A novel fuzzy‐extended Kalman filter‐ampere‐hour (F‐EKF‐Ah) algorithm based on improved second‐order PNGV model to estimate state of charge of lithium‐ion batteries
Aiming at the problem that it is difficult to accurately estimate the state of charge (SOC) of lithium‐ion batteries in the strongly nonlinear interval, a novel algorithm based on a fuzzy control strategy is proposed. It integrates extended Kalman filter (EKF) and ampere‐hour (Ah) integration accura...
Saved in:
| Published in | International journal of circuit theory and applications Vol. 50; no. 11; pp. 3811 - 3826 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Bognor Regis
Wiley Subscription Services, Inc
01.11.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0098-9886 1097-007X |
| DOI | 10.1002/cta.3386 |
Cover
| Abstract | Aiming at the problem that it is difficult to accurately estimate the state of charge (SOC) of lithium‐ion batteries in the strongly nonlinear interval, a novel algorithm based on a fuzzy control strategy is proposed. It integrates extended Kalman filter (EKF) and ampere‐hour (Ah) integration accurately estimate the SOC of lithium‐ion batteries. First, the algorithm uses the advantage that the EKF algorithm has high estimation accuracy in the nonlinear interval and can solve the problem of the large error caused by the inaccurate initial value of the Ah integral algorithm. Then the fuzzy‐EKF‐Ah (F‐EKF‐Ah) is used to fuse the two algorithms of EKF and Ah integral. The fused algorithm can effectively solve the problems of the cumulative error caused by the sampling accuracy of the Ah integral algorithm and the large estimation error of the EKF algorithm in the strong nonlinear interval. Finally, the equivalent circuit model is used for analysis. The experimental results show that the improved algorithm can achieve high estimation accuracy under three experimental conditions.
In this paper, an RC loop is added to the PNGV model to better represent the electrochemical characteristics of lithium‐ion batteries. The fuzzy logic controller combined with the extended Kalman filter (EKF) algorithm and ampere‐hour integral (Ah) algorithm was used to estimate the charge state of lithium‐ion batteries. The fused algorithm can effectively solve the problems of the cumulative error caused by the sampling accuracy of the Ah integral algorithm and the large estimation error of the EKF algorithm in the strong nonlinear interval. |
|---|---|
| AbstractList | Aiming at the problem that it is difficult to accurately estimate the state of charge (SOC) of lithium‐ion batteries in the strongly nonlinear interval, a novel algorithm based on a fuzzy control strategy is proposed. It integrates extended Kalman filter (EKF) and ampere‐hour (Ah) integration accurately estimate the SOC of lithium‐ion batteries. First, the algorithm uses the advantage that the EKF algorithm has high estimation accuracy in the nonlinear interval and can solve the problem of the large error caused by the inaccurate initial value of the Ah integral algorithm. Then the fuzzy‐EKF‐Ah (F‐EKF‐Ah) is used to fuse the two algorithms of EKF and Ah integral. The fused algorithm can effectively solve the problems of the cumulative error caused by the sampling accuracy of the Ah integral algorithm and the large estimation error of the EKF algorithm in the strong nonlinear interval. Finally, the equivalent circuit model is used for analysis. The experimental results show that the improved algorithm can achieve high estimation accuracy under three experimental conditions. Aiming at the problem that it is difficult to accurately estimate the state of charge (SOC) of lithium‐ion batteries in the strongly nonlinear interval, a novel algorithm based on a fuzzy control strategy is proposed. It integrates extended Kalman filter (EKF) and ampere‐hour (Ah) integration accurately estimate the SOC of lithium‐ion batteries. First, the algorithm uses the advantage that the EKF algorithm has high estimation accuracy in the nonlinear interval and can solve the problem of the large error caused by the inaccurate initial value of the Ah integral algorithm. Then the fuzzy‐EKF‐Ah (F‐EKF‐Ah) is used to fuse the two algorithms of EKF and Ah integral. The fused algorithm can effectively solve the problems of the cumulative error caused by the sampling accuracy of the Ah integral algorithm and the large estimation error of the EKF algorithm in the strong nonlinear interval. Finally, the equivalent circuit model is used for analysis. The experimental results show that the improved algorithm can achieve high estimation accuracy under three experimental conditions. In this paper, an RC loop is added to the PNGV model to better represent the electrochemical characteristics of lithium‐ion batteries. The fuzzy logic controller combined with the extended Kalman filter (EKF) algorithm and ampere‐hour integral (Ah) algorithm was used to estimate the charge state of lithium‐ion batteries. The fused algorithm can effectively solve the problems of the cumulative error caused by the sampling accuracy of the Ah integral algorithm and the large estimation error of the EKF algorithm in the strong nonlinear interval. |
| Author | Wang, Shunli Fan, Yongcun Liu, Donglei Xia, Lili Qiu, Jingsong |
| Author_xml | – sequence: 1 givenname: Donglei orcidid: 0000-0002-5370-4760 surname: Liu fullname: Liu, Donglei email: 1658065234@qq.com organization: Southwest University of Science and Technology – sequence: 2 givenname: Shunli orcidid: 0000-0003-0485-8082 surname: Wang fullname: Wang, Shunli email: 497420789@qq.com organization: Southwest University of Science and Technology – sequence: 3 givenname: Yongcun orcidid: 0000-0001-9240-4835 surname: Fan fullname: Fan, Yongcun email: 8121064@qq.com organization: Southwest University of Science and Technology – sequence: 4 givenname: Lili orcidid: 0000-0002-7904-0130 surname: Xia fullname: Xia, Lili email: 2655691189@qq.com organization: Southwest University of Science and Technology – sequence: 5 givenname: Jingsong orcidid: 0000-0002-8304-0926 surname: Qiu fullname: Qiu, Jingsong email: 2534546645@qq.com organization: Southwest University of Science and Technology |
| BookMark | eNp1kcFuFDEMhiNUJLYFiUeIxKUcZvFkdmaS42rVFtQKOBTEbeQmnm6qmcmSZIHtiUfgWXgkngRvlxOCi2PJ3__bjo_F0RQmEuJ5CfMSQL2yGedVpZtHYlaCaQuA9tORmAEYXRitmyfiOKU7ANCqMjPxcymn8IUG2W_v73e_vv-gb5kmR05e4jDiJHs_ZIpcwHFDkThZh22Up-ecnV3u43L9UuJwG6LP61HeYGJxmKQfN5GdnUxkw-QYDNFRlO_fXnyUY3DcMwdJKfsRM8mU9zH00q4x3j5kAxv67chKz343mHkQT-mpeNzjkOjZn_dEfDg_u169Lq7eXbxZLa8Kq0zVFK1FxIVRjip0qodG6brurSVqtKt03ULdGNsqiz22jWlBmxrtwipyBMap6kS8OPjyHp-3PGh3x5tP3LJTbVXWRpcLYGp-oGwMKUXqO-t5FZ44R_RDV0K3v0vHd-n2d2HB6V-CTeQviLt_ocUB_eoH2v2X61bXywf-NwnzqAI |
| CitedBy_id | crossref_primary_10_1007_s11581_024_05428_1 crossref_primary_10_1016_j_est_2023_108905 crossref_primary_10_1007_s11581_024_05686_z crossref_primary_10_1007_s11581_024_05678_z crossref_primary_10_1016_j_jpowsour_2024_235594 crossref_primary_10_1016_j_est_2024_112412 crossref_primary_10_1007_s11581_024_05811_y crossref_primary_10_1016_j_est_2024_111930 crossref_primary_10_1016_j_est_2025_115955 crossref_primary_10_1149_1945_7111_acced3 crossref_primary_10_1016_j_apenergy_2025_125539 crossref_primary_10_1016_j_est_2024_110574 crossref_primary_10_1016_j_est_2024_111552 crossref_primary_10_1002_cta_3624 crossref_primary_10_3390_en17092145 crossref_primary_10_1002_cta_3788 crossref_primary_10_1002_cta_4138 crossref_primary_10_1002_cta_3862 crossref_primary_10_1007_s11581_024_05749_1 crossref_primary_10_1016_j_est_2023_107987 |
| Cites_doi | 10.1063/5.0015057 10.1109/ACCESS.2021.3057371 10.1109/TPEL.2019.2948253 10.3390/electronics8091012 10.4316/AECE.2019.03001 10.1016/j.ijepes.2019.02.046 10.1016/j.est.2019.100945 10.1007/s00500‐020‐05101‐5 10.17516/1999‐494X‐0242 10.3389/fenrg.2021.769818 10.3390/en14175265 10.1109/ACCESS.2021.3095938 10.1016/j.gloei.2022.01.003 10.3389/fenrg.2021.773838 10.1080/10584587.2019.1592620 10.1007/s11581‐020‐03716‐0 10.3390/en14020324 10.1016/j.est.2019.100758 10.3390/en12132491 10.1002/er.7545 10.1016/j.applthermaleng.2020.115679 10.1109/TPEL.2020.2984248 10.3390/en12214036 10.1109/ACCESS.2020.3038477 10.3390/app10186371 10.1016/j.est.2021.102535 10.1080/00150193.2021.1905731 10.1109/TTE.2020.3032737 10.1002/er.4275 10.1007/s42835‐020‐00544‐0 10.3390/en12122242 10.1007/s10973‐020‐09274‐x 10.1007/s42835‐019‐00179‐w 10.1109/TVT.2021.3079934 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1002/cta.3386 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1097-007X |
| EndPage | 3826 |
| ExternalDocumentID | 10_1002_cta_3386 CTA3386 |
| Genre | article |
| GrantInformation_xml | – fundername: RGU – fundername: National Natural Science Foundation of China funderid: 62173281; 61801407 – fundername: Natural Science Foundation of Southwest University of Science and Technology funderid: 18zx7145; 17zx7110 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZY4 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c2936-7caaa492de3ad2f062855fccee68d38570569c72cafa76970895ac4c2ede09d23 |
| IEDL.DBID | DR2 |
| ISSN | 0098-9886 |
| IngestDate | Fri Jul 25 12:29:23 EDT 2025 Wed Oct 01 03:35:44 EDT 2025 Thu Apr 24 23:02:37 EDT 2025 Wed Jan 22 16:31:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2936-7caaa492de3ad2f062855fccee68d38570569c72cafa76970895ac4c2ede09d23 |
| Notes | Funding information National Natural Science Foundation of China, Grant/Award Numbers: 62173281, 61801407; Natural Science Foundation of Southwest University of Science and Technology, Grant/Award Numbers: 18zx7145, 17zx7110; RGU ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9240-4835 0000-0002-5370-4760 0000-0003-0485-8082 0000-0002-7904-0130 0000-0002-8304-0926 |
| PQID | 2731598140 |
| PQPubID | 996369 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2731598140 crossref_citationtrail_10_1002_cta_3386 crossref_primary_10_1002_cta_3386 wiley_primary_10_1002_cta_3386_CTA3386 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal of circuit theory and applications |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 9 2019; 8 2021; 7 2021; 43 2021; 4 2020; 142 2019; 12 2019; 14 2022; 46 2019; 38 2021; 580 2019; 19 2020; 15 2020; 35 2020; 13 2020; 12 2020; 10 2019; 200 2021; 70 2021; 14 2020; 8 2020; 31 2019; 41 2019; 43 2019; 24 2021; 39 2020; 9 2020; 27 2020; 26 2020; 48 2020; 46 2020; 24 2020; 179 2021; 40 2019; 110 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 Gong M (e_1_2_7_35_1) 2020; 35 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 An Z (e_1_2_7_28_1) 2019; 38 e_1_2_7_44_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 Tian S (e_1_2_7_26_1) 2020; 48 Li Y (e_1_2_7_21_1) 2021; 40 Zhang Z (e_1_2_7_4_1) 2021; 43 Yang S (e_1_2_7_11_1) 2020; 46 e_1_2_7_30_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 Song K (e_1_2_7_23_1) 2019; 41 e_1_2_7_34_1 e_1_2_7_20_1 Ding Z (e_1_2_7_25_1) 2020; 31 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Du G (e_1_2_7_9_1) 2020; 9 Zhang K (e_1_2_7_6_1) 2020; 31 |
| References_xml | – volume: 46 start-page: 5423 year: 2022 end-page: 5440 article-title: A comprehensive review on the state of charge estimation for lithium‐ion battery based on neural network[J] publication-title: Int J Energy Res – volume: 39 start-page: 1 year: 2021 end-page: 14 article-title: State of charge estimation of power lithium‐ion battery based on an adaptive time scale dual extend Kalman filtering[J] publication-title: J Energy Storage – volume: 24 start-page: 18661 issue: 24 year: 2020 end-page: 18670 article-title: Online estimation of state of health for the airborne Li‐ion battery using adaptive DEKF‐based fuzzy inference system[J] publication-title: Soft Comput – volume: 142 start-page: 1523 issue: 4 year: 2020 end-page: 1532 article-title: The investigation of thermal runaway propagation of lithium‐ion batteries under different vertical distances[J] publication-title: J Therm Anal Calorimetr – volume: 179 start-page: 1 year: 2020 end-page: 8 article-title: A comparative study on air transport safety of lithium‐ion batteries with different SOCs[J] publication-title: Appl Therm Eng – volume: 48 start-page: 69 issue: 2 year: 2020 end-page: 75 article-title: SOC estimation of Li‐ion power battery based on STEKF[J] publication-title: J South China Univ Tech Natural Sci Edn – volume: 14 start-page: 1485 issue: 4 year: 2019 end-page: 1493 article-title: Model parameters online identification and SOC joint estimation for lithium‐ion battery based on a composite algorithm[J] publication-title: J Electr Eng Tech – volume: 31 start-page: 1931 issue: 16 year: 2020 end-page: 1939 article-title: SOC‐based active equalization control for lithium‐ion battery packs[J] publication-title: China Mech Eng – volume: 9 start-page: 1 year: 2021 end-page: 9 article-title: An active balancing method based on SOC and capacitance for lithium‐ion batteries in electric vehicles[J] publication-title: Front Energy Res – volume: 9 start-page: 1 year: 2021 end-page: 15 article-title: Estimation of lithium‐ion battery SOC model based on AGA‐FOUKF algorithm[J] publication-title: Front Energy Res – volume: 200 start-page: 59 issue: 1 year: 2019 end-page: 72 article-title: Lithium‐ion battery modeling and state of charge estimation[J] publication-title: Integr Ferroelectr – volume: 9 start-page: 34177 year: 2021 end-page: 34187 article-title: State of charge estimation of lithium‐ion batteries based on temporal convolutional network and transfer learning[J] publication-title: IEEE Access – volume: 46 start-page: 1444 issue: 8 year: 2020 end-page: 1452 article-title: Multi‐scale joint estimation of SOC and capacity of lithium‐ion battery[J] publication-title: J Beijing Univ Aeronaut Astronaut – volume: 19 start-page: 3 issue: 3 year: 2019 end-page: 10 article-title: Modeling of back‐propagation neural network based state‐of‐charge estimation for lithium‐ion batteries with consideration of capacity attenuation[J] publication-title: Adv Electr Comput Eng – volume: 43 start-page: 417 issue: 1 year: 2019 end-page: 429 article-title: Fractional‐order modeling and SOC estimation of lithium‐ion battery considering capacity loss[J] publication-title: Int J Energy Res – volume: 35 start-page: 3972 issue: 18 year: 2020 end-page: 3978 article-title: SOC estimation method of Lithium battery based on fuzzy adaptive extended Kalman filter[J] publication-title: Trans China Electrotech Soc – volume: 15 start-page: 2529 issue: 6 year: 2020 end-page: 2538 article-title: State of charge estimation for Li‐ion batteries based on an unscented H‐infinity filter[J] publication-title: J Electr Eng Tech – volume: 27 start-page: 1 year: 2020 end-page: 8 article-title: Fractional calculus based modeling of open circuit voltage of lithium‐ion batteries for electric vehicles[J] publication-title: J Energy Storage – volume: 7 start-page: 399 issue: 2 year: 2021 end-page: 409 article-title: A two‐step parameter optimization method for low‐order model‐based state‐of‐charge estimation[J] publication-title: IEEE Trans Transp – volume: 43 start-page: 1803 issue: 7 year: 2021 end-page: 1815 article-title: Review of SoC estimation methods for electric vehicle Li‐ion batteries[J] publication-title: J Electron Inf Tech – volume: 14 start-page: 1 issue: 17 year: 2021 end-page: 12 article-title: Online SOC estimation based on simplified electrochemical model for lithium‐ion batteries considering current bias[J] publication-title: Energies – volume: 8 start-page: 208322 year: 2020 end-page: 208336 article-title: An enhanced lithium‐ion battery model for estimating the state of charge and degraded capacity using an optimized extended Kalman filter[J] publication-title: IEEE Access – volume: 8 issue: 9 year: 2019 article-title: State of charge estimation for lithium‐ion batteries based on temperature‐dependent second‐order RC model[J] publication-title: Electronics – volume: 41 start-page: 334 issue: 3 year: 2019 end-page: 339 article-title: Modeling of lithium battery characteristics considering the influence of temperature and hysteresis effect[J] publication-title: Autom Eng – volume: 12 start-page: 1 issue: 13 year: 2019 end-page: 13 article-title: State of charge estimation for power lithium‐ion battery using a fuzzy logic sliding mode observer[J] publication-title: Energies – volume: 38 start-page: 133 issue: 2 year: 2019 end-page: 138 article-title: SOC estimation of lithium battery based on equivalent model of extended Kalman filter[J] publication-title: J Tongji Univ Nat Sci – volume: 12 start-page: 1 issue: 21 year: 2019 end-page: 19 article-title: State‐of‐charge estimation for lithium‐ion battery using improved DUKF based on state‐parameter separation[J] publication-title: Energies – volume: 35 start-page: 5820 issue: 6 year: 2020 end-page: 5831 article-title: State‐of‐charge observer design for batteries with online model parameter identification: a robust approach[J] publication-title: IEEE Trans Power Electron – volume: 12 start-page: 1 issue: 6 year: 2020 end-page: 7 article-title: Lithium battery SOC estimation based on whale optimization algorithm and unscented Kalman filter[J] publication-title: J Renew Sustain Energy – volume: 13 start-page: 420 issue: 4 year: 2020 end-page: 437 article-title: State‐of‐charge estimation of lithium‐ion battery based on extended Kalman filter algorithm[J] publication-title: J Siberian Federal Univ Eng Tech – volume: 4 start-page: 619 issue: 6 year: 2021 end-page: 630 article-title: Review of lithium‐ion battery state of charge estimation[J] publication-title: Global Energy Interconn – volume: 12 start-page: 1 issue: 12 year: 2019 end-page: 15 article-title: Adaptive forgetting factor recursive least square algorithm for online identification of equivalent circuit model parameters of a lithium‐ion battery[J] publication-title: Energies – volume: 9 start-page: 99876 year: 2021 end-page: 99889 article-title: Low temperature, current dependent battery state estimation using interacting multiple model strategy[J] publication-title: IEEE Access – volume: 26 start-page: 6145 issue: 12 year: 2020 end-page: 6156 article-title: The multi‐innovation extended Kalman filter algorithm for battery SOC estimation[J] publication-title: Ionics – volume: 24 start-page: 1 year: 2019 end-page: 21 article-title: A hybrid model predictive and fuzzy logic based control method for state of power estimation of series‐connected Lithium‐ion batteries in HEVs[J] publication-title: J Energy Storage – volume: 110 start-page: 48 year: 2019 end-page: 61 article-title: Hybrid state of charge estimation for lithium‐ion battery under dynamic operating conditions[J] publication-title: Int J Electr Power Energy Syst – volume: 35 start-page: 12332 issue: 11 year: 2020 end-page: 12346 article-title: Reduced‐coupling coestimation of SOC and SOH for lithium‐ion batteries based on convex optimization[J] publication-title: IEEE Trans Power Electron – volume: 10 issue: 18 year: 2020 article-title: State of charge estimation for lithium‐ion power battery based on H‐infinity filter algorithm[J] publication-title: Appl Sci‐Basel – volume: 9 start-page: 249 issue: 1 year: 2020 end-page: 256 article-title: Experimental study on high temperature thermal runaway of cylindrical high nickel ternary lithium‐ion batteries[J] publication-title: Energy Storage Sci Tech – volume: 31 start-page: 1823 issue: 15 year: 2020 end-page: 1830 article-title: SOC estimation of lithium‐ion battery based on ampere hour integral and unscented Kalman filter[J] publication-title: China Mech Eng – volume: 14 issue: 2 year: 2021 article-title: Online state‐of‐charge estimation based on the gas‐liquid dynamics model for Li (NiMnCo)O battery[J] publication-title: Energies – volume: 580 start-page: 112 issue: 1 year: 2021 end-page: 128 article-title: Estimating SOC and SOH of lithium battery based on nano material[J] publication-title: Ferroelectrics – volume: 70 start-page: 5638 issue: 6 year: 2021 end-page: 5647 article-title: A robust state of charge estimation approach based on nonlinear battery cell model for lithium‐ion batteries in electric vehicles[J] publication-title: IEEE Trans Vehic Tech – volume: 40 start-page: 1 issue: 6 year: 2021 end-page: 13 article-title: Accurate estimation of lithium battery SOC based on improved UKF algorithm[J] publication-title: Transducer Microsyst Tech – ident: e_1_2_7_27_1 doi: 10.1063/5.0015057 – volume: 43 start-page: 1803 issue: 7 year: 2021 ident: e_1_2_7_4_1 article-title: Review of SoC estimation methods for electric vehicle Li‐ion batteries[J] publication-title: J Electron Inf Tech – ident: e_1_2_7_17_1 doi: 10.1109/ACCESS.2021.3057371 – ident: e_1_2_7_10_1 doi: 10.1109/TPEL.2019.2948253 – ident: e_1_2_7_18_1 doi: 10.3390/electronics8091012 – ident: e_1_2_7_20_1 doi: 10.4316/AECE.2019.03001 – volume: 35 start-page: 3972 issue: 18 year: 2020 ident: e_1_2_7_35_1 article-title: SOC estimation method of Lithium battery based on fuzzy adaptive extended Kalman filter[J] publication-title: Trans China Electrotech Soc – volume: 31 start-page: 1931 issue: 16 year: 2020 ident: e_1_2_7_6_1 article-title: SOC‐based active equalization control for lithium‐ion battery packs[J] publication-title: China Mech Eng – ident: e_1_2_7_3_1 doi: 10.1016/j.ijepes.2019.02.046 – ident: e_1_2_7_19_1 doi: 10.1016/j.est.2019.100945 – volume: 40 start-page: 1 issue: 6 year: 2021 ident: e_1_2_7_21_1 article-title: Accurate estimation of lithium battery SOC based on improved UKF algorithm[J] publication-title: Transducer Microsyst Tech – ident: e_1_2_7_36_1 doi: 10.1007/s00500‐020‐05101‐5 – ident: e_1_2_7_45_1 doi: 10.17516/1999‐494X‐0242 – volume: 38 start-page: 133 issue: 2 year: 2019 ident: e_1_2_7_28_1 article-title: SOC estimation of lithium battery based on equivalent model of extended Kalman filter[J] publication-title: J Tongji Univ Nat Sci – ident: e_1_2_7_31_1 doi: 10.3389/fenrg.2021.769818 – ident: e_1_2_7_16_1 doi: 10.3390/en14175265 – ident: e_1_2_7_39_1 doi: 10.1109/ACCESS.2021.3095938 – ident: e_1_2_7_13_1 doi: 10.1016/j.gloei.2022.01.003 – ident: e_1_2_7_14_1 doi: 10.3389/fenrg.2021.773838 – volume: 9 start-page: 249 issue: 1 year: 2020 ident: e_1_2_7_9_1 article-title: Experimental study on high temperature thermal runaway of cylindrical high nickel ternary lithium‐ion batteries[J] publication-title: Energy Storage Sci Tech – ident: e_1_2_7_8_1 doi: 10.1080/10584587.2019.1592620 – volume: 46 start-page: 1444 issue: 8 year: 2020 ident: e_1_2_7_11_1 article-title: Multi‐scale joint estimation of SOC and capacity of lithium‐ion battery[J] publication-title: J Beijing Univ Aeronaut Astronaut – ident: e_1_2_7_22_1 doi: 10.1007/s11581‐020‐03716‐0 – ident: e_1_2_7_42_1 doi: 10.3390/en14020324 – ident: e_1_2_7_38_1 doi: 10.1016/j.est.2019.100758 – ident: e_1_2_7_37_1 doi: 10.3390/en12132491 – ident: e_1_2_7_2_1 doi: 10.1002/er.7545 – ident: e_1_2_7_15_1 doi: 10.1016/j.applthermaleng.2020.115679 – ident: e_1_2_7_12_1 doi: 10.1109/TPEL.2020.2984248 – volume: 31 start-page: 1823 issue: 15 year: 2020 ident: e_1_2_7_25_1 article-title: SOC estimation of lithium‐ion battery based on ampere hour integral and unscented Kalman filter[J] publication-title: China Mech Eng – volume: 48 start-page: 69 issue: 2 year: 2020 ident: e_1_2_7_26_1 article-title: SOC estimation of Li‐ion power battery based on STEKF[J] publication-title: J South China Univ Tech Natural Sci Edn – ident: e_1_2_7_43_1 doi: 10.3390/en12214036 – ident: e_1_2_7_32_1 doi: 10.1109/ACCESS.2020.3038477 – volume: 41 start-page: 334 issue: 3 year: 2019 ident: e_1_2_7_23_1 article-title: Modeling of lithium battery characteristics considering the influence of temperature and hysteresis effect[J] publication-title: Autom Eng – ident: e_1_2_7_30_1 doi: 10.3390/app10186371 – ident: e_1_2_7_34_1 doi: 10.1016/j.est.2021.102535 – ident: e_1_2_7_5_1 doi: 10.1080/00150193.2021.1905731 – ident: e_1_2_7_33_1 doi: 10.1109/TTE.2020.3032737 – ident: e_1_2_7_24_1 doi: 10.1002/er.4275 – ident: e_1_2_7_41_1 doi: 10.1007/s42835‐020‐00544‐0 – ident: e_1_2_7_44_1 doi: 10.3390/en12122242 – ident: e_1_2_7_7_1 doi: 10.1007/s10973‐020‐09274‐x – ident: e_1_2_7_29_1 doi: 10.1007/s42835‐019‐00179‐w – ident: e_1_2_7_40_1 doi: 10.1109/TVT.2021.3079934 |
| SSID | ssj0008239 |
| Score | 2.4304206 |
| Snippet | Aiming at the problem that it is difficult to accurately estimate the state of charge (SOC) of lithium‐ion batteries in the strongly nonlinear interval, a... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3811 |
| SubjectTerms | Accuracy algorithm fusion Algorithms Equivalent circuits Errors Extended Kalman filter extended Kalman filtering Fuzzy control iterative calculation Lithium Lithium-ion batteries State of charge |
| Title | A novel fuzzy‐extended Kalman filter‐ampere‐hour (F‐EKF‐Ah) algorithm based on improved second‐order PNGV model to estimate state of charge of lithium‐ion batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcta.3386 https://www.proquest.com/docview/2731598140 |
| Volume | 50 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1097-007X dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0008239 issn: 0098-9886 databaseCode: ADMLS dateStart: 20120701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0098-9886 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-007X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008239 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NatwwEMdFyKk99DOl26ZhAqVpD954ZVm2j0vIJjQQSklKoAcj66O7dNcuu95A9tRH6LP0kfIknZHtbFoaKL3YAo-MzUjWf2TNT4y9tipWYWJ5YG1YBMINZJBGAx3IOHJSJBnRqmm1xak8PhfvL-KLdlUl5cI0fIibCTfqGf57TR1cFYv9NTRU16qP8RXRtgeR9NHUxzU5KuVR1uEyszSVHXc25Ptdxd9HorW8vC1S_Sgzesg-d8_XLC752l_WRV-v_kA3_t8LPGIPWvEJw6a1PGYbtnzC7t9CEj5lP4dQVpd2Cm65Wl1df__RzZLDiZrOVAluQv_X8YJCwT23WBjjbeHtCEuHJ3Qcjt-Bmn6p5pN6PAMaJg1UJUz89AWWFxSDGzT02E_4cHr0CfyGPFBXQNAPFNEWfKYTVA48y8mXMGIYT5YzrImNCW9MiUgY6G-x89Hh2cFx0O7rEGgUFzJItFJKZNzYSBnufBZn7DQO1zI1ERH3Y5nphGvlVCKzJEyzWGmhuTU2zAyPnrHNsirtcwYO5Y0wGsM-l4pCOlU45YyUVrtQCy56bK_zca5b6DntvTHNG1wzz9ELOXmhx3ZvLL81oI-_2Gx3zSRvu_oiR_2HkpDAYT32xvv7zvr5wdmQzi_-1fAlu8cp3cLnPm6zzXq-tK9QBNXFjm_uvwC9Fw3j |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VcgAO_CMCBRYJ8XNw6q7Xa1ucoqohkBIhlKIekKz1_pCIxEapg0ROPALPwiPxJMys46YgkBAXeyTPWrZm1vPNeOdbgEdWxSpMLA-sDYtAuD0ZpNGeDmQcOSmSjNiqabXFSA6OxKvj-HgLnre9MA0_xGnBjWaG_17TBKeC9O6GNVTXqosJljwH54XENIUQ0dsNd1TKo6wlzMzSVLbMsyHfbUf-Gos2APMsTPVxpn8F3rdP2Cwv-dhd1kVXr34jb_zPV7gKl9f4k_Uah7kGW7a8DpfOsBLegO89Vlaf7Yy55Wr15cfXb22hnA3VbK5K5qb0ix0vKMTcC4vCBG_LnvZROhjSsTd5xtTsQ7WY1pM5o0hpWFWyqa9goHxCabhBRc_8yd6MXrxjfk8eVleMeD8QR1vmm51Y5Zinc_ISJg2T6XKOI9Gf8MbUi4S5_k046h-M9wfBemuHQCO-kEGilVIi48ZGynDnGzljpzFiy9RERLofy0wnXCunEpklYZrFSgvNrbFhZnh0C7bLqrS3gTlEOMJozPxcKgrpVOGUM1Ja7UItuOjAk9bIuV7zntP2G7O8YWzmOVohJyt04OGp5qeG6-MPOjutn-Tr2X6SIwREVEjcYR147A3-1_H5_rhH5zv_qvgALgzGrw_zw5ej4V24yKn7wrdC7sB2vVjae4iJ6uK-9_2fdQESBA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dbtMwFMePxpAQXPCNKAw4SIiPi3SZ4ziJuKq2lUFRNaEN7QIpcvyxVmuTqUuR6BWPwLPwSDwJx06zDgQS4iaxlOMo0bHj_3F8fgZ4ZmQsw8SwwJiwCLjdEkEabalAxJEVPMkcrdqtthiKvUP-7ig-WoPXbS5Mw4c4n3BzPcN_r10HN6fabq6ooaqWXQqwxCW4zOMsdev5dj6s2FEpi7IWmJmlqWjJsyHbbGv-OhatBOZFmerHmf4N-NQ-YbO85KQ7r4uuWvwGb_zPV7gJ15f6E3tNg7kFa6a8DdcuUAnvwPceltVnM0E7Xyy-_Pj6rZ0ox4GcTGWJdux-sdMFSZp7Zqgwotviyz6Vdgfu2Bu9Qjk5rmbjejRFN1JqrEoc-xkMKp-5MFyToSd_4v7wzUf0e_JgXaHjfpCONuiTnbCy6HFOvkRBw2g8n1JNak90Y5eLRLH-XTjs7x5s7wXLrR0CRfpCBImSUvKMaRNJzaxP5IytohFbpDpy0P1YZCphSlqZiCwJ0yyWiitmtAkzzaJ7sF5WpbkPaEnhcK0o8rMpL4SVhZVWC2GUDRVnvAMvWifnask9d9tvTPKG2Mxy8kLuvNCBp-eWpw3r4w82G207yZe9_SwnCUiq0LHDOvDcO_yv9fPtg547P_hXwydwZX-nn79_Oxw8hKvMJV_4TMgNWK9nc_OIJFFdPPZN_ycIEBGI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fuzzy%E2%80%90extended+Kalman+filter%E2%80%90ampere%E2%80%90hour+%28F%E2%80%90EKF%E2%80%90Ah%29+algorithm+based+on+improved+second%E2%80%90order+PNGV+model+to+estimate+state+of+charge+of+lithium%E2%80%90ion+batteries&rft.jtitle=International+journal+of+circuit+theory+and+applications&rft.au=Liu%2C+Donglei&rft.au=Wang%2C+Shunli&rft.au=Fan%2C+Yongcun&rft.au=Xia%2C+Lili&rft.date=2022-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0098-9886&rft.eissn=1097-007X&rft.volume=50&rft.issue=11&rft.spage=3811&rft.epage=3826&rft_id=info:doi/10.1002%2Fcta.3386&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-9886&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-9886&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-9886&client=summon |