Ebola deep wavelet extreme learning machine based chronic kidney disease prediction on the internet of medical things platform
Summary Various significant methodologies have been developed in classifying chronic kidney disease (CKD). But still, there emerge certain drawbacks, including high storage space requirements, increased diagnosis time, high cost of computation, and degraded accuracy. Hence in the proposed research w...
Saved in:
| Published in | Concurrency and computation Vol. 35; no. 1 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
10.01.2023
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0626 1532-0634 |
| DOI | 10.1002/cpe.7446 |
Cover
| Abstract | Summary
Various significant methodologies have been developed in classifying chronic kidney disease (CKD). But still, there emerge certain drawbacks, including high storage space requirements, increased diagnosis time, high cost of computation, and degraded accuracy. Hence in the proposed research work, Ebola deep wavelet extreme learning machine (EDWELM) is proposed for the precise classification of CKD and non‐CKD. Initially, the accessed data are preprocessed by transforming categorical to numerical values and replacing missing values with median to remove unwanted distortions. In the feature selection process, the hybrid methodology of Darts game and Battle royale optimization called Darts Battle game optimizer is carried out to choose the most discriminative features for improving classification accuracy. The final step undertaken is the classification process, which is one of the important data mining applications for distinguishing the data classes. In the proposed EDWELM classification method, ELM based autoencoder, wavelet neural network, and Ebola optimization search algorithm are carried out for effective CKD classification. From the CKD dataset, the performance is analyzed to various terms like accuracy, F1 score, precision, recall, kappa, and balanced score. The accuracy of 99.83% is attained by the proposed EDWELM classification method, which is comparatively better than the existing approaches. |
|---|---|
| AbstractList | Summary
Various significant methodologies have been developed in classifying chronic kidney disease (CKD). But still, there emerge certain drawbacks, including high storage space requirements, increased diagnosis time, high cost of computation, and degraded accuracy. Hence in the proposed research work, Ebola deep wavelet extreme learning machine (EDWELM) is proposed for the precise classification of CKD and non‐CKD. Initially, the accessed data are preprocessed by transforming categorical to numerical values and replacing missing values with median to remove unwanted distortions. In the feature selection process, the hybrid methodology of Darts game and Battle royale optimization called Darts Battle game optimizer is carried out to choose the most discriminative features for improving classification accuracy. The final step undertaken is the classification process, which is one of the important data mining applications for distinguishing the data classes. In the proposed EDWELM classification method, ELM based autoencoder, wavelet neural network, and Ebola optimization search algorithm are carried out for effective CKD classification. From the CKD dataset, the performance is analyzed to various terms like accuracy, F1 score, precision, recall, kappa, and balanced score. The accuracy of 99.83% is attained by the proposed EDWELM classification method, which is comparatively better than the existing approaches. Various significant methodologies have been developed in classifying chronic kidney disease (CKD). But still, there emerge certain drawbacks, including high storage space requirements, increased diagnosis time, high cost of computation, and degraded accuracy. Hence in the proposed research work, Ebola deep wavelet extreme learning machine (EDWELM) is proposed for the precise classification of CKD and non‐CKD. Initially, the accessed data are preprocessed by transforming categorical to numerical values and replacing missing values with median to remove unwanted distortions. In the feature selection process, the hybrid methodology of Darts game and Battle royale optimization called Darts Battle game optimizer is carried out to choose the most discriminative features for improving classification accuracy. The final step undertaken is the classification process, which is one of the important data mining applications for distinguishing the data classes. In the proposed EDWELM classification method, ELM based autoencoder, wavelet neural network, and Ebola optimization search algorithm are carried out for effective CKD classification. From the CKD dataset, the performance is analyzed to various terms like accuracy, F1 score, precision, recall, kappa, and balanced score. The accuracy of 99.83% is attained by the proposed EDWELM classification method, which is comparatively better than the existing approaches. |
| Author | Vydeki, D Prasad Reddy, Tatiparti B. |
| Author_xml | – sequence: 1 givenname: Tatiparti B. orcidid: 0000-0001-5217-4350 surname: Prasad Reddy fullname: Prasad Reddy, Tatiparti B. email: tatiparti.bprasadreddy2017@vitstudent.ac.in organization: School of Electronics Engineering, VIT – sequence: 2 givenname: D surname: Vydeki fullname: Vydeki, D organization: School of Electronics Engineering, VIT |
| BookMark | eNp1kF9LwzAUxYMouE3BjxDwxZfOJE3T9lHG_AMDfdDnkqa3LrNNapI59-JnN3PigygEEk5-51zuGaNDYw0gdEbJlBLCLtUA05xzcYBGNEtZQkTKD3_eTByjsfcrQiglKR2hj3ltO4kbgAFv5Bt0EDC8Bwc94A6kM9o8416qpTaAa-mhwWrprNEKv-jGwBY32kPU8eCg0Spoa3A8YQlYmwDOxEDb4n73Kbuox0CPh06G1rr-BB21svNw-n1P0NP1_HF2myzub-5mV4tEsTIViSxV3ShaZhnPUygFZHXbpgVQohqZMZ5TXspCtEzxvBGcsULUNBdZGS2iKGU6Qef73MHZ1zX4UK3s2pk4smI5L0rKOOWRuthTylnvHbTV4HQv3baipNq1W8V2q127EZ3-QpUOcrd9cFJ3fxmSvWGjO9j-G1zNHuZf_CforI3q |
| CitedBy_id | crossref_primary_10_1007_s11255_024_04067_9 crossref_primary_10_1007_s12530_024_09571_y crossref_primary_10_1016_j_compeleceng_2024_109933 crossref_primary_10_1109_ACCESS_2023_3312183 |
| Cites_doi | 10.3390/nu14142832 10.3390/app8122422 10.21839/lsdjmr.2022.v1.20 10.1007/s13042-022-01513-x 10.1016/j.ins.2020.08.074 10.3390/app12010352 10.1016/j.kint.2019.01.035 10.1038/s41591-018-0239-8 10.1016/j.future.2020.04.036 10.1007/s11036-013-0489-0 10.1007/s00467-020-04661-w 10.1007/978-981-16-4807-6_29 10.1093/ajh/hpaa209 10.2215/CJN.09310916 10.1002/ima.22406 10.1002/ccd.29188 10.1007/s00521-020-05004-4 10.1590/1806-9282.66.s1.3 10.3390/bioengineering9080350 10.1016/j.compedu.2014.10.027 10.3389/fdata.2020.528828 10.1109/ACCESS.2020.3043783 10.1364/BOE.455549 10.3390/diagnostics12010116 10.1088/1742-6596/2185/1/012033 10.3390/healthcare10020371 10.1007/s11042-020-09049-4 10.24926/548719.023 10.3390/diagnostics11050864 10.1016/j.compbiomed.2022.105510 10.1016/S2589-7500(20)30063-7 10.1109/ACCESS.2021.3053763 10.1155/2021/4931450 10.1016/j.medcle.2017.06.045 10.1038/s41581-020-0286-5 10.1016/j.ekir.2017.11.002 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons, Ltd. 2023 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons, Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.7446 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_7446 CPE7446 |
| Genre | article |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 1OB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2936-a9cbdc1955473e96e5bff38e10cda5247149a86f2c47d642286b17659195689a3 |
| IEDL.DBID | DR2 |
| ISSN | 1532-0626 |
| IngestDate | Sun Sep 07 03:40:35 EDT 2025 Wed Oct 01 00:59:54 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Wed Jan 22 16:26:10 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2936-a9cbdc1955473e96e5bff38e10cda5247149a86f2c47d642286b17659195689a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5217-4350 |
| PQID | 2748912414 |
| PQPubID | 2045170 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2748912414 crossref_primary_10_1002_cpe_7446 crossref_citationtrail_10_1002_cpe_7446 wiley_primary_10_1002_cpe_7446_CPE7446 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 10 January 2023 |
| PublicationDateYYYYMMDD | 2023-01-10 |
| PublicationDate_xml | – month: 01 year: 2023 text: 10 January 2023 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2021; 9 2021; 7 2021; 3 2019; 96 2021; 547 2020; 16 2019; 19 2020; 13 2022; 2185 2021; 36 2020; 8 2022; 145 2018; 8 2018; 3 2021; 97 2020; 2 2021; 34 2021; 11 2021; 33 2015; 82 2022 2020; 30 2020 2022; 9 2017; 12 2019; 25 2022; 12 2022; 13 2022; 14 2020; 111 2014; 19 2020; 66 2022; 10 2017; 149 2021; 2021 2021; 80 Zhou Z (e_1_2_8_22_1) 2022 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 Zhou Z (e_1_2_8_21_1) 2022 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 Dehghani M (e_1_2_8_43_1) 2020; 13 e_1_2_8_42_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 Chitra S (e_1_2_8_39_1) 2022 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Pradeepa P (e_1_2_8_28_1) 2020 Ren Y (e_1_2_8_29_1) 2019; 19 e_1_2_8_30_1 Parthiban R (e_1_2_8_11_1) 2021; 7 |
| References_xml | – volume: 13 start-page: 286 issue: 5 year: 2020 end-page: 294 article-title: Darts game optimizer: a new optimization technique based on darts game publication-title: Int J Intell Eng Syst – volume: 14 issue: 14 year: 2022 article-title: Development and validation of an insulin resistance model for a population with chronic kidney disease using a machine learning approach publication-title: Nutrients – volume: 7 start-page: 2511 issue: 9 year: 2021 end-page: 2530 article-title: Prognosis of chronic kidney disease (CKD) using hybrid filter wrapper embedded feature selection method publication-title: Eur J Mol Clin Med – volume: 9 start-page: 17312 year: 2021 end-page: 17334 article-title: Prediction of chronic kidney disease‐a machine learning perspective publication-title: IEEE Access – volume: 97 start-page: E569 issue: 4 year: 2021 end-page: E579 article-title: Impact of chronic kidney disease on in‐hospital outcomes and readmission rate after edge‐to‐edge transcatheter mitral valve repair publication-title: Catheter Cardiovasc Interv – volume: 8 issue: 12 year: 2018 article-title: A machine learning approach for the classification of kidney cancer subtypes using mirna genome data publication-title: Appl Sci – volume: 2021 start-page: 1 year: 2021 end-page: 13 article-title: Ensemble of deep learning based clinical decision support system for chronic kidney disease diagnosis in medical internet of things environment publication-title: Comput Intell Neurosci – year: 2022 article-title: Classifying fabric defects with evolving inception v3 by improved L2, 1‐norm regularized extreme learning machine publication-title: Text Res J – start-page: 1 year: 2022 end-page: 6 article-title: Effective analysis of chronic kidney disease prediction using HRNN algorithm publication-title: Louis Savenien Dupuis J Multidiscip Res – volume: 19 start-page: 131 issue: 2 year: 2019 end-page: 138 article-title: A hybrid neural network model for predicting kidney disease in hypertension patients based on electronic health records publication-title: BMC Med Inform Decis Mak – volume: 12 issue: 1 year: 2022 article-title: A deep neural network for early detection and prediction of chronic kidney disease publication-title: Diagnostics – year: 2022 article-title: Clothing image classification algorithm based on convolutional neural network and optimized regularized extreme learning machine publication-title: Text Res J – year: 2020 article-title: An efficient self‐tuning spectral clustering algorithm for chronic kidney disease prediction publication-title: Mate Today Proc – volume: 8 start-page: 224145 year: 2020 end-page: 224161 article-title: Hand‐in‐air (HiA) and hand‐on‐target (HoT) style gesture cues for mixed reality collaboration publication-title: IEEE Access – volume: 10 issue: 2 year: 2022 article-title: Intelligent diagnostic prediction and classification models for detection of kidney disease publication-title: Healthcare – volume: 145 year: 2022 article-title: An optimized machine learning framework for predicting intradialytic hypotension using indexes of chronic kidney disease‐mineral and bone disorders publication-title: Comput Biol Med – volume: 547 start-page: 945 year: 2021 end-page: 962 article-title: DsNet: dual stack network for detecting diabetes mellitus and chronic kidney disease publication-title: Inform Sci – volume: 149 start-page: 345 issue: 8 year: 2017 end-page: 350 article-title: Gastrointestinal stromal tumour and second tumours: a literature review publication-title: Med Clin (English Edition) – volume: 19 start-page: 171 issue: 2 year: 2014 end-page: 209 article-title: Big data: A survey publication-title: Mob Netw Appl – volume: 3 year: 2021 article-title: Identifying clinical and genomic features associated with chronic kidney disease publication-title: Front Big Data – volume: 12 start-page: 346 issue: 2 year: 2017 end-page: 348 article-title: The CKD classification system in the precision medicine era publication-title: Clin J Am Soc Nephrol – volume: 25 start-page: 57 issue: 1 year: 2019 end-page: 59 article-title: Predicting the early risk of chronic kidney disease in patients with diabetes using real‐world data publication-title: Nat Med – volume: 111 start-page: 17 year: 2020 end-page: 26 article-title: Detection and diagnosis of chronic kidney disease using deep learning‐based heterogeneous modified artificial neural network publication-title: Future Gener Comput Syst – volume: 34 start-page: 318 issue: 4 year: 2021 end-page: 326 article-title: Hypertension in chronic kidney disease (CKD): diagnosis, classification, and therapeutic targets publication-title: Am J Hypertens – volume: 30 start-page: 660 issue: 3 year: 2020 end-page: 673 article-title: Efficient classification of chronic kidney disease by using multi‐kernel support vector machine and fruit fly optimization algorithm publication-title: Int J Imaging Syst Technol – volume: 12 issue: 1 year: 2022 article-title: Data augmentation based on generative adversarial networks to improve stage classification of chronic kidney disease publication-title: Appl Sci – volume: 66 start-page: s03 year: 2020 end-page: s09 article-title: Chronic kidney disease publication-title: Rev Assoc Med Bras – volume: 80 start-page: 16933 issue: 11 year: 2021 end-page: 16950 article-title: A diagnostic prediction model for chronic kidney disease in internet of things platform publication-title: Multimed Tools Appl – volume: 96 start-page: 214 issue: 1 year: 2019 end-page: 221 article-title: Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children publication-title: Kidney Int – volume: 82 start-page: 335 year: 2015 end-page: 353 article-title: DESPRO: a method based on roles to provide collaboration analysis support adapted to the participants in CSCL situations publication-title: Comput Educ – start-page: 299 year: 2022 end-page: 309 – volume: 16 start-page: 657 issue: 11 year: 2020 end-page: 668 article-title: Integrated multi‐omics approaches to improve classification of chronic kidney disease publication-title: Nat Rev Nephrol – volume: 13 start-page: 4926 issue: 9 year: 2022 end-page: 4938 article-title: Analyzing the serum of hemodialysis patients with end‐stage chronic kidney disease by means of the combination of SERS and machine learning publication-title: Biomed Opt Express – volume: 11 issue: 5 year: 2021 article-title: Classification of chronic kidney disease in sonography using the GLCM and artificial neural network publication-title: Diagnostics – volume: 36 start-page: 111 issue: 1 year: 2021 end-page: 118 article-title: Prediction of kidney failure in children with chronic kidney disease and obstructive uropathy publication-title: Pediatr Nephrol – volume: 2 start-page: e295 issue: 6 year: 2020 end-page: e302 article-title: A deep learning algorithm to detect chronic kidney disease from retinal photographs in community‐based populations publication-title: Lancet Digital Health – volume: 3 start-page: 464 issue: 2 year: 2018 end-page: 475 article-title: Association of pathological fibrosis with renal survival using deep neural networks publication-title: Kidney Int Rep – volume: 13 start-page: 1 year: 2022 end-page: 17 article-title: Online sequential fuzzy dropout extreme learning machine compensate for sliding‐mode control system errors of uncertain robot manipulator publication-title: Int J Mach Learn Cybern – volume: 2185 issue: 1 year: 2022 article-title: Convolution neural network for renal function assessment based on glomerular filtration rate publication-title: J Phys Conf Ser – volume: 33 start-page: 1139 year: 2021 end-page: 1157 article-title: Battle royale optimization algorithm publication-title: Neural Comput Appl – volume: 9 issue: 8 year: 2022 article-title: A machine learning method with filter‐based feature selection for improved prediction of chronic kidney disease publication-title: Bioengineering – ident: e_1_2_8_15_1 doi: 10.3390/nu14142832 – ident: e_1_2_8_32_1 doi: 10.3390/app8122422 – start-page: 1 year: 2022 ident: e_1_2_8_39_1 article-title: Effective analysis of chronic kidney disease prediction using HRNN algorithm publication-title: Louis Savenien Dupuis J Multidiscip Res doi: 10.21839/lsdjmr.2022.v1.20 – ident: e_1_2_8_45_1 – ident: e_1_2_8_23_1 doi: 10.1007/s13042-022-01513-x – volume: 19 start-page: 131 issue: 2 year: 2019 ident: e_1_2_8_29_1 article-title: A hybrid neural network model for predicting kidney disease in hypertension patients based on electronic health records publication-title: BMC Med Inform Decis Mak – ident: e_1_2_8_20_1 doi: 10.1016/j.ins.2020.08.074 – ident: e_1_2_8_35_1 doi: 10.3390/app12010352 – year: 2022 ident: e_1_2_8_22_1 article-title: Classifying fabric defects with evolving inception v3 by improved L2, 1‐norm regularized extreme learning machine publication-title: Text Res J – ident: e_1_2_8_13_1 doi: 10.1016/j.kint.2019.01.035 – volume: 7 start-page: 2511 issue: 9 year: 2021 ident: e_1_2_8_11_1 article-title: Prognosis of chronic kidney disease (CKD) using hybrid filter wrapper embedded feature selection method publication-title: Eur J Mol Clin Med – ident: e_1_2_8_4_1 doi: 10.1038/s41591-018-0239-8 – ident: e_1_2_8_25_1 doi: 10.1016/j.future.2020.04.036 – ident: e_1_2_8_5_1 doi: 10.1007/s11036-013-0489-0 – ident: e_1_2_8_19_1 doi: 10.1007/s00467-020-04661-w – ident: e_1_2_8_40_1 doi: 10.1007/978-981-16-4807-6_29 – ident: e_1_2_8_12_1 doi: 10.1093/ajh/hpaa209 – ident: e_1_2_8_2_1 doi: 10.2215/CJN.09310916 – ident: e_1_2_8_46_1 doi: 10.1002/ima.22406 – ident: e_1_2_8_17_1 doi: 10.1002/ccd.29188 – ident: e_1_2_8_44_1 doi: 10.1007/s00521-020-05004-4 – ident: e_1_2_8_24_1 – ident: e_1_2_8_9_1 doi: 10.1590/1806-9282.66.s1.3 – ident: e_1_2_8_14_1 doi: 10.3390/bioengineering9080350 – ident: e_1_2_8_31_1 doi: 10.1016/j.compedu.2014.10.027 – ident: e_1_2_8_16_1 doi: 10.3389/fdata.2020.528828 – year: 2020 ident: e_1_2_8_28_1 article-title: An efficient self‐tuning spectral clustering algorithm for chronic kidney disease prediction publication-title: Mate Today Proc – ident: e_1_2_8_26_1 doi: 10.1109/ACCESS.2020.3043783 – volume: 13 start-page: 286 issue: 5 year: 2020 ident: e_1_2_8_43_1 article-title: Darts game optimizer: a new optimization technique based on darts game publication-title: Int J Intell Eng Syst – ident: e_1_2_8_8_1 doi: 10.1364/BOE.455549 – ident: e_1_2_8_34_1 doi: 10.3390/diagnostics12010116 – ident: e_1_2_8_42_1 doi: 10.1088/1742-6596/2185/1/012033 – ident: e_1_2_8_41_1 doi: 10.3390/healthcare10020371 – ident: e_1_2_8_38_1 doi: 10.1007/s11042-020-09049-4 – ident: e_1_2_8_30_1 doi: 10.24926/548719.023 – ident: e_1_2_8_37_1 doi: 10.3390/diagnostics11050864 – ident: e_1_2_8_7_1 doi: 10.1016/j.compbiomed.2022.105510 – ident: e_1_2_8_10_1 doi: 10.1016/S2589-7500(20)30063-7 – year: 2022 ident: e_1_2_8_21_1 article-title: Clothing image classification algorithm based on convolutional neural network and optimized regularized extreme learning machine publication-title: Text Res J – ident: e_1_2_8_18_1 doi: 10.1109/ACCESS.2021.3053763 – ident: e_1_2_8_36_1 doi: 10.1155/2021/4931450 – ident: e_1_2_8_6_1 doi: 10.1590/1806-9282.66.s1.3 – ident: e_1_2_8_27_1 doi: 10.1016/j.medcle.2017.06.045 – ident: e_1_2_8_3_1 doi: 10.1038/s41581-020-0286-5 – ident: e_1_2_8_33_1 doi: 10.1016/j.ekir.2017.11.002 |
| SSID | ssj0011031 |
| Score | 2.385578 |
| Snippet | Summary
Various significant methodologies have been developed in classifying chronic kidney disease (CKD). But still, there emerge certain drawbacks, including... Various significant methodologies have been developed in classifying chronic kidney disease (CKD). But still, there emerge certain drawbacks, including high... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Artificial neural networks CKD and non‐CKD Classification Data mining deep learning Ebola virus ELM Internet of medical things Kidney diseases Machine learning Neural networks optimal data features Optimization Search algorithms wavelet |
| Title | Ebola deep wavelet extreme learning machine based chronic kidney disease prediction on the internet of medical things platform |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7446 https://www.proquest.com/docview/2748912414 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-0634 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: ADMLS dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iyYtvcX0xguipa9I26eYoy4oIioiC4KE0j4qou0Urogd_uzN97KooiFAolKS0SSbzzST5PsZ2vBPSGbRvxXMexLGLAo1eI5BRHkv0QKpn6DTyyak6uoyPr-RVs6uSzsLU_BDjhBtZRjVfk4Fn5ml_QhpqC99NMJjB6VdEqoqmzsfMUYLUC2qq1DDgCNpb3lke7rcVv3qiCbz8DFIrL3M4x67b76s3l9x1n0vTtW_fqBv_9wPzbLYBn3BQj5YFNuWHi2yuFXaAxs6X2PvAYMQLzvsCXjKSpigBJ3FKJUIjM3EDD9U2TA_kBx3YmmQX7m7d0L9Cs-4DxSMtBFHnA14INuG2SkHiC0c5PNSrRPic8vVQ3GclYehldnk4uOgfBY1QQ2ARLagg09Y4K7QkIWOvlZcmz6OeF9y6TIbo_2Kd9VQe2jhxikjHlBGJkro6rKizaIVND0dDv8qA6NuE8thCXsU6x_gzCXmuuU205E5EHbbXdlpqGxZzEtO4T2v-5TDFZk2pWTtse1yyqJk7fiiz0fZ72tjuUxoSIQ_CHhF32G7Vgb_WT_tnA7qv_bXgOpshvXrK4Qi-wabLx2e_iaimNFvV-P0AoxXzoA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFD44fdhe1LkN79TtDMQ99Zq0SXqDTyJXrpvKEAUfBqVNUhH1WlxFtof97TunP67b2GAMCoWSlDYnJ-fLSfJ9AJvBS-0L8m8jShEp5ZPIUtSIdFIqTRHIjAo-jXx0bCZn6sO5Pp-Dnf4sTMsPMUu4sWc04zU7OCektx9ZQ10VhinNZp7AgjI0TWFEdDLjjpKsX9CSpcaRINjeM8-KeLuv-WssegSYP8PUJs7sL8Hn_gvb7SVXw_u6GLpvv5E3_ucvLMNihz9xt-0wz2EuTFdgqdd2wM7VX8D3cUGTXvQhVPiQszpFjTSOczYRO6WJC7xpdmIG5FDo0bU8u3h16afhK3ZLP1jd8VoQ2x_pIryJl00Wkl54W-JNu1BEzzllj9V1XjOMfgln--PTvUnUaTVEjgCDiXLrCu-k1axlHKwJuijLZBSkcD7XMYVAZfORKWOnUm-Yd8wUMjXaNucVbZ68gvnp7TSsAjKDmzSBWigYZUuagqaxKK1wqdXCy2QA73urZa4jMmc9jeuspWCOM2rWjJt1AO9mJauWvOMPZdZ7w2ed-37JYubkIeQj1QC2Ggv-tX6292nM99f_WvAtPJ2cHh1mhwfHH9fgGcvXc0pHinWYr-_uwwaBnLp403TmH-aq98E |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5qBfHF1hs9tdURRJ9yupvsbs7Sp9KeQ72VIhb6IIRkL1LanoY2RfTB3-5MLqcqCiIEAmE3JDs7O9_O7n4fwIvgpfYV-bcRUSRK-SyxFDUSnUWlKQKZScWnkd8fmP0j9eZYHy_B9nAWpuOHWCTc2DPa8ZodPNQ-bt2whro6jHOazdyC20rbCe_n2_uw4I6SrF_QkaWmiSDYPjDPinRrqPlrLLoBmD_D1DbOzFbg0_CF3faS0_F1U43dt9_IG__zF1bhXo8_cafrMPdhKcwfwMqg7YC9qz-E79OKJr3oQ6jxS8nqFA3SOM7ZROyVJj7jebsTMyCHQo-u49nF0xM_D1-xX_rB-pLXgtj-SBfhTTxps5D0wouI591CET3nlD3WZ2XDMPoRHM2mH3f3k16rIXEEGExSWld5J61mLeNgTdBVjNkkSOF8qVMKgcqWExNTp3JvmHfMVDI32rbnFW2ZPYbl-cU8rAEyg5s0gVooGGUjTUHzVEQrXG618DIbwavBaoXricxZT-Os6CiY04KateBmHcHzRcm6I-_4Q5mNwfBF775XRcqcPIR8pBrBy9aCf61f7B5O-b7-rwWfwZ3DvVnx7vXB2ydwl9XrOaMjxQYsN5fXYZMwTlM9bfvyD5nN90U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ebola+deep+wavelet+extreme+learning+machine+based+chronic+kidney+disease+prediction+on+the+internet+of+medical+things+platform&rft.jtitle=Concurrency+and+computation&rft.au=Prasad+Reddy%2C+Tatiparti+B.&rft.au=Vydeki%2C+D&rft.date=2023-01-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1002%2Fcpe.7446&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_7446 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |