An efficient fire detection algorithm based on multi‐scale convolutional neural network

Summary Video fire detection (VFD) technology has shown a broad application prospect with the popularization of camera monitoring systems. Since the initial stage is the best time for firefighting, it's crucial to develop a robust algorithm for early warning. In this paper, an efficient VFD fus...

Full description

Saved in:
Bibliographic Details
Published inFire and materials Vol. 46; no. 7; pp. 981 - 992
Main Authors Cheng, Yanying, Chen, Ke, Bai, Hui, Mou, Chunjie, Zhang, Yuchun, Yang, Kai, Gao, Yunji, Liu, Yu
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.11.2022
Subjects
Online AccessGet full text
ISSN0308-0501
1099-1018
DOI10.1002/fam.3045

Cover

Abstract Summary Video fire detection (VFD) technology has shown a broad application prospect with the popularization of camera monitoring systems. Since the initial stage is the best time for firefighting, it's crucial to develop a robust algorithm for early warning. In this paper, an efficient VFD fusion algorithm is presented. First, the fire candidate areas (FCA) are located quickly based on low‐level visual features to guarantee well timeliness. Furthermore, a multi‐scale convolutional neural network with spatial pyramid pooling is built and trained on the dedicated flame data set without the requirement of sample labeling. In this case, FCA with different aspect ratios and scales can be accurately identified. The method is fully tested on various databases of arbitrary‐sized images and videos. Experimental results show that the proposed fusion algorithm, in addition to improving the detection efficiency, also ensures the accurate identification of flames on different scales.
AbstractList Summary Video fire detection (VFD) technology has shown a broad application prospect with the popularization of camera monitoring systems. Since the initial stage is the best time for firefighting, it's crucial to develop a robust algorithm for early warning. In this paper, an efficient VFD fusion algorithm is presented. First, the fire candidate areas (FCA) are located quickly based on low‐level visual features to guarantee well timeliness. Furthermore, a multi‐scale convolutional neural network with spatial pyramid pooling is built and trained on the dedicated flame data set without the requirement of sample labeling. In this case, FCA with different aspect ratios and scales can be accurately identified. The method is fully tested on various databases of arbitrary‐sized images and videos. Experimental results show that the proposed fusion algorithm, in addition to improving the detection efficiency, also ensures the accurate identification of flames on different scales.
Video fire detection (VFD) technology has shown a broad application prospect with the popularization of camera monitoring systems. Since the initial stage is the best time for firefighting, it's crucial to develop a robust algorithm for early warning. In this paper, an efficient VFD fusion algorithm is presented. First, the fire candidate areas (FCA) are located quickly based on low‐level visual features to guarantee well timeliness. Furthermore, a multi‐scale convolutional neural network with spatial pyramid pooling is built and trained on the dedicated flame data set without the requirement of sample labeling. In this case, FCA with different aspect ratios and scales can be accurately identified. The method is fully tested on various databases of arbitrary‐sized images and videos. Experimental results show that the proposed fusion algorithm, in addition to improving the detection efficiency, also ensures the accurate identification of flames on different scales.
Author Gao, Yunji
Liu, Yu
Yang, Kai
Cheng, Yanying
Bai, Hui
Chen, Ke
Mou, Chunjie
Zhang, Yuchun
Author_xml – sequence: 1
  givenname: Yanying
  orcidid: 0000-0001-8252-9693
  surname: Cheng
  fullname: Cheng, Yanying
  organization: Southwest Jiaotong University
– sequence: 2
  givenname: Ke
  surname: Chen
  fullname: Chen, Ke
  organization: Southwest Jiaotong University
– sequence: 3
  givenname: Hui
  surname: Bai
  fullname: Bai, Hui
  organization: Southwest Jiaotong University
– sequence: 4
  givenname: Chunjie
  surname: Mou
  fullname: Mou, Chunjie
  organization: Southwest Jiaotong University
– sequence: 5
  givenname: Yuchun
  surname: Zhang
  fullname: Zhang, Yuchun
  email: zycfire@swjtu.edu.cn
  organization: Southwest Jiaotong University
– sequence: 6
  givenname: Kai
  surname: Yang
  fullname: Yang, Kai
  organization: Ministry of Education, Southwest Jiaotong University
– sequence: 7
  givenname: Yunji
  surname: Gao
  fullname: Gao, Yunji
  organization: Southwest Jiaotong University
– sequence: 8
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
  organization: Southwest Jiaotong University
BookMark eNp1kMFOwzAQRC0EEm1B4hMiceGSsnaSOj5WFQWkIi5w4BQ5zhpc0rjYDlVvfALfyJeQtJwQnEYavRntzpAcNrZBQs4ojCkAu9RyNU4gzQ7IgIIQMQWaH5IBJJDHkAE9JkPvlwCQ53wyIE_TJkKtjTLYhEgbh1GFAVUwtolk_WydCS-rqJQeq6izVm0dzNfHp1eyxkjZ5t3WbQ_LOmqwdTsJG-teT8iRlrXH0x8dkcf51cPsJl7cX9_OpotYMZFkcQlZUpa0UglmE8FygUwLilLTMuWMV3pScg6cS8gzCiqR2MGipCkIKlkqkhE53_eunX1r0YdiaVvX3eMLxhkwIQSlHXWxp5Sz3jvUxdqZlXTbgkLRD1d0wxX9cB06_oUqE2T_Y3DS1H8F4n1gY2rc_ltczKd3O_4b0juBkw
CitedBy_id crossref_primary_10_1016_j_neucom_2024_127975
crossref_primary_10_3390_fire7030089
crossref_primary_10_1109_ACCESS_2023_3346504
crossref_primary_10_3103_S0147688224700412
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104651
crossref_primary_10_1007_s10694_022_01214_5
Cites_doi 10.1016/j.ijleo.2015.05.082
10.1016/j.firesaf.2010.03.001
10.1016/j.csite.2021.101133
10.1109/ICIP.2004.1421401
10.1109/TPAMI.2015.2389824
10.1016/j.firesaf.2008.06.009
10.1007/s10694-019-00832-w
10.1109/5.726791
10.1016/j.firesaf.2015.11.015
10.1109/SIBGRAPI.2015.19
10.1088/0957-0233/24/7/075403
10.1002/fam.2724
10.1016/j.proeng.2013.08.140
10.1016/j.neucom.2017.04.083
10.1016/j.firesaf.2015.03.001
10.1109/TSMC.2018.2830099
10.1007/s11042-017-5090-2
10.1145/3065386
10.3390/rs9080848
10.3390/fi10120115
10.1016/j.firesaf.2008.05.005
10.1016/j.patrec.2005.06.015
10.2298/TSCI100927021B
10.1007/s11042-015-2990-x
10.1016/j.firesaf.2006.02.001
10.1002/0470091150.ch11
10.1016/j.eswa.2019.04.019
10.1016/j.buildenv.2009.10.017
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/fam.3045
DatabaseName CrossRef
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Health and Safety Science Abstracts (Full archive)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Health & Safety Science Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1018
EndPage 992
ExternalDocumentID 10_1002_fam_3045
FAM3045
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51578464
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQZ
WRC
WTY
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~V8
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2935-b053bb1dc3e569289e2f91eaf1b4727df6b77077a08510c3aeb1d9b14091a2493
IEDL.DBID DR2
ISSN 0308-0501
IngestDate Fri Jul 25 10:29:14 EDT 2025
Wed Oct 01 01:45:06 EDT 2025
Thu Apr 24 23:09:41 EDT 2025
Wed Jan 22 16:21:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2935-b053bb1dc3e569289e2f91eaf1b4727df6b77077a08510c3aeb1d9b14091a2493
Notes Funding information
National Natural Science Foundation of China, Grant/Award Number: 51578464
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8252-9693
PQID 2720299911
PQPubID 866405
PageCount 12
ParticipantIDs proquest_journals_2720299911
crossref_primary_10_1002_fam_3045
crossref_citationtrail_10_1002_fam_3045
wiley_primary_10_1002_fam_3045_FAM3045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Fire and materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 44
2021; 27
2015; 37
2017; 60
2015; 126
2015; 73
2019; 55
2013; 24
2013; 62
2018; 288
2004; 3
2016; 75
2006
2011; 15
1998; 86
2017; 9
2016; 79
2010; 45
2006; 41
2019; 43
2006; 27
2015; 2015
2019; 49
2011; 46
2015
2014
2018; 12
2019; 130
2018; 77
2018; 10
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_3_1
Simonyan K (e_1_2_8_27_1) 2014
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
Dung NM (e_1_2_8_16_1) 2018; 12
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
Szegedy C (e_1_2_8_28_1) 2015; 2015
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 126
  start-page: 2121
  issue: 19
  year: 2015
  end-page: 2124
  article-title: Early smoke detection of forest fire video using CS Adaboost algorithm
  publication-title: Optik (Stuttg)
– volume: 44
  start-page: 259
  year: 2009
  end-page: 265
  article-title: Design fire curves for tunnels
  publication-title: Fire Saf J
– start-page: 339
  year: 2006
  end-page: 376
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  article-title: Gradient‐based learning applied to document recognition
  publication-title: Proc IEEE
– volume: 3
  start-page: 1707
  year: 2004
  end-page: 1710
  article-title: An early fire‐detection method based on image processing
  publication-title: 2004 Int Conf Image Proc (2004 ICIP)
– volume: 49
  start-page: 1419
  issue: 7
  year: 2019
  end-page: 1434
  article-title: Efficient deep CNN‐based fire detection and localization in video surveillance applications
  publication-title: IEEE Trans Syst Man, Cybern Syst
– volume: 46
  start-page: 9
  issue: 1–2
  year: 2011
  end-page: 20
  article-title: On the use of stereovision to develop a novel instrumentation system to extract geometric fire fronts characteristics
  publication-title: Fire Saf J
– year: 2014
  article-title: Very deep convolutional networks for large‐scale image recognition
  publication-title: arXiv preprint arXiv
– volume: 9
  start-page: 848
  year: 2017
  article-title: Pre‐trained AlexNet architecture with pyramid pooling and supervision for high spatial resolution remote sensing image scene classification
  publication-title: Remote Sens
– volume: 73
  start-page: 91
  year: 2015
  end-page: 101
  article-title: Dynamic texture based smoke detection using Surfacelet transform and HMT model
  publication-title: Fire Saf J
– volume: 44
  start-page: 147
  issue: 2
  year: 2009
  end-page: 158
  article-title: Fire detection in video sequences using a generic color model
  publication-title: Fire Saf J
– volume: 41
  start-page: 285
  issue: 4
  year: 2006
  end-page: 289
  article-title: An image processing technique for fire detection in video images
  publication-title: Fire Saf J
– volume: 27
  year: 2021
  article-title: Experimental study of compartment fire development and ejected flame thermal behavior for a large‐scale light timber frame construction
  publication-title: Case Stud Therm Eng
– volume: 75
  start-page: 10291
  year: 2016
  end-page: 10310
  article-title: A comparative study of different color spaces in computer‐vision‐based flame detection
  publication-title: Multimed Tools Appl
– volume: 288
  start-page: 30
  year: 2018
  end-page: 42
  article-title: Early fire detection using convolutional neural networks during surveillance for effective disaster management
  publication-title: Neurocomputing
– volume: 10
  start-page: 115
  year: 2018
  article-title: Video‐based human action recognition using spatial pyramid pooling and 3D densely convolutional networks
  publication-title: Future Internet
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun ACM
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  end-page: 1916
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 130
  start-page: 60
  year: 2019
  end-page: 78
  article-title: Fire detection for video surveillance applications using ICAK‐medoids‐based color model and efficient spatio‐temporal visual features
  publication-title: Expert Syst Appl
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 9
  article-title: Going deeper with convolutions
  publication-title: IEEE Conf Comput Vision Pattern Recognit (CVPR)
– volume: 79
  start-page: 37
  year: 2016
  end-page: 43
  article-title: Fast fire flame detection in surveillance video using logistic regression and temporal smoothing
  publication-title: Fire Saf J
– volume: 27
  start-page: 49
  issue: 1
  year: 2006
  end-page: 58
  article-title: Computer vision based method for real‐time fire and flame detection
  publication-title: Pattern Recogn Lett
– volume: 45
  start-page: 1113
  issue: 5
  year: 2010
  end-page: 1122
  article-title: Multi‐feature fusion based fast video flame detection
  publication-title: Build Environ
– volume: 12
  start-page: 6018
  issue: 12
  year: 2018
  end-page: 6033
  article-title: A video smoke detection algorithm based on Cascade classification and deep learning
  publication-title: KSII Trans Internet Inf Syst
– start-page: 95
  year: 2015
  end-page: 102
  article-title: BoWFire: detection of fire in still images by integrating pixel color and texture analysis
  publication-title: Braz Symp Comput Graph Image Process
– volume: 24
  issue: 7
  year: 2013
  article-title: Investigation of a novel image segmentation method dedicated
  publication-title: Meas Sci Technol
– volume: 77
  start-page: 15075
  issue: 12
  year: 2018
  end-page: 15092
  article-title: Fire smoke detection algorithm based on motion characteristic and convolutional neural networks
  publication-title: Multimed Tools Appl
– volume: 62
  start-page: 891
  year: 2013
  end-page: 898
  article-title: A real‐time video fire flame and smoke detection algorithm
  publication-title: Procedia Eng
– volume: 15
  start-page: 339
  issue: 2
  year: 2011
  end-page: 352
  article-title: A new curve for temperature‐time relationship in compartment fire
  publication-title: Therm Sci
– volume: 55
  start-page: 1827
  year: 2019
  end-page: 1847
  article-title: Smoke detection on video sequences using 3D CNN
  publication-title: Fire Technol
– volume: 43
  start-page: 725
  year: 2019
  end-page: 733
  article-title: A smoke segmentation algorithm based on improved intelligent seeded region growing
  publication-title: Fire Mater
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ijleo.2015.05.082
– ident: e_1_2_8_32_1
  doi: 10.1016/j.firesaf.2010.03.001
– ident: e_1_2_8_5_1
  doi: 10.1016/j.csite.2021.101133
– volume: 2015
  start-page: 1
  year: 2015
  ident: e_1_2_8_28_1
  article-title: Going deeper with convolutions
  publication-title: IEEE Conf Comput Vision Pattern Recognit (CVPR)
– ident: e_1_2_8_8_1
  doi: 10.1109/ICIP.2004.1421401
– ident: e_1_2_8_18_1
  doi: 10.1109/TPAMI.2015.2389824
– ident: e_1_2_8_2_1
  doi: 10.1016/j.firesaf.2008.06.009
– ident: e_1_2_8_15_1
  doi: 10.1007/s10694-019-00832-w
– year: 2014
  ident: e_1_2_8_27_1
  article-title: Very deep convolutional networks for large‐scale image recognition
  publication-title: arXiv preprint arXiv
– ident: e_1_2_8_25_1
  doi: 10.1109/5.726791
– ident: e_1_2_8_10_1
  doi: 10.1016/j.firesaf.2015.11.015
– ident: e_1_2_8_30_1
  doi: 10.1109/SIBGRAPI.2015.19
– ident: e_1_2_8_31_1
  doi: 10.1088/0957-0233/24/7/075403
– ident: e_1_2_8_7_1
  doi: 10.1002/fam.2724
– ident: e_1_2_8_13_1
  doi: 10.1016/j.proeng.2013.08.140
– ident: e_1_2_8_14_1
  doi: 10.1016/j.neucom.2017.04.083
– volume: 12
  start-page: 6018
  issue: 12
  year: 2018
  ident: e_1_2_8_16_1
  article-title: A video smoke detection algorithm based on Cascade classification and deep learning
  publication-title: KSII Trans Internet Inf Syst
– ident: e_1_2_8_12_1
  doi: 10.1016/j.firesaf.2015.03.001
– ident: e_1_2_8_29_1
  doi: 10.1109/TSMC.2018.2830099
– ident: e_1_2_8_17_1
  doi: 10.1007/s11042-017-5090-2
– ident: e_1_2_8_26_1
  doi: 10.1145/3065386
– ident: e_1_2_8_20_1
  doi: 10.3390/rs9080848
– ident: e_1_2_8_19_1
  doi: 10.3390/fi10120115
– ident: e_1_2_8_9_1
  doi: 10.1016/j.firesaf.2008.05.005
– ident: e_1_2_8_21_1
  doi: 10.1016/j.patrec.2005.06.015
– ident: e_1_2_8_4_1
  doi: 10.2298/TSCI100927021B
– ident: e_1_2_8_24_1
  doi: 10.1007/s11042-015-2990-x
– ident: e_1_2_8_22_1
  doi: 10.1016/j.firesaf.2006.02.001
– ident: e_1_2_8_3_1
  doi: 10.1002/0470091150.ch11
– ident: e_1_2_8_6_1
  doi: 10.1016/j.eswa.2019.04.019
– ident: e_1_2_8_23_1
  doi: 10.1016/j.buildenv.2009.10.017
SSID ssj0008876
Score 2.355257
Snippet Summary Video fire detection (VFD) technology has shown a broad application prospect with the popularization of camera monitoring systems. Since the initial...
Video fire detection (VFD) technology has shown a broad application prospect with the popularization of camera monitoring systems. Since the initial stage is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 981
SubjectTerms Algorithms
Artificial neural networks
Aspect ratio
Fire detection
Fire fighting
multi‐scale convolutional neural network
Neural networks
rapid fire location
scene recognition
special data set for fire
video fire detection
Title An efficient fire detection algorithm based on multi‐scale convolutional neural network
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffam.3045
https://www.proquest.com/docview/2720299911
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1099-1018
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0008876
  issn: 0308-0501
  databaseCode: ADMLS
  dateStart: 20120801
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0308-0501
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1018
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008876
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FqtVVhA9pc3mnWMRSxHqQSxUPIR9RcU2lTa9ePIn-Bv9Jc5skraKgnhaCLsk2dmZ-XZn5ltCTn1HaVt52gKBKyTVdizBuG0BVAAH74aR0Fjv3LsOun3vauAPyqxKrIUp-CHmB26oGcZeo4JzMW0tSENTPmpimA_ML3MDs5u6WTBHge4UYUqM7vs2q3hnbadVDfzqiRbwchmkGi_T2SD31fcVySXPzVkumvL1G3Xj_35gk6yX4JO2i9WyRVZ0tk3WligJd8hdO6Pa0EqAN6IpGESqdG7ytTLKhw_jyVP-OKLo_BSFRyYh8ePtfQqy1hRz2Mu1DO9BrkzTmEzzXdLvXN5edK3y-gVLAgbwLQH6KQRT0tV-EMPGTDtpzDRPmfAA9ag0EGFohyFH1GZLl4PZV7FABi3GYVfn7pFaNs70PqE6SFnKY5dLLjxtByKyhS98FcnIk0wHdXJeiSKRJTc5XpExTApWZSeByUpwsurkZN7zpeDj-KFPo5JmUmrkNMF4s4NomNXJmRHLr-OTTruH7cFfOx6SVQerIkyJYoPU8slMHwFWycWxWZWf32fnRw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb3F11Qiip-42fe7iaRGX9bEeREFBKEmTqrjbFa0XT_4Ef6O_xJm0dVUUxFOgJLTNZGa-ZGa-AGz5jtK28rSFAldEqu1YkgvbQqiADt4NG1JTvXP3JOice4cX_sUI7Ja1MDk_xMeBG2mGsdek4HQgXR-yhiaiX6M43yiMewFuUwgRnQ65o1B78kAlxfd9m5fMs7ZTL0d-9UVDgPkZpho_056Bq_IL8_SSu9pTJmvx8zfyxn_-wixMF_iTtfIFMwcjOp2HqU-shAtw2UqZNswS6JBYgjaRKZ2ZlK2Uid714OE2u-kz8n-K4SOTk_j28vqI4taM0tiL5YzvIbpM05hk80U4b--f7XWs4gYGK0YY4FsSVVRKrmJX-0ET92baSZpci4RLD4GPSgIZhnYYCgJuduwKtPyqKYlEiwvc2LlLMJYOUr0MTAcJT0TTFbGQnrYD2bClL33ViBtezHVQgZ1SFlFc0JPTLRm9KCdWdiKcrIgmqwKbHz3vc0qOH_pUS3FGhVI-RhRydggQ8wpsG7n8Oj5qt7rUrvy14wZMdM66x9HxwcnRKkw6VCRhKharMJY9POk1hC6ZXDdL9B1cG-to
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjBt7g-I4ieutv0XTwt6uIbEQUFoSRNqqJW0Xrx5E_wN_pLnElbV0VBPAVKQttMZuZLZuYLwLLvKG0rT1socEWk2o4lubAthAro4N0wkprqnfcPgq0Tb-fUP-2BtboWpuSH-DhwI80w9poUXN-rrNVlDc3EbZPifL3Q7_lxRPl8G0dd7ijUnjJQSfF93-Y186zttOqRX31RF2B-hqnGz3RG4Lz-wjK95Lr5VMhm-vyNvPGfvzAKwxX-ZO1ywYxBj87HYegTK-EEnLVzpg2zBDoklqFNZEoXJmUrZ-Lm4u7hqri8ZeT_FMNHJifx7eX1EcWtGaWxV8sZ30N0maYxyeaTcNLZPF7fsqobGKwUYYBvSVRRKblKXe0HMe7NtJPFXIuMSw-Bj8oCGYZ2GAoCbnbqCrT8KpZEosUFbuzcKejL73I9DUwHGc9E7IpUSE_bgYxs6UtfRWnkpVwHDVitZZGkFT053ZJxk5TEyk6Ck5XQZDVg6aPnfUnJ8UOfuVqcSaWUjwmFnB0CxLwBK0Yuv45POu19amf-2nERBg43Osne9sHuLAw6VCNhChbnoK94eNLziFwKuWBW6Dsg1-rs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+fire+detection+algorithm+based+on+multi%E2%80%90scale+convolutional+neural+network&rft.jtitle=Fire+and+materials&rft.au=Cheng%2C+Yanying&rft.au=Chen%2C+Ke&rft.au=Bai%2C+Hui&rft.au=Mou%2C+Chunjie&rft.date=2022-11-01&rft.issn=0308-0501&rft.eissn=1099-1018&rft.volume=46&rft.issue=7&rft.spage=981&rft.epage=992&rft_id=info:doi/10.1002%2Ffam.3045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_fam_3045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-0501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-0501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-0501&client=summon