A novel fuzzy‐extended Kalman filter‐ampere‐hour (F‐EKF‐Ah) algorithm based on improved second‐order PNGV model to estimate state of charge of lithium‐ion batteries

Aiming at the problem that it is difficult to accurately estimate the state of charge (SOC) of lithium‐ion batteries in the strongly nonlinear interval, a novel algorithm based on a fuzzy control strategy is proposed. It integrates extended Kalman filter (EKF) and ampere‐hour (Ah) integration accura...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of circuit theory and applications Vol. 50; no. 11; pp. 3811 - 3826
Main Authors Liu, Donglei, Wang, Shunli, Fan, Yongcun, Xia, Lili, Qiu, Jingsong
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.11.2022
Subjects
Online AccessGet full text
ISSN0098-9886
1097-007X
DOI10.1002/cta.3386

Cover

Abstract Aiming at the problem that it is difficult to accurately estimate the state of charge (SOC) of lithium‐ion batteries in the strongly nonlinear interval, a novel algorithm based on a fuzzy control strategy is proposed. It integrates extended Kalman filter (EKF) and ampere‐hour (Ah) integration accurately estimate the SOC of lithium‐ion batteries. First, the algorithm uses the advantage that the EKF algorithm has high estimation accuracy in the nonlinear interval and can solve the problem of the large error caused by the inaccurate initial value of the Ah integral algorithm. Then the fuzzy‐EKF‐Ah (F‐EKF‐Ah) is used to fuse the two algorithms of EKF and Ah integral. The fused algorithm can effectively solve the problems of the cumulative error caused by the sampling accuracy of the Ah integral algorithm and the large estimation error of the EKF algorithm in the strong nonlinear interval. Finally, the equivalent circuit model is used for analysis. The experimental results show that the improved algorithm can achieve high estimation accuracy under three experimental conditions. In this paper, an RC loop is added to the PNGV model to better represent the electrochemical characteristics of lithium‐ion batteries. The fuzzy logic controller combined with the extended Kalman filter (EKF) algorithm and ampere‐hour integral (Ah) algorithm was used to estimate the charge state of lithium‐ion batteries. The fused algorithm can effectively solve the problems of the cumulative error caused by the sampling accuracy of the Ah integral algorithm and the large estimation error of the EKF algorithm in the strong nonlinear interval.
AbstractList Aiming at the problem that it is difficult to accurately estimate the state of charge (SOC) of lithium‐ion batteries in the strongly nonlinear interval, a novel algorithm based on a fuzzy control strategy is proposed. It integrates extended Kalman filter (EKF) and ampere‐hour (Ah) integration accurately estimate the SOC of lithium‐ion batteries. First, the algorithm uses the advantage that the EKF algorithm has high estimation accuracy in the nonlinear interval and can solve the problem of the large error caused by the inaccurate initial value of the Ah integral algorithm. Then the fuzzy‐EKF‐Ah (F‐EKF‐Ah) is used to fuse the two algorithms of EKF and Ah integral. The fused algorithm can effectively solve the problems of the cumulative error caused by the sampling accuracy of the Ah integral algorithm and the large estimation error of the EKF algorithm in the strong nonlinear interval. Finally, the equivalent circuit model is used for analysis. The experimental results show that the improved algorithm can achieve high estimation accuracy under three experimental conditions.
Aiming at the problem that it is difficult to accurately estimate the state of charge (SOC) of lithium‐ion batteries in the strongly nonlinear interval, a novel algorithm based on a fuzzy control strategy is proposed. It integrates extended Kalman filter (EKF) and ampere‐hour (Ah) integration accurately estimate the SOC of lithium‐ion batteries. First, the algorithm uses the advantage that the EKF algorithm has high estimation accuracy in the nonlinear interval and can solve the problem of the large error caused by the inaccurate initial value of the Ah integral algorithm. Then the fuzzy‐EKF‐Ah (F‐EKF‐Ah) is used to fuse the two algorithms of EKF and Ah integral. The fused algorithm can effectively solve the problems of the cumulative error caused by the sampling accuracy of the Ah integral algorithm and the large estimation error of the EKF algorithm in the strong nonlinear interval. Finally, the equivalent circuit model is used for analysis. The experimental results show that the improved algorithm can achieve high estimation accuracy under three experimental conditions. In this paper, an RC loop is added to the PNGV model to better represent the electrochemical characteristics of lithium‐ion batteries. The fuzzy logic controller combined with the extended Kalman filter (EKF) algorithm and ampere‐hour integral (Ah) algorithm was used to estimate the charge state of lithium‐ion batteries. The fused algorithm can effectively solve the problems of the cumulative error caused by the sampling accuracy of the Ah integral algorithm and the large estimation error of the EKF algorithm in the strong nonlinear interval.
Author Wang, Shunli
Fan, Yongcun
Liu, Donglei
Xia, Lili
Qiu, Jingsong
Author_xml – sequence: 1
  givenname: Donglei
  orcidid: 0000-0002-5370-4760
  surname: Liu
  fullname: Liu, Donglei
  email: 1658065234@qq.com
  organization: Southwest University of Science and Technology
– sequence: 2
  givenname: Shunli
  orcidid: 0000-0003-0485-8082
  surname: Wang
  fullname: Wang, Shunli
  email: 497420789@qq.com
  organization: Southwest University of Science and Technology
– sequence: 3
  givenname: Yongcun
  orcidid: 0000-0001-9240-4835
  surname: Fan
  fullname: Fan, Yongcun
  email: 8121064@qq.com
  organization: Southwest University of Science and Technology
– sequence: 4
  givenname: Lili
  orcidid: 0000-0002-7904-0130
  surname: Xia
  fullname: Xia, Lili
  email: 2655691189@qq.com
  organization: Southwest University of Science and Technology
– sequence: 5
  givenname: Jingsong
  orcidid: 0000-0002-8304-0926
  surname: Qiu
  fullname: Qiu, Jingsong
  email: 2534546645@qq.com
  organization: Southwest University of Science and Technology
BookMark eNp1kcFuFDEMhiNUJLYFiUeIxKUcZvFkdmaS42rVFtQKOBTEbeQmnm6qmcmSZIHtiUfgWXgkngRvlxOCi2PJ3__bjo_F0RQmEuJ5CfMSQL2yGedVpZtHYlaCaQuA9tORmAEYXRitmyfiOKU7ANCqMjPxcymn8IUG2W_v73e_vv-gb5kmR05e4jDiJHs_ZIpcwHFDkThZh22Up-ecnV3u43L9UuJwG6LP61HeYGJxmKQfN5GdnUxkw-QYDNFRlO_fXnyUY3DcMwdJKfsRM8mU9zH00q4x3j5kAxv67chKz343mHkQT-mpeNzjkOjZn_dEfDg_u169Lq7eXbxZLa8Kq0zVFK1FxIVRjip0qodG6brurSVqtKt03ULdGNsqiz22jWlBmxrtwipyBMap6kS8OPjyHp-3PGh3x5tP3LJTbVXWRpcLYGp-oGwMKUXqO-t5FZ44R_RDV0K3v0vHd-n2d2HB6V-CTeQviLt_ocUB_eoH2v2X61bXywf-NwnzqAI
CitedBy_id crossref_primary_10_1007_s11581_024_05428_1
crossref_primary_10_1016_j_est_2023_108905
crossref_primary_10_1007_s11581_024_05686_z
crossref_primary_10_1007_s11581_024_05678_z
crossref_primary_10_1016_j_jpowsour_2024_235594
crossref_primary_10_1016_j_est_2024_112412
crossref_primary_10_1007_s11581_024_05811_y
crossref_primary_10_1016_j_est_2024_111930
crossref_primary_10_1016_j_est_2025_115955
crossref_primary_10_1149_1945_7111_acced3
crossref_primary_10_1016_j_apenergy_2025_125539
crossref_primary_10_1016_j_est_2024_110574
crossref_primary_10_1016_j_est_2024_111552
crossref_primary_10_1002_cta_3624
crossref_primary_10_3390_en17092145
crossref_primary_10_1002_cta_3788
crossref_primary_10_1002_cta_4138
crossref_primary_10_1002_cta_3862
crossref_primary_10_1007_s11581_024_05749_1
crossref_primary_10_1016_j_est_2023_107987
Cites_doi 10.1063/5.0015057
10.1109/ACCESS.2021.3057371
10.1109/TPEL.2019.2948253
10.3390/electronics8091012
10.4316/AECE.2019.03001
10.1016/j.ijepes.2019.02.046
10.1016/j.est.2019.100945
10.1007/s00500‐020‐05101‐5
10.17516/1999‐494X‐0242
10.3389/fenrg.2021.769818
10.3390/en14175265
10.1109/ACCESS.2021.3095938
10.1016/j.gloei.2022.01.003
10.3389/fenrg.2021.773838
10.1080/10584587.2019.1592620
10.1007/s11581‐020‐03716‐0
10.3390/en14020324
10.1016/j.est.2019.100758
10.3390/en12132491
10.1002/er.7545
10.1016/j.applthermaleng.2020.115679
10.1109/TPEL.2020.2984248
10.3390/en12214036
10.1109/ACCESS.2020.3038477
10.3390/app10186371
10.1016/j.est.2021.102535
10.1080/00150193.2021.1905731
10.1109/TTE.2020.3032737
10.1002/er.4275
10.1007/s42835‐020‐00544‐0
10.3390/en12122242
10.1007/s10973‐020‐09274‐x
10.1007/s42835‐019‐00179‐w
10.1109/TVT.2021.3079934
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1002/cta.3386
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-007X
EndPage 3826
ExternalDocumentID 10_1002_cta_3386
CTA3386
Genre article
GrantInformation_xml – fundername: RGU
– fundername: National Natural Science Foundation of China
  funderid: 62173281; 61801407
– fundername: Natural Science Foundation of Southwest University of Science and Technology
  funderid: 18zx7145; 17zx7110
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c2936-7caaa492de3ad2f062855fccee68d38570569c72cafa76970895ac4c2ede09d23
IEDL.DBID DR2
ISSN 0098-9886
IngestDate Fri Jul 25 12:29:23 EDT 2025
Wed Oct 01 03:35:44 EDT 2025
Thu Apr 24 23:02:37 EDT 2025
Wed Jan 22 16:31:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2936-7caaa492de3ad2f062855fccee68d38570569c72cafa76970895ac4c2ede09d23
Notes Funding information
National Natural Science Foundation of China, Grant/Award Numbers: 62173281, 61801407; Natural Science Foundation of Southwest University of Science and Technology, Grant/Award Numbers: 18zx7145, 17zx7110; RGU
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9240-4835
0000-0002-5370-4760
0000-0003-0485-8082
0000-0002-7904-0130
0000-0002-8304-0926
PQID 2731598140
PQPubID 996369
PageCount 16
ParticipantIDs proquest_journals_2731598140
crossref_citationtrail_10_1002_cta_3386
crossref_primary_10_1002_cta_3386
wiley_primary_10_1002_cta_3386_CTA3386
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of circuit theory and applications
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2019; 8
2021; 7
2021; 43
2021; 4
2020; 142
2019; 12
2019; 14
2022; 46
2019; 38
2021; 580
2019; 19
2020; 15
2020; 35
2020; 13
2020; 12
2020; 10
2019; 200
2021; 70
2021; 14
2020; 8
2020; 31
2019; 41
2019; 43
2019; 24
2021; 39
2020; 9
2020; 27
2020; 26
2020; 48
2020; 46
2020; 24
2020; 179
2021; 40
2019; 110
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
Gong M (e_1_2_7_35_1) 2020; 35
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
An Z (e_1_2_7_28_1) 2019; 38
e_1_2_7_44_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
Tian S (e_1_2_7_26_1) 2020; 48
Li Y (e_1_2_7_21_1) 2021; 40
Zhang Z (e_1_2_7_4_1) 2021; 43
Yang S (e_1_2_7_11_1) 2020; 46
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
Song K (e_1_2_7_23_1) 2019; 41
e_1_2_7_34_1
e_1_2_7_20_1
Ding Z (e_1_2_7_25_1) 2020; 31
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Du G (e_1_2_7_9_1) 2020; 9
Zhang K (e_1_2_7_6_1) 2020; 31
References_xml – volume: 46
  start-page: 5423
  year: 2022
  end-page: 5440
  article-title: A comprehensive review on the state of charge estimation for lithium‐ion battery based on neural network[J]
  publication-title: Int J Energy Res
– volume: 39
  start-page: 1
  year: 2021
  end-page: 14
  article-title: State of charge estimation of power lithium‐ion battery based on an adaptive time scale dual extend Kalman filtering[J]
  publication-title: J Energy Storage
– volume: 24
  start-page: 18661
  issue: 24
  year: 2020
  end-page: 18670
  article-title: Online estimation of state of health for the airborne Li‐ion battery using adaptive DEKF‐based fuzzy inference system[J]
  publication-title: Soft Comput
– volume: 142
  start-page: 1523
  issue: 4
  year: 2020
  end-page: 1532
  article-title: The investigation of thermal runaway propagation of lithium‐ion batteries under different vertical distances[J]
  publication-title: J Therm Anal Calorimetr
– volume: 179
  start-page: 1
  year: 2020
  end-page: 8
  article-title: A comparative study on air transport safety of lithium‐ion batteries with different SOCs[J]
  publication-title: Appl Therm Eng
– volume: 48
  start-page: 69
  issue: 2
  year: 2020
  end-page: 75
  article-title: SOC estimation of Li‐ion power battery based on STEKF[J]
  publication-title: J South China Univ Tech Natural Sci Edn
– volume: 14
  start-page: 1485
  issue: 4
  year: 2019
  end-page: 1493
  article-title: Model parameters online identification and SOC joint estimation for lithium‐ion battery based on a composite algorithm[J]
  publication-title: J Electr Eng Tech
– volume: 31
  start-page: 1931
  issue: 16
  year: 2020
  end-page: 1939
  article-title: SOC‐based active equalization control for lithium‐ion battery packs[J]
  publication-title: China Mech Eng
– volume: 9
  start-page: 1
  year: 2021
  end-page: 9
  article-title: An active balancing method based on SOC and capacitance for lithium‐ion batteries in electric vehicles[J]
  publication-title: Front Energy Res
– volume: 9
  start-page: 1
  year: 2021
  end-page: 15
  article-title: Estimation of lithium‐ion battery SOC model based on AGA‐FOUKF algorithm[J]
  publication-title: Front Energy Res
– volume: 200
  start-page: 59
  issue: 1
  year: 2019
  end-page: 72
  article-title: Lithium‐ion battery modeling and state of charge estimation[J]
  publication-title: Integr Ferroelectr
– volume: 9
  start-page: 34177
  year: 2021
  end-page: 34187
  article-title: State of charge estimation of lithium‐ion batteries based on temporal convolutional network and transfer learning[J]
  publication-title: IEEE Access
– volume: 46
  start-page: 1444
  issue: 8
  year: 2020
  end-page: 1452
  article-title: Multi‐scale joint estimation of SOC and capacity of lithium‐ion battery[J]
  publication-title: J Beijing Univ Aeronaut Astronaut
– volume: 19
  start-page: 3
  issue: 3
  year: 2019
  end-page: 10
  article-title: Modeling of back‐propagation neural network based state‐of‐charge estimation for lithium‐ion batteries with consideration of capacity attenuation[J]
  publication-title: Adv Electr Comput Eng
– volume: 43
  start-page: 417
  issue: 1
  year: 2019
  end-page: 429
  article-title: Fractional‐order modeling and SOC estimation of lithium‐ion battery considering capacity loss[J]
  publication-title: Int J Energy Res
– volume: 35
  start-page: 3972
  issue: 18
  year: 2020
  end-page: 3978
  article-title: SOC estimation method of Lithium battery based on fuzzy adaptive extended Kalman filter[J]
  publication-title: Trans China Electrotech Soc
– volume: 15
  start-page: 2529
  issue: 6
  year: 2020
  end-page: 2538
  article-title: State of charge estimation for Li‐ion batteries based on an unscented H‐infinity filter[J]
  publication-title: J Electr Eng Tech
– volume: 27
  start-page: 1
  year: 2020
  end-page: 8
  article-title: Fractional calculus based modeling of open circuit voltage of lithium‐ion batteries for electric vehicles[J]
  publication-title: J Energy Storage
– volume: 7
  start-page: 399
  issue: 2
  year: 2021
  end-page: 409
  article-title: A two‐step parameter optimization method for low‐order model‐based state‐of‐charge estimation[J]
  publication-title: IEEE Trans Transp
– volume: 43
  start-page: 1803
  issue: 7
  year: 2021
  end-page: 1815
  article-title: Review of SoC estimation methods for electric vehicle Li‐ion batteries[J]
  publication-title: J Electron Inf Tech
– volume: 14
  start-page: 1
  issue: 17
  year: 2021
  end-page: 12
  article-title: Online SOC estimation based on simplified electrochemical model for lithium‐ion batteries considering current bias[J]
  publication-title: Energies
– volume: 8
  start-page: 208322
  year: 2020
  end-page: 208336
  article-title: An enhanced lithium‐ion battery model for estimating the state of charge and degraded capacity using an optimized extended Kalman filter[J]
  publication-title: IEEE Access
– volume: 8
  issue: 9
  year: 2019
  article-title: State of charge estimation for lithium‐ion batteries based on temperature‐dependent second‐order RC model[J]
  publication-title: Electronics
– volume: 41
  start-page: 334
  issue: 3
  year: 2019
  end-page: 339
  article-title: Modeling of lithium battery characteristics considering the influence of temperature and hysteresis effect[J]
  publication-title: Autom Eng
– volume: 12
  start-page: 1
  issue: 13
  year: 2019
  end-page: 13
  article-title: State of charge estimation for power lithium‐ion battery using a fuzzy logic sliding mode observer[J]
  publication-title: Energies
– volume: 38
  start-page: 133
  issue: 2
  year: 2019
  end-page: 138
  article-title: SOC estimation of lithium battery based on equivalent model of extended Kalman filter[J]
  publication-title: J Tongji Univ Nat Sci
– volume: 12
  start-page: 1
  issue: 21
  year: 2019
  end-page: 19
  article-title: State‐of‐charge estimation for lithium‐ion battery using improved DUKF based on state‐parameter separation[J]
  publication-title: Energies
– volume: 35
  start-page: 5820
  issue: 6
  year: 2020
  end-page: 5831
  article-title: State‐of‐charge observer design for batteries with online model parameter identification: a robust approach[J]
  publication-title: IEEE Trans Power Electron
– volume: 12
  start-page: 1
  issue: 6
  year: 2020
  end-page: 7
  article-title: Lithium battery SOC estimation based on whale optimization algorithm and unscented Kalman filter[J]
  publication-title: J Renew Sustain Energy
– volume: 13
  start-page: 420
  issue: 4
  year: 2020
  end-page: 437
  article-title: State‐of‐charge estimation of lithium‐ion battery based on extended Kalman filter algorithm[J]
  publication-title: J Siberian Federal Univ Eng Tech
– volume: 4
  start-page: 619
  issue: 6
  year: 2021
  end-page: 630
  article-title: Review of lithium‐ion battery state of charge estimation[J]
  publication-title: Global Energy Interconn
– volume: 12
  start-page: 1
  issue: 12
  year: 2019
  end-page: 15
  article-title: Adaptive forgetting factor recursive least square algorithm for online identification of equivalent circuit model parameters of a lithium‐ion battery[J]
  publication-title: Energies
– volume: 9
  start-page: 99876
  year: 2021
  end-page: 99889
  article-title: Low temperature, current dependent battery state estimation using interacting multiple model strategy[J]
  publication-title: IEEE Access
– volume: 26
  start-page: 6145
  issue: 12
  year: 2020
  end-page: 6156
  article-title: The multi‐innovation extended Kalman filter algorithm for battery SOC estimation[J]
  publication-title: Ionics
– volume: 24
  start-page: 1
  year: 2019
  end-page: 21
  article-title: A hybrid model predictive and fuzzy logic based control method for state of power estimation of series‐connected Lithium‐ion batteries in HEVs[J]
  publication-title: J Energy Storage
– volume: 110
  start-page: 48
  year: 2019
  end-page: 61
  article-title: Hybrid state of charge estimation for lithium‐ion battery under dynamic operating conditions[J]
  publication-title: Int J Electr Power Energy Syst
– volume: 35
  start-page: 12332
  issue: 11
  year: 2020
  end-page: 12346
  article-title: Reduced‐coupling coestimation of SOC and SOH for lithium‐ion batteries based on convex optimization[J]
  publication-title: IEEE Trans Power Electron
– volume: 10
  issue: 18
  year: 2020
  article-title: State of charge estimation for lithium‐ion power battery based on H‐infinity filter algorithm[J]
  publication-title: Appl Sci‐Basel
– volume: 9
  start-page: 249
  issue: 1
  year: 2020
  end-page: 256
  article-title: Experimental study on high temperature thermal runaway of cylindrical high nickel ternary lithium‐ion batteries[J]
  publication-title: Energy Storage Sci Tech
– volume: 31
  start-page: 1823
  issue: 15
  year: 2020
  end-page: 1830
  article-title: SOC estimation of lithium‐ion battery based on ampere hour integral and unscented Kalman filter[J]
  publication-title: China Mech Eng
– volume: 14
  issue: 2
  year: 2021
  article-title: Online state‐of‐charge estimation based on the gas‐liquid dynamics model for Li (NiMnCo)O battery[J]
  publication-title: Energies
– volume: 580
  start-page: 112
  issue: 1
  year: 2021
  end-page: 128
  article-title: Estimating SOC and SOH of lithium battery based on nano material[J]
  publication-title: Ferroelectrics
– volume: 70
  start-page: 5638
  issue: 6
  year: 2021
  end-page: 5647
  article-title: A robust state of charge estimation approach based on nonlinear battery cell model for lithium‐ion batteries in electric vehicles[J]
  publication-title: IEEE Trans Vehic Tech
– volume: 40
  start-page: 1
  issue: 6
  year: 2021
  end-page: 13
  article-title: Accurate estimation of lithium battery SOC based on improved UKF algorithm[J]
  publication-title: Transducer Microsyst Tech
– ident: e_1_2_7_27_1
  doi: 10.1063/5.0015057
– volume: 43
  start-page: 1803
  issue: 7
  year: 2021
  ident: e_1_2_7_4_1
  article-title: Review of SoC estimation methods for electric vehicle Li‐ion batteries[J]
  publication-title: J Electron Inf Tech
– ident: e_1_2_7_17_1
  doi: 10.1109/ACCESS.2021.3057371
– ident: e_1_2_7_10_1
  doi: 10.1109/TPEL.2019.2948253
– ident: e_1_2_7_18_1
  doi: 10.3390/electronics8091012
– ident: e_1_2_7_20_1
  doi: 10.4316/AECE.2019.03001
– volume: 35
  start-page: 3972
  issue: 18
  year: 2020
  ident: e_1_2_7_35_1
  article-title: SOC estimation method of Lithium battery based on fuzzy adaptive extended Kalman filter[J]
  publication-title: Trans China Electrotech Soc
– volume: 31
  start-page: 1931
  issue: 16
  year: 2020
  ident: e_1_2_7_6_1
  article-title: SOC‐based active equalization control for lithium‐ion battery packs[J]
  publication-title: China Mech Eng
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ijepes.2019.02.046
– ident: e_1_2_7_19_1
  doi: 10.1016/j.est.2019.100945
– volume: 40
  start-page: 1
  issue: 6
  year: 2021
  ident: e_1_2_7_21_1
  article-title: Accurate estimation of lithium battery SOC based on improved UKF algorithm[J]
  publication-title: Transducer Microsyst Tech
– ident: e_1_2_7_36_1
  doi: 10.1007/s00500‐020‐05101‐5
– ident: e_1_2_7_45_1
  doi: 10.17516/1999‐494X‐0242
– volume: 38
  start-page: 133
  issue: 2
  year: 2019
  ident: e_1_2_7_28_1
  article-title: SOC estimation of lithium battery based on equivalent model of extended Kalman filter[J]
  publication-title: J Tongji Univ Nat Sci
– ident: e_1_2_7_31_1
  doi: 10.3389/fenrg.2021.769818
– ident: e_1_2_7_16_1
  doi: 10.3390/en14175265
– ident: e_1_2_7_39_1
  doi: 10.1109/ACCESS.2021.3095938
– ident: e_1_2_7_13_1
  doi: 10.1016/j.gloei.2022.01.003
– ident: e_1_2_7_14_1
  doi: 10.3389/fenrg.2021.773838
– volume: 9
  start-page: 249
  issue: 1
  year: 2020
  ident: e_1_2_7_9_1
  article-title: Experimental study on high temperature thermal runaway of cylindrical high nickel ternary lithium‐ion batteries[J]
  publication-title: Energy Storage Sci Tech
– ident: e_1_2_7_8_1
  doi: 10.1080/10584587.2019.1592620
– volume: 46
  start-page: 1444
  issue: 8
  year: 2020
  ident: e_1_2_7_11_1
  article-title: Multi‐scale joint estimation of SOC and capacity of lithium‐ion battery[J]
  publication-title: J Beijing Univ Aeronaut Astronaut
– ident: e_1_2_7_22_1
  doi: 10.1007/s11581‐020‐03716‐0
– ident: e_1_2_7_42_1
  doi: 10.3390/en14020324
– ident: e_1_2_7_38_1
  doi: 10.1016/j.est.2019.100758
– ident: e_1_2_7_37_1
  doi: 10.3390/en12132491
– ident: e_1_2_7_2_1
  doi: 10.1002/er.7545
– ident: e_1_2_7_15_1
  doi: 10.1016/j.applthermaleng.2020.115679
– ident: e_1_2_7_12_1
  doi: 10.1109/TPEL.2020.2984248
– volume: 31
  start-page: 1823
  issue: 15
  year: 2020
  ident: e_1_2_7_25_1
  article-title: SOC estimation of lithium‐ion battery based on ampere hour integral and unscented Kalman filter[J]
  publication-title: China Mech Eng
– volume: 48
  start-page: 69
  issue: 2
  year: 2020
  ident: e_1_2_7_26_1
  article-title: SOC estimation of Li‐ion power battery based on STEKF[J]
  publication-title: J South China Univ Tech Natural Sci Edn
– ident: e_1_2_7_43_1
  doi: 10.3390/en12214036
– ident: e_1_2_7_32_1
  doi: 10.1109/ACCESS.2020.3038477
– volume: 41
  start-page: 334
  issue: 3
  year: 2019
  ident: e_1_2_7_23_1
  article-title: Modeling of lithium battery characteristics considering the influence of temperature and hysteresis effect[J]
  publication-title: Autom Eng
– ident: e_1_2_7_30_1
  doi: 10.3390/app10186371
– ident: e_1_2_7_34_1
  doi: 10.1016/j.est.2021.102535
– ident: e_1_2_7_5_1
  doi: 10.1080/00150193.2021.1905731
– ident: e_1_2_7_33_1
  doi: 10.1109/TTE.2020.3032737
– ident: e_1_2_7_24_1
  doi: 10.1002/er.4275
– ident: e_1_2_7_41_1
  doi: 10.1007/s42835‐020‐00544‐0
– ident: e_1_2_7_44_1
  doi: 10.3390/en12122242
– ident: e_1_2_7_7_1
  doi: 10.1007/s10973‐020‐09274‐x
– ident: e_1_2_7_29_1
  doi: 10.1007/s42835‐019‐00179‐w
– ident: e_1_2_7_40_1
  doi: 10.1109/TVT.2021.3079934
SSID ssj0008239
Score 2.4304206
Snippet Aiming at the problem that it is difficult to accurately estimate the state of charge (SOC) of lithium‐ion batteries in the strongly nonlinear interval, a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3811
SubjectTerms Accuracy
algorithm fusion
Algorithms
Equivalent circuits
Errors
Extended Kalman filter
extended Kalman filtering
Fuzzy control
iterative calculation
Lithium
Lithium-ion batteries
State of charge
Title A novel fuzzy‐extended Kalman filter‐ampere‐hour (F‐EKF‐Ah) algorithm based on improved second‐order PNGV model to estimate state of charge of lithium‐ion batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcta.3386
https://www.proquest.com/docview/2731598140
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1097-007X
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0008239
  issn: 0098-9886
  databaseCode: ADMLS
  dateStart: 20120701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0098-9886
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-007X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008239
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NatwwEMdFyKk99DOl26ZhAqVpD954ZVm2j0vIJjQQSklKoAcj66O7dNcuu95A9tRH6LP0kfIknZHtbFoaKL3YAo-MzUjWf2TNT4y9tipWYWJ5YG1YBMINZJBGAx3IOHJSJBnRqmm1xak8PhfvL-KLdlUl5cI0fIibCTfqGf57TR1cFYv9NTRU16qP8RXRtgeR9NHUxzU5KuVR1uEyszSVHXc25Ptdxd9HorW8vC1S_Sgzesg-d8_XLC752l_WRV-v_kA3_t8LPGIPWvEJw6a1PGYbtnzC7t9CEj5lP4dQVpd2Cm65Wl1df__RzZLDiZrOVAluQv_X8YJCwT23WBjjbeHtCEuHJ3Qcjt-Bmn6p5pN6PAMaJg1UJUz89AWWFxSDGzT02E_4cHr0CfyGPFBXQNAPFNEWfKYTVA48y8mXMGIYT5YzrImNCW9MiUgY6G-x89Hh2cFx0O7rEGgUFzJItFJKZNzYSBnufBZn7DQO1zI1ERH3Y5nphGvlVCKzJEyzWGmhuTU2zAyPnrHNsirtcwYO5Y0wGsM-l4pCOlU45YyUVrtQCy56bK_zca5b6DntvTHNG1wzz9ELOXmhx3ZvLL81oI-_2Gx3zSRvu_oiR_2HkpDAYT32xvv7zvr5wdmQzi_-1fAlu8cp3cLnPm6zzXq-tK9QBNXFjm_uvwC9Fw3j
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VcgAO_CMCBRYJ8XNw6q7Xa1ucoqohkBIhlKIekKz1_pCIxEapg0ROPALPwiPxJMys46YgkBAXeyTPWrZm1vPNeOdbgEdWxSpMLA-sDYtAuD0ZpNGeDmQcOSmSjNiqabXFSA6OxKvj-HgLnre9MA0_xGnBjWaG_17TBKeC9O6GNVTXqosJljwH54XENIUQ0dsNd1TKo6wlzMzSVLbMsyHfbUf-Gos2APMsTPVxpn8F3rdP2Cwv-dhd1kVXr34jb_zPV7gKl9f4k_Uah7kGW7a8DpfOsBLegO89Vlaf7Yy55Wr15cfXb22hnA3VbK5K5qb0ix0vKMTcC4vCBG_LnvZROhjSsTd5xtTsQ7WY1pM5o0hpWFWyqa9goHxCabhBRc_8yd6MXrxjfk8eVleMeD8QR1vmm51Y5Zinc_ISJg2T6XKOI9Gf8MbUi4S5_k046h-M9wfBemuHQCO-kEGilVIi48ZGynDnGzljpzFiy9RERLofy0wnXCunEpklYZrFSgvNrbFhZnh0C7bLqrS3gTlEOMJozPxcKgrpVOGUM1Ja7UItuOjAk9bIuV7zntP2G7O8YWzmOVohJyt04OGp5qeG6-MPOjutn-Tr2X6SIwREVEjcYR147A3-1_H5_rhH5zv_qvgALgzGrw_zw5ej4V24yKn7wrdC7sB2vVjae4iJ6uK-9_2fdQESBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dbtMwFMePxpAQXPCNKAw4SIiPi3SZ4ziJuKq2lUFRNaEN7QIpcvyxVmuTqUuR6BWPwLPwSDwJx06zDgQS4iaxlOMo0bHj_3F8fgZ4ZmQsw8SwwJiwCLjdEkEabalAxJEVPMkcrdqtthiKvUP-7ig-WoPXbS5Mw4c4n3BzPcN_r10HN6fabq6ooaqWXQqwxCW4zOMsdev5dj6s2FEpi7IWmJmlqWjJsyHbbGv-OhatBOZFmerHmf4N-NQ-YbO85KQ7r4uuWvwGb_zPV7gJ15f6E3tNg7kFa6a8DdcuUAnvwPceltVnM0E7Xyy-_Pj6rZ0ox4GcTGWJdux-sdMFSZp7Zqgwotviyz6Vdgfu2Bu9Qjk5rmbjejRFN1JqrEoc-xkMKp-5MFyToSd_4v7wzUf0e_JgXaHjfpCONuiTnbCy6HFOvkRBw2g8n1JNak90Y5eLRLH-XTjs7x5s7wXLrR0CRfpCBImSUvKMaRNJzaxP5IytohFbpDpy0P1YZCphSlqZiCwJ0yyWiitmtAkzzaJ7sF5WpbkPaEnhcK0o8rMpL4SVhZVWC2GUDRVnvAMvWifnask9d9tvTPKG2Mxy8kLuvNCBp-eWpw3r4w82G207yZe9_SwnCUiq0LHDOvDcO_yv9fPtg547P_hXwydwZX-nn79_Oxw8hKvMJV_4TMgNWK9nc_OIJFFdPPZN_ycIEBGI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fuzzy%E2%80%90extended+Kalman+filter%E2%80%90ampere%E2%80%90hour+%28F%E2%80%90EKF%E2%80%90Ah%29+algorithm+based+on+improved+second%E2%80%90order+PNGV+model+to+estimate+state+of+charge+of+lithium%E2%80%90ion+batteries&rft.jtitle=International+journal+of+circuit+theory+and+applications&rft.au=Liu%2C+Donglei&rft.au=Wang%2C+Shunli&rft.au=Fan%2C+Yongcun&rft.au=Xia%2C+Lili&rft.date=2022-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0098-9886&rft.eissn=1097-007X&rft.volume=50&rft.issue=11&rft.spage=3811&rft.epage=3826&rft_id=info:doi/10.1002%2Fcta.3386&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-9886&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-9886&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-9886&client=summon