_28324_6
crossref_primary_10_1186_s13661_022_01685_z
Cites_doi 10.1016/j.ecocom.2013.01.004
10.1016/j.nonrwa.2018.01.011
10.1002/mma.5999
10.1016/j.chaos.2019.01.022
10.3934/mbe.2019070
10.2307/1467324
10.1142/S1793524520500308
10.1016/j.cnsns.2003.08.006
10.1016/j.ecocom.2012.01.002
10.1016/j.chaos.2019.109428
10.1002/mma.6036
10.1142/S1793524512600066
10.1186/s13662-020-03177-9
10.1016/j.physa.2018.06.072
10.1016/j.nonrwa.2016.02.006
10.1007/s12190-017-1137-9
10.1016/j.apm.2019.09.003
10.1016/j.cnsns.2015.10.002
10.1007/s10440-019-00291-z
10.1051/mmnp/2019044
10.1038/2231133a0
10.1016/j.nonrwa.2011.12.014
10.2307/3866
10.1016/j.amc.2013.08.057
10.1007/s40840-015-0261-7
10.1016/j.jde.2008.10.024
10.1016/j.chaos.2020.110180
10.1007/s12190-020-01373-0
10.1016/j.matcom.2017.04.009
10.1111/sapm.12165
10.1093/biomet/47.3-4.219
10.1007/s11071-016-2873-3
10.4039/Ent91293-5
10.1142/5815
10.1016/j.camwa.2018.03.044
10.1016/j.physd.2004.05.007
10.1016/j.aml.2009.06.004
10.1016/j.chaos.2020.109954
10.1016/j.chaos.2009.03.020
10.1016/j.chaos.2020.109960
10.1016/j.nonrwa.2018.06.006
10.1016/j.camwa.2014.04.015
10.1016/j.aml.2016.06.013
10.1007/s11071-013-1121-3
10.1016/j.nonrwa.2011.02.002
10.1016/j.aml.2007.10.026
10.2307/1936298
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.7666
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 13944
ExternalDocumentID 10_1002_mma_7666
MMA7666
Genre article
GrantInformation_xml – fundername: Direction Générale de la Recherche Scientifique et du Développement Technologique
  funderid: C00L03UN220120180004; C00L03UN220120200003
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2936-f573f86226839890f2d80c7abb35bdc90c309f3db60998f514de6d68e8d86c483
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Fri Jul 25 12:15:16 EDT 2025
Thu Apr 24 22:50:56 EDT 2025
Wed Oct 01 00:37:20 EDT 2025
Wed Jan 22 16:28:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2936-f573f86226839890f2d80c7abb35bdc90c309f3db60998f514de6d68e8d86c483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5575-7957
PQID 2597683341
PQPubID 1016386
PageCount 25
ParticipantIDs proquest_journals_2597683341
crossref_primary_10_1002_mma_7666
crossref_citationtrail_10_1002_mma_7666
wiley_primary_10_1002_mma_7666_MMA7666
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
1965; 97
2009; 42
2020; 64
1975; 56
2019; 16
2016; 31
2020; 15
2020; 13
2011; 12
2020; 169
2012; 13
2018; 44
2012; 11
2018; 42
2014; 67
2019; 120
1907; 26
2016; 33
2013; 14
1960; 47
2020; 130
2020; 138
2016; 86
2008; 21
1975; 44
1981
2020; 43
2011; 29
2018; 75
2009; 246
2009; 22
2019; 9
2020; 140
1989; 8
2018; 509
2013; 224
1994
2005
2020; 77
1992
1969; 223
2017; 139
2018; 25
1959; 91
2021
2004; 196
2005; 10
2016; 62
2017; 141
2012; 05
2016; 29
1901; 23
2018; 58
2014; 76
e_1_2_10_23_1
e_1_2_10_46_1
Holling CS (e_1_2_10_19_1) 1965; 97
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_6_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
Lotka AJ (e_1_2_10_2_1) 1907; 26
e_1_2_10_11_1
e_1_2_10_32_1
Boudjema I (e_1_2_10_50_1) 2018; 25
e_1_2_10_30_1
e_1_2_10_51_1
Hassard B (e_1_2_10_53_1) 1981
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Djilali S (e_1_2_10_31_1) 2019; 9
Pal PJ (e_1_2_10_16_1) 2011; 29
Zhou XY (e_1_2_10_17_1) 2016; 29
e_1_2_10_52_1
e_1_2_10_5_1
e_1_2_10_38_1
Ye Q (e_1_2_10_55_1) 1994
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
Volterra V (e_1_2_10_3_1) 1901; 23
e_1_2_10_28_1
e_1_2_10_49_1
Pao C (e_1_2_10_54_1) 1992
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – year: 1981
– volume: 44
  start-page: 331
  issue: 1
  year: 1975
  end-page: 340
  article-title: Mutual interference between parasites or predators and its effect on searching efficiency
  publication-title: J Anim Ecol
– volume: 56
  start-page: 881
  issue: 4
  year: 1975
  end-page: 892
  article-title: A model for tropic interaction
  publication-title: Ecology
– year: 2005
– volume: 75
  start-page: 4490
  issue: 12
  year: 2018
  end-page: 4504
  article-title: Spatiotemporal dynamics near steady state of a planktonic system
  publication-title: Comp Math Appl
– volume: 10
  start-page: 681
  issue: 6
  year: 2005
  end-page: 691
  article-title: Stability analysis of a prey–predator model incorporating a prey refuge
  publication-title: Comm Nonl Scie Numer Simu
– volume: 43
  start-page: 1736
  issue: 4
  year: 2020
  end-page: 1752
  article-title: Mathematical and numerical analysis of a three‐species n predator‐prey model with herd behavior and time fractional‐order derivative
  publication-title: Math Meth Appl Sci
– volume: 91
  start-page: 293
  year: 1959
  end-page: 320
  article-title: The components of predation as revealed by a study of small‐mammal predation of the European pine sawfly
  publication-title: Can Entomol
– volume: 05
  start-page: 93
  issue: 3
  year: 2012
  end-page: 110
  article-title: Dynamics on a Holling predator–prey model with state‐dependent impulsive control
  publication-title: Int J Biomath
– volume: 139
  start-page: 371
  issue: 3
  year: 2017
  end-page: 404
  article-title: Stability, steady‐state bifurcations, and Turing patterns in a predator–prey model with herd behavior and prey‐taxis
  publication-title: Stud Appl Math
– volume: 76
  start-page: 201
  issue: 1
  year: 2014
  end-page: 220
  article-title: A delayed ratio‐dependent predator–prey model of interacting populations with Holling type functional response
  publication-title: Nonlinear Dyn
– year: 1994
– volume: 40
  start-page: 51
  issue: 1
  year: 2017
  end-page: 73
  article-title: The effect of delay on a diffusive predator–prey system with modified Leslie–Gower functional response
  publication-title: Bull Malays Math Sci Soc
– volume: 15
  start-page: 23
  year: 2020
  end-page: 24
  article-title: Mathematical analysis of a diffusive predator‐prey model with herd behavior and prey escaping
  publication-title: Math Model Nat Phenom
– year: 2021
  article-title: The influence of an infectious disease on a prey‐predator model equipped with a fractional‐order derivative
  publication-title: Adv Differ Equ
– volume: 246
  start-page: 1944
  issue: 5
  year: 2009
  end-page: 1977
  article-title: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system
  publication-title: J Diff Equat
– volume: 138
  year: 2020
  article-title: Turing–Hopf bifurcation in a diffusive mussel‐algae model with time‐fractional‐order derivative
  publication-title: Chaos, Solitons & Fractals
– volume: 130
  start-page: 109
  year: 2020
  end-page: 428
  article-title: Pattern dynamics in a diffusive predator‐prey model with hunting cooperations
  publication-title: Chaos Solitons Fractals
– volume: 21
  start-page: 1215
  issue: 11
  year: 2008
  end-page: 1220
  article-title: Global asymptotic stability of positive steady states of a diffusive ratio‐dependent prey–predator model
  publication-title: Appl Math Lett
– volume: 29
  start-page: 781
  issue: 3
  year: 2011
  end-page: 802
  article-title: Mean square stability in a modified Leslie–Gower and Holling‐type predator–prey model
  publication-title: J Appl Math Inform
– volume: 14
  start-page: 37
  year: 2013
  end-page: 47
  article-title: Spatiotemporal behavior of a prey–predator system with a group defense for prey
  publication-title: Ecol Complex
– volume: 9
  start-page: 638
  issue: 2
  year: 2019
  end-page: 654
  article-title: Effect of herd shape in a diffusive predator‐prey model with time delay
  publication-title: J Appl Anal Comput
– volume: 120
  start-page: 139
  year: 2019
  end-page: 148
  article-title: Impact of prey herd shape on the predator‐prey interaction
  publication-title: Chaos, Solitons Fractals
– volume: 33
  start-page: 229
  year: 2016
  end-page: 258
  article-title: Turing–Hopf bifurcation in the reaction diffusion equations and its applications
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 58
  start-page: 125
  year: 2018
  end-page: 149
  article-title: Herd behavior in a predator–prey model with spatial diffusion: Bifurcation analysis and Turing instability
  publication-title: J Appl Math Comput
– volume: 140
  year: 2020
  article-title: Spatiotemporal patterns in a diffusive predator‐prey model with protection zone and predator harvesting
  publication-title: Chaos Solitons Fractals
– volume: 22
  start-page: 1690
  year: 2009
  end-page: 1693
  article-title: Global properties for virus dynamics model with Beddington‐DeAngelis functional response
  publication-title: Appl Math Lett
– volume: 224
  start-page: 196
  year: 2013
  end-page: 204
  article-title: Effect of weak prey in Leslie–Gower predator–prey model
  publication-title: Appl Math Comput
– volume: 138
  year: 2020
  article-title: Mathematical analysis of a fractional‐order predator‐prey model with prey social behavior and infection developed in predator population
  publication-title: Chaos, Solitons Fractals
– volume: 11
  start-page: 12
  year: 2012
  end-page: 27
  article-title: Bifurcation analysis of a ratio‐dependent prey–predator model with the Allee effect
  publication-title: Ecol Complex
– volume: 509
  start-page: 982
  year: 2018
  end-page: 988
  article-title: Bistability and Turing patterns induced by cross fraction diffusion in a predator‐prey model
  publication-title: Physica a
– volume: 44
  start-page: 589
  year: 2018
  end-page: 615
  article-title: Positive steady states for a prey‐predator model with population flux by attractive transition
  publication-title: Nonlinear Anal Real World Appl
– volume: 42
  start-page: 1337
  issue: 3
  year: 2009
  end-page: 1346
  article-title: Dynamics of a three species food chain model with Crowley‐Martin type functional response
  publication-title: Chaos, Solitons Fractals
– volume: 8
  start-page: 211
  issue: 3
  year: 1989
  end-page: 221
  article-title: Functional responses and interference within and between year classes of a dragonfly population
  publication-title: JN Am Benthol Soc
– volume: 77
  start-page: 1373
  issue: 2
  year: 2020
  end-page: 1390
  article-title: Simple efficient simulation of the complex dynamics of some nonlinear hyperbolic predator–prey models with spatial diffusion
  publication-title: App Math Model
– volume: 86
  start-page: 73
  issue: 1
  year: 2016
  end-page: 89
  article-title: Turing–Hopf bifurcation analysis of a predator‐prey model with herd behavior and cross diffusion
  publication-title: Nonlinear Dyn
– volume: 196
  start-page: 172
  issue: 1–2, 192
  year: 2004
  article-title: Stationary patterns for a prey–predator model with prey‐dependent and ratio‐dependent functional responses and diffusion
  publication-title: Physica D: Nonlinear Phenomena
– volume: 25
  start-page: 665
  issue: 3
  year: 2018
  end-page: 687
  article-title: Turing–Hopf bifurcation in Gauss‐type model with cross diffusion and its application
  publication-title: Nonlinear Stud
– volume: 13
  start-page: 1837
  year: 2012
  end-page: 1843
  article-title: Predator–prey dynamics with square root functional responses
  publication-title: Nonlinear Anal Real World Appl
– year: 1992
– volume: 23
  start-page: 436
  year: 1901
  end-page: 458
  article-title: Sui tentativi di applicazione della matematiche alle scienze bio‐ logiche e sociali
  publication-title: G degl Econ
– volume: 13
  issue: 4
  year: 2020
  article-title: Spatiotemporal patterns induced by cross‐diffusion in predator–prey model with prey herd shape effect
  publication-title: Int J Biomath
– volume: 64
  start-page: 665
  year: 2020
  end-page: 690
  article-title: The effect of the defensive strategy taken by the prey on predator–prey interaction
  publication-title: J Appl Math Comput
– volume: 67
  start-page: 1978
  year: 2014
  end-page: 1997
  article-title: Spatiotemporal dynamics in a diffusive ratio‐dependent predator‐prey model near a Hopf–Turing bifurcation point
  publication-title: Comput Math Appl
– volume: 97
  start-page: 1
  issue: 45
  year: 1965
  end-page: 60
  article-title: The functional response of predators to prey density and its role in mimicry and population dynamics
  publication-title: Mem Entomol Soc Can
– volume: 16
  start-page: 1445
  issue: 3
  year: 2019
  end-page: 1470
  article-title: A diffusive predator‐prey system with prey refuge and predator cannibalism
  publication-title: Math Biosci Eng
– volume: 31
  start-page: 356
  year: 2016
  end-page: 387
  article-title: Spatial resonance and Turing–Hopf bifurcations in the Gierer–Meinhardt model
  publication-title: Nonlinear Anal Real World Appl
– volume: 62
  start-page: 42
  year: 2016
  end-page: 48
  article-title: Global dynamics of a predator‐prey model with defence mechanism for prey
  publication-title: Appl Math Lett
– volume: 223
  start-page: 1133
  year: 1969
  end-page: 1137
  article-title: New inductive population model for insect parasites and its bearing on biological control
  publication-title: Nature
– volume: 12
  start-page: 2319
  issue: 4
  year: 2011
  end-page: 2338
  article-title: Modeling herd behavior in population systems
  publication-title: Nonlinear Anal Real World Appl
– volume: 26
  start-page: 21
  year: 1907
  end-page: 22
  article-title: Relation between birth rates and death rates
  publication-title: Adv Sci
– volume: 141
  start-page: 40
  year: 2017
  end-page: 55
  article-title: Shape effects on herd behavior in ecological interacting population models
  publication-title: Math Comput Simulat
– volume: 43
  start-page: 2233
  issue: 5
  year: 2020
  end-page: 2250
  article-title: Pattern formation of a diffusive predator‐prey model with herd behavior and nonlocal prey competition
  publication-title: Math Meth Appl Scie
– volume: 29
  start-page: 141
  year: 2016
  end-page: 147
  article-title: The coexistence of a modified Holling‐ type predator–prey model with Michaelis–Menten type prey harvesting
  publication-title: Basi Scie J Textile Universities
– volume: 47
  start-page: 219
  issue: 3–4
  year: 1960
  end-page: 234
  article-title: The properties of a stochastic model for the predator–prey type of interaction between two species
  publication-title: Biometrika
– volume: 169
  start-page: 125
  year: 2020
  end-page: 143
  article-title: Spatiotemporal patterns in a diffusive predator‐prey model with prey social behavior
  publication-title: Acta Appl Math
– volume: 42
  start-page: 448
  year: 2018
  end-page: 477
  article-title: Bifurcation and spatio‐temporal patterns in a diffusive predator‐prey system
  publication-title: Nonlinear Anal Real World Appl
– ident: e_1_2_10_30_1
  doi: 10.1016/j.ecocom.2013.01.004
– ident: e_1_2_10_10_1
  doi: 10.1016/j.nonrwa.2018.01.011
– ident: e_1_2_10_32_1
  doi: 10.1002/mma.5999
– ident: e_1_2_10_9_1
  doi: 10.1016/j.chaos.2019.01.022
– ident: e_1_2_10_43_1
  doi: 10.3934/mbe.2019070
– ident: e_1_2_10_25_1
  doi: 10.2307/1467324
– ident: e_1_2_10_49_1
  doi: 10.1142/S1793524520500308
– ident: e_1_2_10_4_1
  doi: 10.1016/j.cnsns.2003.08.006
– ident: e_1_2_10_5_1
  doi: 10.1016/j.ecocom.2012.01.002
– ident: e_1_2_10_52_1
  doi: 10.1016/j.chaos.2019.109428
– ident: e_1_2_10_48_1
  doi: 10.1002/mma.6036
– volume-title: Nonlinear Parabolic and Elliptic Equations
  year: 1992
  ident: e_1_2_10_54_1
– ident: e_1_2_10_20_1
  doi: 10.1142/S1793524512600066
– ident: e_1_2_10_34_1
  doi: 10.1186/s13662-020-03177-9
– ident: e_1_2_10_47_1
  doi: 10.1016/j.physa.2018.06.072
– volume: 97
  start-page: 1
  issue: 45
  year: 1965
  ident: e_1_2_10_19_1
  article-title: The functional response of predators to prey density and its role in mimicry and population dynamics
  publication-title: Mem Entomol Soc Can
– ident: e_1_2_10_46_1
  doi: 10.1016/j.nonrwa.2016.02.006
– ident: e_1_2_10_11_1
  doi: 10.1007/s12190-017-1137-9
– ident: e_1_2_10_51_1
  doi: 10.1016/j.apm.2019.09.003
– ident: e_1_2_10_41_1
  doi: 10.1016/j.cnsns.2015.10.002
– ident: e_1_2_10_12_1
  doi: 10.1007/s10440-019-00291-z
– ident: e_1_2_10_38_1
  doi: 10.1051/mmnp/2019044
– ident: e_1_2_10_14_1
  doi: 10.1038/2231133a0
– volume: 25
  start-page: 665
  issue: 3
  year: 2018
  ident: e_1_2_10_50_1
  article-title: Turing–Hopf bifurcation in Gauss‐type model with cross diffusion and its application
  publication-title: Nonlinear Stud
– ident: e_1_2_10_27_1
  doi: 10.1016/j.nonrwa.2011.12.014
– ident: e_1_2_10_21_1
  doi: 10.2307/3866
– volume-title: Theory and Application of Hopf Bifurcation
  year: 1981
  ident: e_1_2_10_53_1
– ident: e_1_2_10_36_1
  doi: 10.1016/j.amc.2013.08.057
– volume: 26
  start-page: 21
  year: 1907
  ident: e_1_2_10_2_1
  article-title: Relation between birth rates and death rates
  publication-title: Adv Sci
– ident: e_1_2_10_37_1
  doi: 10.1007/s40840-015-0261-7
– volume-title: Introduction to Reaction‐Diffusion Equations
  year: 1994
  ident: e_1_2_10_55_1
– volume: 29
  start-page: 141
  year: 2016
  ident: e_1_2_10_17_1
  article-title: The coexistence of a modified Holling‐IV type predator–prey model with Michaelis–Menten type prey harvesting
  publication-title: Basi Scie J Textile Universities
– ident: e_1_2_10_58_1
  doi: 10.1016/j.jde.2008.10.024
– volume: 29
  start-page: 781
  issue: 3
  year: 2011
  ident: e_1_2_10_16_1
  article-title: Mean square stability in a modified Leslie–Gower and Holling‐type II predator–prey model
  publication-title: J Appl Math Inform
– ident: e_1_2_10_39_1
  doi: 10.1016/j.chaos.2020.110180
– ident: e_1_2_10_28_1
  doi: 10.1007/s12190-020-01373-0
– ident: e_1_2_10_8_1
  doi: 10.1016/j.matcom.2017.04.009
– ident: e_1_2_10_6_1
  doi: 10.1111/sapm.12165
– ident: e_1_2_10_35_1
  doi: 10.1093/biomet/47.3-4.219
– ident: e_1_2_10_42_1
  doi: 10.1007/s11071-016-2873-3
– ident: e_1_2_10_18_1
  doi: 10.4039/Ent91293-5
– ident: e_1_2_10_57_1
  doi: 10.1142/5815
– ident: e_1_2_10_44_1
  doi: 10.1016/j.camwa.2018.03.044
– ident: e_1_2_10_7_1
  doi: 10.1016/j.physd.2004.05.007
– ident: e_1_2_10_23_1
  doi: 10.1016/j.aml.2009.06.004
– ident: e_1_2_10_13_1
  doi: 10.1016/j.chaos.2020.109954
– ident: e_1_2_10_24_1
  doi: 10.1016/j.chaos.2009.03.020
– ident: e_1_2_10_33_1
  doi: 10.1016/j.chaos.2020.109960
– ident: e_1_2_10_45_1
  doi: 10.1016/j.nonrwa.2018.06.006
– volume: 23
  start-page: 436
  year: 1901
  ident: e_1_2_10_3_1
  article-title: Sui tentativi di applicazione della matematiche alle scienze bio‐ logiche e sociali
  publication-title: G degl Econ
– ident: e_1_2_10_40_1
  doi: 10.1016/j.camwa.2014.04.015
– ident: e_1_2_10_29_1
  doi: 10.1016/j.aml.2016.06.013
– ident: e_1_2_10_15_1
  doi: 10.1007/s11071-013-1121-3
– volume: 9
  start-page: 638
  issue: 2
  year: 2019
  ident: e_1_2_10_31_1
  article-title: Effect of herd shape in a diffusive predator‐prey model with time delay
  publication-title: J Appl Anal Comput
– ident: e_1_2_10_26_1
  doi: 10.1016/j.nonrwa.2011.02.002
– ident: e_1_2_10_56_1
  doi: 10.1016/j.aml.2007.10.026
– ident: e_1_2_10_22_1
  doi: 10.2307/1936298
SSID ssj0008112
Score 2.340672
Snippet In this paper, we deal with a new approximation of a diffusive predator–prey model with Leslie–Gower term and social behavior for the prey subject to Neumann...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13920
SubjectTerms Bifurcation theory
Boundary conditions
Canonical forms
Eigenvalues
general biology and biomathematics
Graphical representations
herd shape
Hopf bifurcation
Leslie–Gower term
Predators
predator–prey model
Stability
Turing‐driven instability
Turing–Hopf bifurcation
Title Spatiotemporal patterns in a diffusive predator–prey system with Leslie–Gower term and social behavior for the prey
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.7666
https://www.proquest.com/docview/2597683341
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0170-4214
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUqVu2CV4sYmFYXqeKxyODEieMsUdXpqOqwoCAhsYj8ioSAMJrMCMGKf-AP-yW9dpIZQCAhVokUO3JsX99z7ZNzCfkuU61To8LAhtYEcZroQESSB0kWSlqgZVLtCbKHfHAS_z5NThtWpfsXptaHmG24Ocvw67UzcKmq_blo6NWV7KUIvnH5DVniT2iP5spRIvQHnU4dJoijMG51Z2m031Z86onm8PIxSPVepr9Eztr21eSSi950onr67pl04_s-YJksNuATDurZskI-2HKVfBrOlFurVbLSGHsFu40i9d5ncvPX864bGatLGHlRzrKC8xIkuBwrU8eCh9HYGhfE_7t_wNtbqGWiwe31wh-LiNbik18uLxs4jwCyNFBv2kMrFwAIogHb4951-4Wc9H8e_xgETcaGQCNs4EGRpKzAGCniiLtERovICKpTqRRLlNEZ1YxmBTOKIzAVBYI1Y7nhwgojuI4FWyML5XVp1wmwuEAsRHWcMRqHUipcm9BJJMoapgxXHbLTjl6uGzlzl1XjMq-FmKMc-zd3_dshW7OSo1rC44Uy3XYC5I0RVzlGhhiMMfTzHbLtR_LV-vlweOCuG28tuEk-Ro4d44kxXbIwGU_tV4Q3E_XNT-T_OvX61A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VcgAOpS0glpYySIifQ7ZOnDiOOFVAWWC3B2ilHpAi_0Wq2oZVd1dVe-o79A15EsZOsgsIJMQpkTKOHNvj-WY8-QbgmcqNya2OIxc7G6V5ZiKZKBFlRaxYRZrJTEiQ3RODg_TjYXa4BK-7f2Eafoh5wM1rRtivvYL7gPT2gjX09FT1c0LfN-CmP57zWvn284I7SsbhqNPzw0RpEqcd8yxLtruWv9qiBcD8GaYGO7N7F752PWzSS477s6num8vfyBv_8xNWYaXFn7jTLJg1WHL1OtwZzclbJ-uw1ur7BF-2pNSv7sH5l5B63TJZneA48HLWEzyqUaEvszLzifA4PnPW-_Hfr67p9gIbpmj04V4cOgK1jp6896XZ0BsFVLXFJm6PHWMAEo5G6o9_18V9ONh9t_9mELVFGyJDyEFEVZbzitykRBD0kgWrEiuZyZXWPNPWFMxwVlTcakHYVFaE16wTVkgnrRQmlfwBLNffavcQkKcVwSFm0oKzNFZK0_ZEdiLTznJthe7Bi276StMymvvCGidlw8WclDS-pR_fHjydS44bFo8_yGx2K6Bs9XhSknNI_hgnU9-D52Eq_9q-HI12_PXRvwo-gVuD_dGwHH7Y-7QBtxOfLBPyZDZheXo2c48J7Uz1VljVPwDT_v7w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEMdHUCRED0ALqEsLDBLi45CtEzuOc6yApUC3QkClShwif0Wq2oZVd1eoPfEOvCFPwthJdgGBhDglUuwosT2e_ziTnwEe6cLawpk08al3iShym6hMyyQvU81qskxmY4Lsvtw9EG8O88MuqzL8C9PyIRYLbsEy4nwdDHzi6u0lNPT0VA8LEt-X4YqQFFwFQfR-iY5SafzSGfAwichS0YNnWbbd1_zVFS315c8qNbqZ0Q341D9gm11yPJzPzNBe_MZu_L83uAnXO_WJO-1wWYNLvlmH1fEC3Tpdh7XO2qf4tENSP7sFXz7ExOuOY3WCk0jlbKZ41KDGsMnKPKTB4-TMuxDFf__6jU7PseVEY1jsxT1PktbTlVdhYzYMLgF147BdtceeF4CkopGeJ9zr_DYcjF5-fL6bdFs2JJZ0g0zqvOA1BUmZJOGlSlZnTjFbaGN4bpwtmeWsrLkzkpSpqkmtOS-dVF45Ja1Q_A6sNJ8bvwHIRU1iiFlRciZSrQ1NTuQlcuMdN06aATzpe6-yHc88bKtxUrUk5qyi9q1C-w7g4aLkpGV4_KHMVj8Aqs6KpxWFhhSNcXL0A3gce_Kv9avxeCcc7_5rwQdw9d2LUbX3ev_tJlzLQqZMTJLZgpXZ2dzfI6kzM_fjmP4B6Yr9nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+patterns+in+a+diffusive+predator%E2%80%93prey+system+with+Leslie%E2%80%93Gower+term+and+social+behavior+for+the+prey&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Souna%2C+Fethi&rft.au=Lakmeche%2C+Abdelkader&rft.date=2021-12-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=44&rft.issue=18&rft.spage=13920&rft.epage=13944&rft_id=info:doi/10.1002%2Fmma.7666&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_7666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon