Ebola deep wavelet extreme learning machine based chronic kidney disease prediction on the internet of medical things platform

Summary Various significant methodologies have been developed in classifying chronic kidney disease (CKD). But still, there emerge certain drawbacks, including high storage space requirements, increased diagnosis time, high cost of computation, and degraded accuracy. Hence in the proposed research w...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 35; no. 1
Main Authors Prasad Reddy, Tatiparti B., Vydeki, D
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 10.01.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.7446

Cover

Abstract Summary Various significant methodologies have been developed in classifying chronic kidney disease (CKD). But still, there emerge certain drawbacks, including high storage space requirements, increased diagnosis time, high cost of computation, and degraded accuracy. Hence in the proposed research work, Ebola deep wavelet extreme learning machine (EDWELM) is proposed for the precise classification of CKD and non‐CKD. Initially, the accessed data are preprocessed by transforming categorical to numerical values and replacing missing values with median to remove unwanted distortions. In the feature selection process, the hybrid methodology of Darts game and Battle royale optimization called Darts Battle game optimizer is carried out to choose the most discriminative features for improving classification accuracy. The final step undertaken is the classification process, which is one of the important data mining applications for distinguishing the data classes. In the proposed EDWELM classification method, ELM based autoencoder, wavelet neural network, and Ebola optimization search algorithm are carried out for effective CKD classification. From the CKD dataset, the performance is analyzed to various terms like accuracy, F1 score, precision, recall, kappa, and balanced score. The accuracy of 99.83% is attained by the proposed EDWELM classification method, which is comparatively better than the existing approaches.
AbstractList Summary Various significant methodologies have been developed in classifying chronic kidney disease (CKD). But still, there emerge certain drawbacks, including high storage space requirements, increased diagnosis time, high cost of computation, and degraded accuracy. Hence in the proposed research work, Ebola deep wavelet extreme learning machine (EDWELM) is proposed for the precise classification of CKD and non‐CKD. Initially, the accessed data are preprocessed by transforming categorical to numerical values and replacing missing values with median to remove unwanted distortions. In the feature selection process, the hybrid methodology of Darts game and Battle royale optimization called Darts Battle game optimizer is carried out to choose the most discriminative features for improving classification accuracy. The final step undertaken is the classification process, which is one of the important data mining applications for distinguishing the data classes. In the proposed EDWELM classification method, ELM based autoencoder, wavelet neural network, and Ebola optimization search algorithm are carried out for effective CKD classification. From the CKD dataset, the performance is analyzed to various terms like accuracy, F1 score, precision, recall, kappa, and balanced score. The accuracy of 99.83% is attained by the proposed EDWELM classification method, which is comparatively better than the existing approaches.
Various significant methodologies have been developed in classifying chronic kidney disease (CKD). But still, there emerge certain drawbacks, including high storage space requirements, increased diagnosis time, high cost of computation, and degraded accuracy. Hence in the proposed research work, Ebola deep wavelet extreme learning machine (EDWELM) is proposed for the precise classification of CKD and non‐CKD. Initially, the accessed data are preprocessed by transforming categorical to numerical values and replacing missing values with median to remove unwanted distortions. In the feature selection process, the hybrid methodology of Darts game and Battle royale optimization called Darts Battle game optimizer is carried out to choose the most discriminative features for improving classification accuracy. The final step undertaken is the classification process, which is one of the important data mining applications for distinguishing the data classes. In the proposed EDWELM classification method, ELM based autoencoder, wavelet neural network, and Ebola optimization search algorithm are carried out for effective CKD classification. From the CKD dataset, the performance is analyzed to various terms like accuracy, F1 score, precision, recall, kappa, and balanced score. The accuracy of 99.83% is attained by the proposed EDWELM classification method, which is comparatively better than the existing approaches.
Author Vydeki, D
Prasad Reddy, Tatiparti B.
Author_xml – sequence: 1
  givenname: Tatiparti B.
  orcidid: 0000-0001-5217-4350
  surname: Prasad Reddy
  fullname: Prasad Reddy, Tatiparti B.
  email: tatiparti.bprasadreddy2017@vitstudent.ac.in
  organization: School of Electronics Engineering, VIT
– sequence: 2
  givenname: D
  surname: Vydeki
  fullname: Vydeki, D
  organization: School of Electronics Engineering, VIT
BookMark eNp1kF9LwzAUxYMouE3BjxDwxZfOJE3T9lHG_AMDfdDnkqa3LrNNapI59-JnN3PigygEEk5-51zuGaNDYw0gdEbJlBLCLtUA05xzcYBGNEtZQkTKD3_eTByjsfcrQiglKR2hj3ltO4kbgAFv5Bt0EDC8Bwc94A6kM9o8416qpTaAa-mhwWrprNEKv-jGwBY32kPU8eCg0Spoa3A8YQlYmwDOxEDb4n73Kbuox0CPh06G1rr-BB21svNw-n1P0NP1_HF2myzub-5mV4tEsTIViSxV3ShaZhnPUygFZHXbpgVQohqZMZ5TXspCtEzxvBGcsULUNBdZGS2iKGU6Qef73MHZ1zX4UK3s2pk4smI5L0rKOOWRuthTylnvHbTV4HQv3baipNq1W8V2q127EZ3-QpUOcrd9cFJ3fxmSvWGjO9j-G1zNHuZf_CforI3q
CitedBy_id crossref_primary_10_1007_s11255_024_04067_9
crossref_primary_10_1007_s12530_024_09571_y
crossref_primary_10_1016_j_compeleceng_2024_109933
crossref_primary_10_1109_ACCESS_2023_3312183
Cites_doi 10.3390/nu14142832
10.3390/app8122422
10.21839/lsdjmr.2022.v1.20
10.1007/s13042-022-01513-x
10.1016/j.ins.2020.08.074
10.3390/app12010352
10.1016/j.kint.2019.01.035
10.1038/s41591-018-0239-8
10.1016/j.future.2020.04.036
10.1007/s11036-013-0489-0
10.1007/s00467-020-04661-w
10.1007/978-981-16-4807-6_29
10.1093/ajh/hpaa209
10.2215/CJN.09310916
10.1002/ima.22406
10.1002/ccd.29188
10.1007/s00521-020-05004-4
10.1590/1806-9282.66.s1.3
10.3390/bioengineering9080350
10.1016/j.compedu.2014.10.027
10.3389/fdata.2020.528828
10.1109/ACCESS.2020.3043783
10.1364/BOE.455549
10.3390/diagnostics12010116
10.1088/1742-6596/2185/1/012033
10.3390/healthcare10020371
10.1007/s11042-020-09049-4
10.24926/548719.023
10.3390/diagnostics11050864
10.1016/j.compbiomed.2022.105510
10.1016/S2589-7500(20)30063-7
10.1109/ACCESS.2021.3053763
10.1155/2021/4931450
10.1016/j.medcle.2017.06.045
10.1038/s41581-020-0286-5
10.1016/j.ekir.2017.11.002
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.7446
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_7446
CPE7446
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2936-a9cbdc1955473e96e5bff38e10cda5247149a86f2c47d642286b17659195689a3
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Sun Sep 07 03:40:35 EDT 2025
Wed Oct 01 00:59:54 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Wed Jan 22 16:26:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2936-a9cbdc1955473e96e5bff38e10cda5247149a86f2c47d642286b17659195689a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5217-4350
PQID 2748912414
PQPubID 2045170
PageCount 26
ParticipantIDs proquest_journals_2748912414
crossref_primary_10_1002_cpe_7446
crossref_citationtrail_10_1002_cpe_7446
wiley_primary_10_1002_cpe_7446_CPE7446
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 January 2023
PublicationDateYYYYMMDD 2023-01-10
PublicationDate_xml – month: 01
  year: 2023
  text: 10 January 2023
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 9
2021; 7
2021; 3
2019; 96
2021; 547
2020; 16
2019; 19
2020; 13
2022; 2185
2021; 36
2020; 8
2022; 145
2018; 8
2018; 3
2021; 97
2020; 2
2021; 34
2021; 11
2021; 33
2015; 82
2022
2020; 30
2020
2022; 9
2017; 12
2019; 25
2022; 12
2022; 13
2022; 14
2020; 111
2014; 19
2020; 66
2022; 10
2017; 149
2021; 2021
2021; 80
Zhou Z (e_1_2_8_22_1) 2022
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
Zhou Z (e_1_2_8_21_1) 2022
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
Dehghani M (e_1_2_8_43_1) 2020; 13
e_1_2_8_42_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
Chitra S (e_1_2_8_39_1) 2022
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Pradeepa P (e_1_2_8_28_1) 2020
Ren Y (e_1_2_8_29_1) 2019; 19
e_1_2_8_30_1
Parthiban R (e_1_2_8_11_1) 2021; 7
References_xml – volume: 13
  start-page: 286
  issue: 5
  year: 2020
  end-page: 294
  article-title: Darts game optimizer: a new optimization technique based on darts game
  publication-title: Int J Intell Eng Syst
– volume: 14
  issue: 14
  year: 2022
  article-title: Development and validation of an insulin resistance model for a population with chronic kidney disease using a machine learning approach
  publication-title: Nutrients
– volume: 7
  start-page: 2511
  issue: 9
  year: 2021
  end-page: 2530
  article-title: Prognosis of chronic kidney disease (CKD) using hybrid filter wrapper embedded feature selection method
  publication-title: Eur J Mol Clin Med
– volume: 9
  start-page: 17312
  year: 2021
  end-page: 17334
  article-title: Prediction of chronic kidney disease‐a machine learning perspective
  publication-title: IEEE Access
– volume: 97
  start-page: E569
  issue: 4
  year: 2021
  end-page: E579
  article-title: Impact of chronic kidney disease on in‐hospital outcomes and readmission rate after edge‐to‐edge transcatheter mitral valve repair
  publication-title: Catheter Cardiovasc Interv
– volume: 8
  issue: 12
  year: 2018
  article-title: A machine learning approach for the classification of kidney cancer subtypes using mirna genome data
  publication-title: Appl Sci
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 13
  article-title: Ensemble of deep learning based clinical decision support system for chronic kidney disease diagnosis in medical internet of things environment
  publication-title: Comput Intell Neurosci
– year: 2022
  article-title: Classifying fabric defects with evolving inception v3 by improved L2, 1‐norm regularized extreme learning machine
  publication-title: Text Res J
– start-page: 1
  year: 2022
  end-page: 6
  article-title: Effective analysis of chronic kidney disease prediction using HRNN algorithm
  publication-title: Louis Savenien Dupuis J Multidiscip Res
– volume: 19
  start-page: 131
  issue: 2
  year: 2019
  end-page: 138
  article-title: A hybrid neural network model for predicting kidney disease in hypertension patients based on electronic health records
  publication-title: BMC Med Inform Decis Mak
– volume: 12
  issue: 1
  year: 2022
  article-title: A deep neural network for early detection and prediction of chronic kidney disease
  publication-title: Diagnostics
– year: 2022
  article-title: Clothing image classification algorithm based on convolutional neural network and optimized regularized extreme learning machine
  publication-title: Text Res J
– year: 2020
  article-title: An efficient self‐tuning spectral clustering algorithm for chronic kidney disease prediction
  publication-title: Mate Today Proc
– volume: 8
  start-page: 224145
  year: 2020
  end-page: 224161
  article-title: Hand‐in‐air (HiA) and hand‐on‐target (HoT) style gesture cues for mixed reality collaboration
  publication-title: IEEE Access
– volume: 10
  issue: 2
  year: 2022
  article-title: Intelligent diagnostic prediction and classification models for detection of kidney disease
  publication-title: Healthcare
– volume: 145
  year: 2022
  article-title: An optimized machine learning framework for predicting intradialytic hypotension using indexes of chronic kidney disease‐mineral and bone disorders
  publication-title: Comput Biol Med
– volume: 547
  start-page: 945
  year: 2021
  end-page: 962
  article-title: DsNet: dual stack network for detecting diabetes mellitus and chronic kidney disease
  publication-title: Inform Sci
– volume: 149
  start-page: 345
  issue: 8
  year: 2017
  end-page: 350
  article-title: Gastrointestinal stromal tumour and second tumours: a literature review
  publication-title: Med Clin (English Edition)
– volume: 19
  start-page: 171
  issue: 2
  year: 2014
  end-page: 209
  article-title: Big data: A survey
  publication-title: Mob Netw Appl
– volume: 3
  year: 2021
  article-title: Identifying clinical and genomic features associated with chronic kidney disease
  publication-title: Front Big Data
– volume: 12
  start-page: 346
  issue: 2
  year: 2017
  end-page: 348
  article-title: The CKD classification system in the precision medicine era
  publication-title: Clin J Am Soc Nephrol
– volume: 25
  start-page: 57
  issue: 1
  year: 2019
  end-page: 59
  article-title: Predicting the early risk of chronic kidney disease in patients with diabetes using real‐world data
  publication-title: Nat Med
– volume: 111
  start-page: 17
  year: 2020
  end-page: 26
  article-title: Detection and diagnosis of chronic kidney disease using deep learning‐based heterogeneous modified artificial neural network
  publication-title: Future Gener Comput Syst
– volume: 34
  start-page: 318
  issue: 4
  year: 2021
  end-page: 326
  article-title: Hypertension in chronic kidney disease (CKD): diagnosis, classification, and therapeutic targets
  publication-title: Am J Hypertens
– volume: 30
  start-page: 660
  issue: 3
  year: 2020
  end-page: 673
  article-title: Efficient classification of chronic kidney disease by using multi‐kernel support vector machine and fruit fly optimization algorithm
  publication-title: Int J Imaging Syst Technol
– volume: 12
  issue: 1
  year: 2022
  article-title: Data augmentation based on generative adversarial networks to improve stage classification of chronic kidney disease
  publication-title: Appl Sci
– volume: 66
  start-page: s03
  year: 2020
  end-page: s09
  article-title: Chronic kidney disease
  publication-title: Rev Assoc Med Bras
– volume: 80
  start-page: 16933
  issue: 11
  year: 2021
  end-page: 16950
  article-title: A diagnostic prediction model for chronic kidney disease in internet of things platform
  publication-title: Multimed Tools Appl
– volume: 96
  start-page: 214
  issue: 1
  year: 2019
  end-page: 221
  article-title: Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children
  publication-title: Kidney Int
– volume: 82
  start-page: 335
  year: 2015
  end-page: 353
  article-title: DESPRO: a method based on roles to provide collaboration analysis support adapted to the participants in CSCL situations
  publication-title: Comput Educ
– start-page: 299
  year: 2022
  end-page: 309
– volume: 16
  start-page: 657
  issue: 11
  year: 2020
  end-page: 668
  article-title: Integrated multi‐omics approaches to improve classification of chronic kidney disease
  publication-title: Nat Rev Nephrol
– volume: 13
  start-page: 4926
  issue: 9
  year: 2022
  end-page: 4938
  article-title: Analyzing the serum of hemodialysis patients with end‐stage chronic kidney disease by means of the combination of SERS and machine learning
  publication-title: Biomed Opt Express
– volume: 11
  issue: 5
  year: 2021
  article-title: Classification of chronic kidney disease in sonography using the GLCM and artificial neural network
  publication-title: Diagnostics
– volume: 36
  start-page: 111
  issue: 1
  year: 2021
  end-page: 118
  article-title: Prediction of kidney failure in children with chronic kidney disease and obstructive uropathy
  publication-title: Pediatr Nephrol
– volume: 2
  start-page: e295
  issue: 6
  year: 2020
  end-page: e302
  article-title: A deep learning algorithm to detect chronic kidney disease from retinal photographs in community‐based populations
  publication-title: Lancet Digital Health
– volume: 3
  start-page: 464
  issue: 2
  year: 2018
  end-page: 475
  article-title: Association of pathological fibrosis with renal survival using deep neural networks
  publication-title: Kidney Int Rep
– volume: 13
  start-page: 1
  year: 2022
  end-page: 17
  article-title: Online sequential fuzzy dropout extreme learning machine compensate for sliding‐mode control system errors of uncertain robot manipulator
  publication-title: Int J Mach Learn Cybern
– volume: 2185
  issue: 1
  year: 2022
  article-title: Convolution neural network for renal function assessment based on glomerular filtration rate
  publication-title: J Phys Conf Ser
– volume: 33
  start-page: 1139
  year: 2021
  end-page: 1157
  article-title: Battle royale optimization algorithm
  publication-title: Neural Comput Appl
– volume: 9
  issue: 8
  year: 2022
  article-title: A machine learning method with filter‐based feature selection for improved prediction of chronic kidney disease
  publication-title: Bioengineering
– ident: e_1_2_8_15_1
  doi: 10.3390/nu14142832
– ident: e_1_2_8_32_1
  doi: 10.3390/app8122422
– start-page: 1
  year: 2022
  ident: e_1_2_8_39_1
  article-title: Effective analysis of chronic kidney disease prediction using HRNN algorithm
  publication-title: Louis Savenien Dupuis J Multidiscip Res
  doi: 10.21839/lsdjmr.2022.v1.20
– ident: e_1_2_8_45_1
– ident: e_1_2_8_23_1
  doi: 10.1007/s13042-022-01513-x
– volume: 19
  start-page: 131
  issue: 2
  year: 2019
  ident: e_1_2_8_29_1
  article-title: A hybrid neural network model for predicting kidney disease in hypertension patients based on electronic health records
  publication-title: BMC Med Inform Decis Mak
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ins.2020.08.074
– ident: e_1_2_8_35_1
  doi: 10.3390/app12010352
– year: 2022
  ident: e_1_2_8_22_1
  article-title: Classifying fabric defects with evolving inception v3 by improved L2, 1‐norm regularized extreme learning machine
  publication-title: Text Res J
– ident: e_1_2_8_13_1
  doi: 10.1016/j.kint.2019.01.035
– volume: 7
  start-page: 2511
  issue: 9
  year: 2021
  ident: e_1_2_8_11_1
  article-title: Prognosis of chronic kidney disease (CKD) using hybrid filter wrapper embedded feature selection method
  publication-title: Eur J Mol Clin Med
– ident: e_1_2_8_4_1
  doi: 10.1038/s41591-018-0239-8
– ident: e_1_2_8_25_1
  doi: 10.1016/j.future.2020.04.036
– ident: e_1_2_8_5_1
  doi: 10.1007/s11036-013-0489-0
– ident: e_1_2_8_19_1
  doi: 10.1007/s00467-020-04661-w
– ident: e_1_2_8_40_1
  doi: 10.1007/978-981-16-4807-6_29
– ident: e_1_2_8_12_1
  doi: 10.1093/ajh/hpaa209
– ident: e_1_2_8_2_1
  doi: 10.2215/CJN.09310916
– ident: e_1_2_8_46_1
  doi: 10.1002/ima.22406
– ident: e_1_2_8_17_1
  doi: 10.1002/ccd.29188
– ident: e_1_2_8_44_1
  doi: 10.1007/s00521-020-05004-4
– ident: e_1_2_8_24_1
– ident: e_1_2_8_9_1
  doi: 10.1590/1806-9282.66.s1.3
– ident: e_1_2_8_14_1
  doi: 10.3390/bioengineering9080350
– ident: e_1_2_8_31_1
  doi: 10.1016/j.compedu.2014.10.027
– ident: e_1_2_8_16_1
  doi: 10.3389/fdata.2020.528828
– year: 2020
  ident: e_1_2_8_28_1
  article-title: An efficient self‐tuning spectral clustering algorithm for chronic kidney disease prediction
  publication-title: Mate Today Proc
– ident: e_1_2_8_26_1
  doi: 10.1109/ACCESS.2020.3043783
– volume: 13
  start-page: 286
  issue: 5
  year: 2020
  ident: e_1_2_8_43_1
  article-title: Darts game optimizer: a new optimization technique based on darts game
  publication-title: Int J Intell Eng Syst
– ident: e_1_2_8_8_1
  doi: 10.1364/BOE.455549
– ident: e_1_2_8_34_1
  doi: 10.3390/diagnostics12010116
– ident: e_1_2_8_42_1
  doi: 10.1088/1742-6596/2185/1/012033
– ident: e_1_2_8_41_1
  doi: 10.3390/healthcare10020371
– ident: e_1_2_8_38_1
  doi: 10.1007/s11042-020-09049-4
– ident: e_1_2_8_30_1
  doi: 10.24926/548719.023
– ident: e_1_2_8_37_1
  doi: 10.3390/diagnostics11050864
– ident: e_1_2_8_7_1
  doi: 10.1016/j.compbiomed.2022.105510
– ident: e_1_2_8_10_1
  doi: 10.1016/S2589-7500(20)30063-7
– year: 2022
  ident: e_1_2_8_21_1
  article-title: Clothing image classification algorithm based on convolutional neural network and optimized regularized extreme learning machine
  publication-title: Text Res J
– ident: e_1_2_8_18_1
  doi: 10.1109/ACCESS.2021.3053763
– ident: e_1_2_8_36_1
  doi: 10.1155/2021/4931450
– ident: e_1_2_8_6_1
  doi: 10.1590/1806-9282.66.s1.3
– ident: e_1_2_8_27_1
  doi: 10.1016/j.medcle.2017.06.045
– ident: e_1_2_8_3_1
  doi: 10.1038/s41581-020-0286-5
– ident: e_1_2_8_33_1
  doi: 10.1016/j.ekir.2017.11.002
SSID ssj0011031
Score 2.385578
Snippet Summary Various significant methodologies have been developed in classifying chronic kidney disease (CKD). But still, there emerge certain drawbacks, including...
Various significant methodologies have been developed in classifying chronic kidney disease (CKD). But still, there emerge certain drawbacks, including high...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Artificial neural networks
CKD and non‐CKD
Classification
Data mining
deep learning
Ebola virus
ELM
Internet of medical things
Kidney diseases
Machine learning
Neural networks
optimal data features
Optimization
Search algorithms
wavelet
Title Ebola deep wavelet extreme learning machine based chronic kidney disease prediction on the internet of medical things platform
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7446
https://www.proquest.com/docview/2748912414
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: ADMLS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iyYtvcX0xguipa9I26eYoy4oIioiC4KE0j4qou0Urogd_uzN97KooiFAolKS0SSbzzST5PsZ2vBPSGbRvxXMexLGLAo1eI5BRHkv0QKpn6DTyyak6uoyPr-RVs6uSzsLU_BDjhBtZRjVfk4Fn5ml_QhpqC99NMJjB6VdEqoqmzsfMUYLUC2qq1DDgCNpb3lke7rcVv3qiCbz8DFIrL3M4x67b76s3l9x1n0vTtW_fqBv_9wPzbLYBn3BQj5YFNuWHi2yuFXaAxs6X2PvAYMQLzvsCXjKSpigBJ3FKJUIjM3EDD9U2TA_kBx3YmmQX7m7d0L9Cs-4DxSMtBFHnA14INuG2SkHiC0c5PNSrRPic8vVQ3GclYehldnk4uOgfBY1QQ2ARLagg09Y4K7QkIWOvlZcmz6OeF9y6TIbo_2Kd9VQe2jhxikjHlBGJkro6rKizaIVND0dDv8qA6NuE8thCXsU6x_gzCXmuuU205E5EHbbXdlpqGxZzEtO4T2v-5TDFZk2pWTtse1yyqJk7fiiz0fZ72tjuUxoSIQ_CHhF32G7Vgb_WT_tnA7qv_bXgOpshvXrK4Qi-wabLx2e_iaimNFvV-P0AoxXzoA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFD44fdhe1LkN79TtDMQ99Zq0SXqDTyJXrpvKEAUfBqVNUhH1WlxFtof97TunP67b2GAMCoWSlDYnJ-fLSfJ9AJvBS-0L8m8jShEp5ZPIUtSIdFIqTRHIjAo-jXx0bCZn6sO5Pp-Dnf4sTMsPMUu4sWc04zU7OCektx9ZQ10VhinNZp7AgjI0TWFEdDLjjpKsX9CSpcaRINjeM8-KeLuv-WssegSYP8PUJs7sL8Hn_gvb7SVXw_u6GLpvv5E3_ucvLMNihz9xt-0wz2EuTFdgqdd2wM7VX8D3cUGTXvQhVPiQszpFjTSOczYRO6WJC7xpdmIG5FDo0bU8u3h16afhK3ZLP1jd8VoQ2x_pIryJl00Wkl54W-JNu1BEzzllj9V1XjOMfgln--PTvUnUaTVEjgCDiXLrCu-k1axlHKwJuijLZBSkcD7XMYVAZfORKWOnUm-Yd8wUMjXaNucVbZ68gvnp7TSsAjKDmzSBWigYZUuagqaxKK1wqdXCy2QA73urZa4jMmc9jeuspWCOM2rWjJt1AO9mJauWvOMPZdZ7w2ed-37JYubkIeQj1QC2Ggv-tX6292nM99f_WvAtPJ2cHh1mhwfHH9fgGcvXc0pHinWYr-_uwwaBnLp403TmH-aq98E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5qBfHF1hs9tdURRJ9yupvsbs7Sp9KeQ72VIhb6IIRkL1LanoY2RfTB3-5MLqcqCiIEAmE3JDs7O9_O7n4fwIvgpfYV-bcRUSRK-SyxFDUSnUWlKQKZScWnkd8fmP0j9eZYHy_B9nAWpuOHWCTc2DPa8ZodPNQ-bt2whro6jHOazdyC20rbCe_n2_uw4I6SrF_QkaWmiSDYPjDPinRrqPlrLLoBmD_D1DbOzFbg0_CF3faS0_F1U43dt9_IG__zF1bhXo8_cafrMPdhKcwfwMqg7YC9qz-E79OKJr3oQ6jxS8nqFA3SOM7ZROyVJj7jebsTMyCHQo-u49nF0xM_D1-xX_rB-pLXgtj-SBfhTTxps5D0wouI591CET3nlD3WZ2XDMPoRHM2mH3f3k16rIXEEGExSWld5J61mLeNgTdBVjNkkSOF8qVMKgcqWExNTp3JvmHfMVDI32rbnFW2ZPYbl-cU8rAEyg5s0gVooGGUjTUHzVEQrXG618DIbwavBaoXricxZT-Os6CiY04KateBmHcHzRcm6I-_4Q5mNwfBF775XRcqcPIR8pBrBy9aCf61f7B5O-b7-rwWfwZ3DvVnx7vXB2ydwl9XrOaMjxQYsN5fXYZMwTlM9bfvyD5nN90U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ebola+deep+wavelet+extreme+learning+machine+based+chronic+kidney+disease+prediction+on+the+internet+of+medical+things+platform&rft.jtitle=Concurrency+and+computation&rft.au=Prasad+Reddy%2C+Tatiparti+B.&rft.au=Vydeki%2C+D&rft.date=2023-01-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1002%2Fcpe.7446&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_7446
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon