Deep auto‐encoder based clustering algorithm for graph‐based web page recommendation system
Summary Web‐page recommendation system (RS) plays a major role in smart web systems. The core technology is the RS, which helps users find their interests or discover item preferences. With the rapid proliferation of information technology, the present era witnessed a remarkable growth in the collec...
        Saved in:
      
    
          | Published in | Concurrency and computation Vol. 35; no. 2 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        25.01.2023
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1532-0626 1532-0634  | 
| DOI | 10.1002/cpe.7505 | 
Cover
| Abstract | Summary
Web‐page recommendation system (RS) plays a major role in smart web systems. The core technology is the RS, which helps users find their interests or discover item preferences. With the rapid proliferation of information technology, the present era witnessed a remarkable growth in the collection and generation of web data. Every day, it is difficult to project the appropriate information to the user and adds severe complexity to the decision making procedure. Moreover, the existing RS techniques have limitations like huge computation time, high computational cost, over specialization, and sparsity problems. This work presents an effective graph‐based web page recommendation model to overcome these difficulties. Initially, the input data is preprocessed utilizing Natural Language Tool Kit executed in Python. The snapshot‐based dynamic graph model obtains the user‐web page relationship. Weight calculation of user‐item and the user‐user edge is also processed with this graph model. The user‐user edge similarity is used to obtain the user preference vector. Then, unsupervised‐deep auto encoder based density‐based clustering algorithm is proposed to cluster the user preference vector, which groups the visited web page details into k clusters. The web pages are recommended based on the highest score calculated by the page ranking method. Finally, the topmost visited web pages are recommended to web users based on the ranking score. “All the news”, MSNBC, and Weblog datasets are taken for evaluation. The proposed method is evaluated with respect to standard measures like F1 measure, accuracy, recall, precision, and root mean square error. Compared with other existing methods, the proposed technique achieved the highest accuracy, 97.99% for All the news datasets, 93.03% for the MSNBC database, and 90.07% for the Weblog database. | 
    
|---|---|
| AbstractList | Web‐page recommendation system (RS) plays a major role in smart web systems. The core technology is the RS, which helps users find their interests or discover item preferences. With the rapid proliferation of information technology, the present era witnessed a remarkable growth in the collection and generation of web data. Every day, it is difficult to project the appropriate information to the user and adds severe complexity to the decision making procedure. Moreover, the existing RS techniques have limitations like huge computation time, high computational cost, over specialization, and sparsity problems. This work presents an effective graph‐based web page recommendation model to overcome these difficulties. Initially, the input data is preprocessed utilizing Natural Language Tool Kit executed in Python. The snapshot‐based dynamic graph model obtains the user‐web page relationship. Weight calculation of user‐item and the user‐user edge is also processed with this graph model. The user‐user edge similarity is used to obtain the user preference vector. Then, unsupervised‐deep auto encoder based density‐based clustering algorithm is proposed to cluster the user preference vector, which groups the visited web page details into k clusters. The web pages are recommended based on the highest score calculated by the page ranking method. Finally, the topmost visited web pages are recommended to web users based on the ranking score. “All the news”, MSNBC, and Weblog datasets are taken for evaluation. The proposed method is evaluated with respect to standard measures like F1 measure, accuracy, recall, precision, and root mean square error. Compared with other existing methods, the proposed technique achieved the highest accuracy, 97.99% for All the news datasets, 93.03% for the MSNBC database, and 90.07% for the Weblog database. Summary Web‐page recommendation system (RS) plays a major role in smart web systems. The core technology is the RS, which helps users find their interests or discover item preferences. With the rapid proliferation of information technology, the present era witnessed a remarkable growth in the collection and generation of web data. Every day, it is difficult to project the appropriate information to the user and adds severe complexity to the decision making procedure. Moreover, the existing RS techniques have limitations like huge computation time, high computational cost, over specialization, and sparsity problems. This work presents an effective graph‐based web page recommendation model to overcome these difficulties. Initially, the input data is preprocessed utilizing Natural Language Tool Kit executed in Python. The snapshot‐based dynamic graph model obtains the user‐web page relationship. Weight calculation of user‐item and the user‐user edge is also processed with this graph model. The user‐user edge similarity is used to obtain the user preference vector. Then, unsupervised‐deep auto encoder based density‐based clustering algorithm is proposed to cluster the user preference vector, which groups the visited web page details into k clusters. The web pages are recommended based on the highest score calculated by the page ranking method. Finally, the topmost visited web pages are recommended to web users based on the ranking score. “All the news”, MSNBC, and Weblog datasets are taken for evaluation. The proposed method is evaluated with respect to standard measures like F1 measure, accuracy, recall, precision, and root mean square error. Compared with other existing methods, the proposed technique achieved the highest accuracy, 97.99% for All the news datasets, 93.03% for the MSNBC database, and 90.07% for the Weblog database.  | 
    
| Author | Alagappan, Jothi Kumar Victor, Savaridoss Paul  | 
    
| Author_xml | – sequence: 1 givenname: Jothi Kumar orcidid: 0000-0002-0057-603X surname: Alagappan fullname: Alagappan, Jothi Kumar email: jothi1977@gmail.com organization: St. Xaviers's College (Autonomous) – sequence: 2 givenname: Savaridoss Paul surname: Victor fullname: Victor, Savaridoss Paul organization: St. Xaviers's College (Autonomous)  | 
    
| BookMark | eNp1kE1OwzAQhS1UJEpB4giW2LBJ8U-cNEtUyo9UCRawtmxnkqZK4mCnqrrjCJyRk-A2iAWC1czie2_mvVM0am0LCF1QMqWEsGvTwTQVRByhMRWcRSTh8ehnZ8kJOvV-TQilhNMxkrcAHVab3n6-f0BrbA4Oa-Uhx6be-B5c1ZZY1aV1Vb9qcGEdLp3qVgEfsC1o3KkSsANjmwbaXPWVbbHfBXVzho4LVXs4_54T9Hq3eJk_RMun-8f5zTIyLOMiiolWWRyeLITOMxErmhQ8Z_mMkoylImQQOlZCawp6JigjuUgI1zE3oASdcT5Bl4Nv5-zbBnwv13bj2nBSBr3gKUuTJFBXA2Wc9d5BITtXNcrtJCVyX58M9cl9fQGd_kJN1R-S9U5V9V-CaBBsqxp2_xrL-fPiwH8BD4WEIg | 
    
| CitedBy_id | crossref_primary_10_1016_j_neunet_2025_107418 crossref_primary_10_1007_s11042_023_17029_7 crossref_primary_10_1016_j_compeleceng_2025_110159  | 
    
| Cites_doi | 10.1007/s11042-018-7141-8 10.26599/TST.2020.9010051 10.1016/j.measurement.2016.05.058 10.3233/KES-190402 10.1007/s00521-016-2444-z 10.1016/j.eij.2015.06.005 10.1016/j.future.2017.02.049 10.1007/978-1-4899-7637-6_1 10.1007/978-1-4899-7637-6_4 10.1016/j.knosys.2015.12.018 10.26599/BDMA.2021.9020001 10.1109/TSC.2014.2355842 10.1145/2899005 10.5120/19308-0760 10.1142/S0218001420530031 10.3233/JIFS-179078 10.4018/IJAEIS.20210101.oa1 10.1007/s11257-015-9155-5 10.26599/TST.2020.9010049 10.1016/j.knosys.2016.03.006 10.1007/s11042-016-4078-7 10.1007/s11036-016-0790-9 10.1016/j.dss.2015.02.001 10.1016/j.eswa.2016.09.040 10.1109/ICIMIA48430.2020.9074853 10.1016/j.eswa.2014.09.016 10.1109/TWC.2017.2740206 10.1109/TSC.2014.2381611 10.1109/TBDATA.2016.2541167 10.1016/j.knosys.2018.02.024 10.1007/s00530-017-0539-8 10.26599/BDMA.2020.9020026  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 John Wiley & Sons, Ltd. 2023 John Wiley & Sons, Ltd.  | 
    
| Copyright_xml | – notice: 2022 John Wiley & Sons, Ltd. – notice: 2023 John Wiley & Sons, Ltd.  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1002/cpe.7505 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1532-0634 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 10_1002_cpe_7505 CPE7505  | 
    
| Genre | article | 
    
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c2935-40ba94153f5bd954a16f3d2d81092756345b4a5bb1eb85120d5603b43cea51833 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1532-0626 | 
    
| IngestDate | Mon Jul 14 07:51:26 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Wed Oct 01 03:13:34 EDT 2025 Wed Jan 22 16:25:14 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2935-40ba94153f5bd954a16f3d2d81092756345b4a5bb1eb85120d5603b43cea51833 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-0057-603X | 
    
| PQID | 2755372766 | 
    
| PQPubID | 2045170 | 
    
| PageCount | 20 | 
    
| ParticipantIDs | proquest_journals_2755372766 crossref_primary_10_1002_cpe_7505 crossref_citationtrail_10_1002_cpe_7505 wiley_primary_10_1002_cpe_7505_CPE7505  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 25 January 2023 | 
    
| PublicationDateYYYYMMDD | 2023-01-25 | 
    
| PublicationDate_xml | – month: 01 year: 2023 text: 25 January 2023 day: 25  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken  | 
    
| PublicationTitle | Concurrency and computation | 
    
| PublicationYear | 2023 | 
    
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc  | 
    
| References | 2021; 27 2018; 29 2021; 26 2015; 17 2015; 16 2021; 4 2017; 69 2015; 72 2017; 22 2018; 148 2019; 37 2020; 17 2016; 97 2016; 100 2020; 79 2020; 34 2016; 91 2015; 8 2018; 24 2017; 72 2020; 7 2021; 13 2015; 25 2021; 12 2016; 2 2021; 11 2017; 16 2015; 42 2019; 23 2017; 76 2015; 110 2015 2020; 21 2016; 8 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 Choudhury SS (e_1_2_8_10_1) 2021; 13 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 Ali Z (e_1_2_8_38_1) 2020; 21 e_1_2_8_7_1 Kuanr M (e_1_2_8_11_1) 2020; 17 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 Jiang S (e_1_2_8_16_1) 2015; 17 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_37_1 Pandharbale PB (e_1_2_8_6_1) 2021; 11 Garanayak M (e_1_2_8_9_1) 2020; 7 e_1_2_8_32_1 e_1_2_8_31_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1  | 
    
| References_xml | – volume: 2 start-page: 113 issue: 2 year: 2016 end-page: 123 article-title: A recommendation system based on hierarchical clustering of an article‐level citation network publication-title: IEEE Trans Big Data – volume: 72 start-page: 37 year: 2017 end-page: 48 article-title: A hybrid knowledge‐based recommender system for e‐learning based on ontology and sequential pattern mining publication-title: Future Gener Comput Syst – volume: 16 start-page: 7138 issue: 11 year: 2017 end-page: 7151 article-title: A kernel‐power‐density‐based algorithm for channel multipath components clustering publication-title: IEEE Trans Wirel Commun – volume: 4 start-page: 183 issue: 3 year: 2021 end-page: 194 article-title: Effective density‐based clustering algorithms for incomplete data publication-title: Big Data Min Anal – volume: 25 start-page: 99 issue: 2 year: 2015 end-page: 154 article-title: Recommender systems based on user reviews: the state of the art publication-title: User Model User‐Adapt Interact – volume: 97 start-page: 188 year: 2016 end-page: 202 article-title: A non‐negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model publication-title: Knowl‐Based Syst – volume: 79 start-page: 3807 issue: 5 year: 2020 end-page: 3829 article-title: A novel approach on particle agent swarm optimization (PASO) in semantic mining for web page recommender system of multimedia data: a health care perspective publication-title: Multimed Tools Appl – volume: 7 issue: 26 year: 2020 article-title: An automated recommender system for educational institute in India publication-title: EAI Endorsed Trans Scalable Inf Syst – volume: 72 start-page: 97 year: 2015 end-page: 109 article-title: A semantic enhanced hybrid recommendation approach: a case study of e‐government tourism service recommendation system publication-title: Decis Support Syst – volume: 13 start-page: 475 issue: 2 year: 2021 end-page: 482 article-title: Multimodal trust based recommender system with machine learning approaches for movie recommendation publication-title: Int J Inf Technol – volume: 4 start-page: 139 issue: 3 year: 2021 end-page: 154 article-title: Improvising personalized travel recommendation system with recency effects publication-title: Big Data Min Anal – volume: 29 start-page: 235 issue: 1 year: 2018 end-page: 243 article-title: Web page recommendation via twofold clustering: considering user behavior and topic relation publication-title: Neural Comput Appl – volume: 22 start-page: 228 issue: 2 year: 2017 end-page: 239 article-title: The recommendation system of micro‐blog topic based on user clustering publication-title: Mob Netw Appl – volume: 100 start-page: 175 year: 2016 end-page: 187 article-title: User profiling approaches for demographic recommender systems publication-title: Knowl‐Based Syst – volume: 8 issue: 1 year: 2016 article-title: Sprank: semantic path‐based ranking for top‐n recommendations using linked open data publication-title: ACM Trans Intell Syst Technol – volume: 12 start-page: 1 issue: 1 year: 2021 end-page: 20 article-title: Agricultural recommendation system for crops using different machine learning regression methods publication-title: Int J Agric Environ Inf Syst – volume: 34 issue: 3 year: 2020 article-title: Webpage recommendation system using interesting subgraphs and Laplace based k‐nearest neighbor publication-title: Int J Pattern Recognit Artif Intell – volume: 16 start-page: 261 issue: 3 year: 2015 end-page: 273 article-title: Recommendation systems: principles, methods and evaluation publication-title: Egypt Inform J – volume: 8 start-page: 453 issue: 3 year: 2015 end-page: 466 article-title: Unified collaborative and content‐based web service recommendation publication-title: IEEE Trans Serv Comput – volume: 110 start-page: 31 issue: 4 year: 2015 end-page: 36 article-title: Survey on collaborative filtering, content‐based filtering and hybrid recommendation system publication-title: Int J Comput Appl – volume: 11 start-page: 1 issue: 5 year: 2021 end-page: 15 article-title: Novel clustering‐based web service recommendation framework publication-title: Int J Syst Dyn Appl – volume: 8 start-page: 782 issue: 5 year: 2015 end-page: 794 article-title: Time aware and data sparsity tolerant web service recommendation based on improved collaborative filtering publication-title: IEEE Trans Serv Comput – volume: 26 start-page: 886 issue: 6 year: 2021 end-page: 893 article-title: News keyword extraction algorithm based on semantic clustering and word graph model publication-title: Tsinghua Sci Technol – start-page: 1 year: 2015 end-page: 34 – volume: 24 start-page: 163 issue: 2 year: 2018 end-page: 173 article-title: A content‐based recommendation algorithm for learning resources publication-title: Multimed Syst – volume: 148 start-page: 85 year: 2018 end-page: 99 article-title: HAR‐SI: a novel hybrid article recommendation approach integrating with social information in scientific social network publication-title: Knowl‐Based Syst – volume: 23 start-page: 93 issue: 2 year: 2019 end-page: 101 article-title: Recommender system using item based collaborative filtering (CF) and K‐means publication-title: Int J Knowl‐Based Intell Eng Syst – volume: 27 start-page: 386 issue: 2 year: 2021 end-page: 395 article-title: Nonnegative matrix tri‐factorization based clustering in a heterogeneous information network with star network schema publication-title: Tsinghua Sci Technol – volume: 17 start-page: 377 issue: 3 year: 2020 end-page: 392 article-title: Location‐based personalized recommendation systems for the tourists in India publication-title: Int J Bus Intell Data Min – volume: 76 start-page: 21481 issue: 20 year: 2017 end-page: 21496 article-title: An effective web page recommender system with fuzzy c‐mean clustering publication-title: Multimed Tools Appl – volume: 91 start-page: 134 year: 2016 end-page: 139 article-title: User based collaborative filtering using fuzzy C‐means publication-title: Measurement – volume: 69 start-page: 29 year: 2017 end-page: 39 article-title: Collaborative filtering and deep learningbased recommendation system for cold start items publication-title: Expert Syst Appl – volume: 37 start-page: 205 issue: 1 year: 2019 end-page: 216 article-title: Optimal rough fuzzy clustering for user profile ontology based web page recommendation analysis publication-title: J Intell Fuzzy Syst – volume: 42 start-page: 1202 issue: 3 year: 2015 end-page: 1222 article-title: RecomMetz. A context‐aware knowledge‐based mobile recommender system for movie showtimes publication-title: Expert Syst Appl – start-page: 119 year: 2015 end-page: 159 – volume: 17 start-page: 907 issue: 6 year: 2015 end-page: 918 article-title: Author topic model‐based collaborative filtering for personalized POI recommendations publication-title: IEEE Trans Multimed – volume: 21 start-page: 1 year: 2020 end-page: 44 article-title: A graph‐based taxonomy of citation recommendation models publication-title: Artif Intell Rev – ident: e_1_2_8_36_1 doi: 10.1007/s11042-018-7141-8 – ident: e_1_2_8_29_1 doi: 10.26599/TST.2020.9010051 – ident: e_1_2_8_30_1 doi: 10.1016/j.measurement.2016.05.058 – ident: e_1_2_8_13_1 doi: 10.3233/KES-190402 – ident: e_1_2_8_32_1 doi: 10.1007/s00521-016-2444-z – ident: e_1_2_8_3_1 doi: 10.1016/j.eij.2015.06.005 – ident: e_1_2_8_4_1 doi: 10.1016/j.future.2017.02.049 – volume: 17 start-page: 907 issue: 6 year: 2015 ident: e_1_2_8_16_1 article-title: Author topic model‐based collaborative filtering for personalized POI recommendations publication-title: IEEE Trans Multimed – ident: e_1_2_8_5_1 doi: 10.1007/978-1-4899-7637-6_1 – ident: e_1_2_8_15_1 doi: 10.1007/978-1-4899-7637-6_4 – volume: 11 start-page: 1 issue: 5 year: 2021 ident: e_1_2_8_6_1 article-title: Novel clustering‐based web service recommendation framework publication-title: Int J Syst Dyn Appl – ident: e_1_2_8_26_1 doi: 10.1016/j.knosys.2015.12.018 – ident: e_1_2_8_28_1 doi: 10.26599/BDMA.2021.9020001 – ident: e_1_2_8_23_1 doi: 10.1109/TSC.2014.2355842 – ident: e_1_2_8_20_1 doi: 10.1145/2899005 – ident: e_1_2_8_2_1 doi: 10.5120/19308-0760 – ident: e_1_2_8_37_1 doi: 10.1142/S0218001420530031 – ident: e_1_2_8_39_1 doi: 10.3233/JIFS-179078 – ident: e_1_2_8_8_1 doi: 10.4018/IJAEIS.20210101.oa1 – ident: e_1_2_8_14_1 doi: 10.1007/s11257-015-9155-5 – ident: e_1_2_8_27_1 doi: 10.26599/TST.2020.9010049 – ident: e_1_2_8_19_1 doi: 10.1016/j.knosys.2016.03.006 – ident: e_1_2_8_31_1 doi: 10.1007/s11042-016-4078-7 – volume: 13 start-page: 475 issue: 2 year: 2021 ident: e_1_2_8_10_1 article-title: Multimodal trust based recommender system with machine learning approaches for movie recommendation publication-title: Int J Inf Technol – ident: e_1_2_8_33_1 doi: 10.1007/s11036-016-0790-9 – ident: e_1_2_8_21_1 doi: 10.1016/j.dss.2015.02.001 – ident: e_1_2_8_17_1 doi: 10.1016/j.eswa.2016.09.040 – volume: 17 start-page: 377 issue: 3 year: 2020 ident: e_1_2_8_11_1 article-title: Location‐based personalized recommendation systems for the tourists in India publication-title: Int J Bus Intell Data Min – ident: e_1_2_8_7_1 doi: 10.1109/ICIMIA48430.2020.9074853 – ident: e_1_2_8_18_1 doi: 10.1016/j.eswa.2014.09.016 – ident: e_1_2_8_22_1 doi: 10.1109/TWC.2017.2740206 – ident: e_1_2_8_24_1 doi: 10.1109/TSC.2014.2381611 – volume: 21 start-page: 1 year: 2020 ident: e_1_2_8_38_1 article-title: A graph‐based taxonomy of citation recommendation models publication-title: Artif Intell Rev – ident: e_1_2_8_25_1 doi: 10.1109/TBDATA.2016.2541167 – ident: e_1_2_8_35_1 doi: 10.1016/j.knosys.2018.02.024 – ident: e_1_2_8_34_1 doi: 10.1007/s00530-017-0539-8 – volume: 7 start-page: e9 issue: 26 year: 2020 ident: e_1_2_8_9_1 article-title: An automated recommender system for educational institute in India publication-title: EAI Endorsed Trans Scalable Inf Syst – ident: e_1_2_8_12_1 doi: 10.26599/BDMA.2020.9020026  | 
    
| SSID | ssj0011031 | 
    
| Score | 2.328096 | 
    
| Snippet | Summary
Web‐page recommendation system (RS) plays a major role in smart web systems. The core technology is the RS, which helps users find their interests or... Web‐page recommendation system (RS) plays a major role in smart web systems. The core technology is the RS, which helps users find their interests or discover...  | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Accuracy Algorithms Clustering Coders Datasets Decision making density based clustering dynamic graph‐based model Evaluation News Preferences Ranking Recommender systems unsupervised‐deep auto encoder user preference vector Websites  | 
    
| Title | Deep auto‐encoder based clustering algorithm for graph‐based web page recommendation system | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7505 https://www.proquest.com/docview/2755372766  | 
    
| Volume | 35 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-0634 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: ADMLS dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSwMxEMeDePJifWK1SgTR07bZTbLtHqW2FEERsVDwsORVFfui3V48-RH8jH4SZ_bRqiiIpz3sZMlmksw_IfkNISfMWFPXruFZp6QnjOt7KhDSs8LqwGrTD9PsDVfXYacrLnuyl5-qxLswGR9iseGGIyOdr3GAKz2rLaGhZuKqEO7wfrnPw3Q1dbsgR_mYvSBDpQYeA9FecGdZUCsKfo1ES3n5WaSmUaZdIvdF_bLDJc_VeaKr5uUbuvF_P7BB1nPxSc-z3rJJVtxoi5SKxA40H-fbJL5wbkLVPBm_v74h6dLCW4x3lprBHNEKEPCoGjyMp0_J45CC8KUp-RrMMzOYnClOVRQX3MOhy1M30QwcvUO67dZds-PlmRg8A3IAfMi0iiDU877UNpJC-WGf28A2fBYhP54LqYWSWvtOg4QLmAUhxbXgBnoATBp8l6yOxiO3R6hQnEXWRAgiFFyxiDvE3IGQZHX4ZqNMzgqvxCbHlGO2jEGcAZaDGNotxnYrk-OF5SRDc_xgUykcG-eDcxZDjSUH3RaGZXKaeujX8nHzpoXP_b8aHpA1TEiPmzSBrJDVZDp3hyBbEn2UdtAPfJ7rzQ | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JThwxEIZLZHKAC0NYxLAkRkJw6sHTtptpcUIsGlYhBBKHSJa3SRCzCXounHiEPGOehKpehgQlUpRTH7rccrtcrt9W91cAm9x5t2tDO_LBqEi60I1MLFXkpbext66b5NUbLi6Tzq08vVN3U7BX_QtT8CEmB24UGfl6TQFOB9I7b9RQNwpNzHfqA3yUCW5TSBFdT9hRLapfUMBS44ijbK_IszzeqVr-noveBOavMjXPM8d1-Fr1sPi85KE5zmzTPb-DN_7nK8zBbKk_2X4xYT7BVBjMQ72q7cDKUF8AfRjCiJlxNvz58oNglx7vUsrzzPXGRFfAnMdM79vw8T773meofVkOv0bzwgzXZ0arFaM9d78fyupNrGBHL8Lt8dHNQScqizFEDhUBupFbk2K2F11lfaqkaSVd4WPfbvGUEPJCKiuNsrYVLKq4mHvUUsJK4XAS4LohlqA2GA7CMjBpBE-9S4lFKIXhqQhEukMtyXfxme0GbFdu0a4klVPBjJ4uGMuxxnHTNG4N2JhYjgo6xx9s1irP6jI-nzT2WAmUbknSgK3cRX9trw-ujui68q-GX2C6c3Nxrs9PLs9WYYbq09OZTazWoJY9jsM6qpjMfs5n6ytB2u_u | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHbZEQly4UUBdKayQEp2y9sZ3diBPahwqU1QpRqQcky6-0Vfelkr1w6kfoZ-STMJPHtkVFqnrKIePI8Xg8_1jObwDeceddx4Zu5INRkXQhi0wsVeSlt7G3LkuK6g3fRsnBkfxyrI7X4GP9L0zJh1htuFFkFOs1BXhY-Gz_mhrqFqGF-U6twyOp0i6d5-t_X7Gj2lS_oISlxhFH2V6TZ3m8X7e8nYuuBeZNmVrkmWEDftY9LI-XnLeWuW253__AGx_4Ck9hs9Kf7FM5YZ7BWphtQaOu7cCqUH8Ouh_CgpllPv9zeUWwS493KeV55iZLoitgzmNmcjK_OMtPpwy1Lyvg12hemuH6zGi1YvTNPZ2GqnoTK9nRL-BoOPjRO4iqYgyRQ0WAbuTWpJjtRaasT5U07SQTPvbdNk8JIS-kstIoa9vBooqLuUctJawUDicBrhviJWzM5rOwDUwawVPvUmIRSmF4KgKR7lBL8g4-s9uED7VbtKtI5VQwY6JLxnKscdw0jVsT3q4sFyWd4w6bndqzuorPXxp7rARKtyRpwvvCRf9tr3vjAV1f3ddwDx6P-0N9-Hn09TU8ofL0tGUTqx3YyC-W4Q2KmNzuFpP1LwC273I | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+auto%E2%80%90encoder+based+clustering+algorithm+for+graph%E2%80%90based+web+page+recommendation+system&rft.jtitle=Concurrency+and+computation&rft.au=Alagappan%2C+Jothi+Kumar&rft.au=Victor%2C+Savaridoss+Paul&rft.date=2023-01-25&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=35&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.7505&rft.externalDBID=10.1002%252Fcpe.7505&rft.externalDocID=CPE7505 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |