Deep auto‐encoder based clustering algorithm for graph‐based web page recommendation system

Summary Web‐page recommendation system (RS) plays a major role in smart web systems. The core technology is the RS, which helps users find their interests or discover item preferences. With the rapid proliferation of information technology, the present era witnessed a remarkable growth in the collec...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 35; no. 2
Main Authors Alagappan, Jothi Kumar, Victor, Savaridoss Paul
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 25.01.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.7505

Cover

Abstract Summary Web‐page recommendation system (RS) plays a major role in smart web systems. The core technology is the RS, which helps users find their interests or discover item preferences. With the rapid proliferation of information technology, the present era witnessed a remarkable growth in the collection and generation of web data. Every day, it is difficult to project the appropriate information to the user and adds severe complexity to the decision making procedure. Moreover, the existing RS techniques have limitations like huge computation time, high computational cost, over specialization, and sparsity problems. This work presents an effective graph‐based web page recommendation model to overcome these difficulties. Initially, the input data is preprocessed utilizing Natural Language Tool Kit executed in Python. The snapshot‐based dynamic graph model obtains the user‐web page relationship. Weight calculation of user‐item and the user‐user edge is also processed with this graph model. The user‐user edge similarity is used to obtain the user preference vector. Then, unsupervised‐deep auto encoder based density‐based clustering algorithm is proposed to cluster the user preference vector, which groups the visited web page details into k clusters. The web pages are recommended based on the highest score calculated by the page ranking method. Finally, the topmost visited web pages are recommended to web users based on the ranking score. “All the news”, MSNBC, and Weblog datasets are taken for evaluation. The proposed method is evaluated with respect to standard measures like F1 measure, accuracy, recall, precision, and root mean square error. Compared with other existing methods, the proposed technique achieved the highest accuracy, 97.99% for All the news datasets, 93.03% for the MSNBC database, and 90.07% for the Weblog database.
AbstractList Web‐page recommendation system (RS) plays a major role in smart web systems. The core technology is the RS, which helps users find their interests or discover item preferences. With the rapid proliferation of information technology, the present era witnessed a remarkable growth in the collection and generation of web data. Every day, it is difficult to project the appropriate information to the user and adds severe complexity to the decision making procedure. Moreover, the existing RS techniques have limitations like huge computation time, high computational cost, over specialization, and sparsity problems. This work presents an effective graph‐based web page recommendation model to overcome these difficulties. Initially, the input data is preprocessed utilizing Natural Language Tool Kit executed in Python. The snapshot‐based dynamic graph model obtains the user‐web page relationship. Weight calculation of user‐item and the user‐user edge is also processed with this graph model. The user‐user edge similarity is used to obtain the user preference vector. Then, unsupervised‐deep auto encoder based density‐based clustering algorithm is proposed to cluster the user preference vector, which groups the visited web page details into k clusters. The web pages are recommended based on the highest score calculated by the page ranking method. Finally, the topmost visited web pages are recommended to web users based on the ranking score. “All the news”, MSNBC, and Weblog datasets are taken for evaluation. The proposed method is evaluated with respect to standard measures like F1 measure, accuracy, recall, precision, and root mean square error. Compared with other existing methods, the proposed technique achieved the highest accuracy, 97.99% for All the news datasets, 93.03% for the MSNBC database, and 90.07% for the Weblog database.
Summary Web‐page recommendation system (RS) plays a major role in smart web systems. The core technology is the RS, which helps users find their interests or discover item preferences. With the rapid proliferation of information technology, the present era witnessed a remarkable growth in the collection and generation of web data. Every day, it is difficult to project the appropriate information to the user and adds severe complexity to the decision making procedure. Moreover, the existing RS techniques have limitations like huge computation time, high computational cost, over specialization, and sparsity problems. This work presents an effective graph‐based web page recommendation model to overcome these difficulties. Initially, the input data is preprocessed utilizing Natural Language Tool Kit executed in Python. The snapshot‐based dynamic graph model obtains the user‐web page relationship. Weight calculation of user‐item and the user‐user edge is also processed with this graph model. The user‐user edge similarity is used to obtain the user preference vector. Then, unsupervised‐deep auto encoder based density‐based clustering algorithm is proposed to cluster the user preference vector, which groups the visited web page details into k clusters. The web pages are recommended based on the highest score calculated by the page ranking method. Finally, the topmost visited web pages are recommended to web users based on the ranking score. “All the news”, MSNBC, and Weblog datasets are taken for evaluation. The proposed method is evaluated with respect to standard measures like F1 measure, accuracy, recall, precision, and root mean square error. Compared with other existing methods, the proposed technique achieved the highest accuracy, 97.99% for All the news datasets, 93.03% for the MSNBC database, and 90.07% for the Weblog database.
Author Alagappan, Jothi Kumar
Victor, Savaridoss Paul
Author_xml – sequence: 1
  givenname: Jothi Kumar
  orcidid: 0000-0002-0057-603X
  surname: Alagappan
  fullname: Alagappan, Jothi Kumar
  email: jothi1977@gmail.com
  organization: St. Xaviers's College (Autonomous)
– sequence: 2
  givenname: Savaridoss Paul
  surname: Victor
  fullname: Victor, Savaridoss Paul
  organization: St. Xaviers's College (Autonomous)
BookMark eNp1kE1OwzAQhS1UJEpB4giW2LBJ8U-cNEtUyo9UCRawtmxnkqZK4mCnqrrjCJyRk-A2iAWC1czie2_mvVM0am0LCF1QMqWEsGvTwTQVRByhMRWcRSTh8ehnZ8kJOvV-TQilhNMxkrcAHVab3n6-f0BrbA4Oa-Uhx6be-B5c1ZZY1aV1Vb9qcGEdLp3qVgEfsC1o3KkSsANjmwbaXPWVbbHfBXVzho4LVXs4_54T9Hq3eJk_RMun-8f5zTIyLOMiiolWWRyeLITOMxErmhQ8Z_mMkoylImQQOlZCawp6JigjuUgI1zE3oASdcT5Bl4Nv5-zbBnwv13bj2nBSBr3gKUuTJFBXA2Wc9d5BITtXNcrtJCVyX58M9cl9fQGd_kJN1R-S9U5V9V-CaBBsqxp2_xrL-fPiwH8BD4WEIg
CitedBy_id crossref_primary_10_1016_j_neunet_2025_107418
crossref_primary_10_1007_s11042_023_17029_7
crossref_primary_10_1016_j_compeleceng_2025_110159
Cites_doi 10.1007/s11042-018-7141-8
10.26599/TST.2020.9010051
10.1016/j.measurement.2016.05.058
10.3233/KES-190402
10.1007/s00521-016-2444-z
10.1016/j.eij.2015.06.005
10.1016/j.future.2017.02.049
10.1007/978-1-4899-7637-6_1
10.1007/978-1-4899-7637-6_4
10.1016/j.knosys.2015.12.018
10.26599/BDMA.2021.9020001
10.1109/TSC.2014.2355842
10.1145/2899005
10.5120/19308-0760
10.1142/S0218001420530031
10.3233/JIFS-179078
10.4018/IJAEIS.20210101.oa1
10.1007/s11257-015-9155-5
10.26599/TST.2020.9010049
10.1016/j.knosys.2016.03.006
10.1007/s11042-016-4078-7
10.1007/s11036-016-0790-9
10.1016/j.dss.2015.02.001
10.1016/j.eswa.2016.09.040
10.1109/ICIMIA48430.2020.9074853
10.1016/j.eswa.2014.09.016
10.1109/TWC.2017.2740206
10.1109/TSC.2014.2381611
10.1109/TBDATA.2016.2541167
10.1016/j.knosys.2018.02.024
10.1007/s00530-017-0539-8
10.26599/BDMA.2020.9020026
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.7505
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_7505
CPE7505
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2935-40ba94153f5bd954a16f3d2d81092756345b4a5bb1eb85120d5603b43cea51833
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Mon Jul 14 07:51:26 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Wed Oct 01 03:13:34 EDT 2025
Wed Jan 22 16:25:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2935-40ba94153f5bd954a16f3d2d81092756345b4a5bb1eb85120d5603b43cea51833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0057-603X
PQID 2755372766
PQPubID 2045170
PageCount 20
ParticipantIDs proquest_journals_2755372766
crossref_primary_10_1002_cpe_7505
crossref_citationtrail_10_1002_cpe_7505
wiley_primary_10_1002_cpe_7505_CPE7505
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 January 2023
PublicationDateYYYYMMDD 2023-01-25
PublicationDate_xml – month: 01
  year: 2023
  text: 25 January 2023
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 27
2018; 29
2021; 26
2015; 17
2015; 16
2021; 4
2017; 69
2015; 72
2017; 22
2018; 148
2019; 37
2020; 17
2016; 97
2016; 100
2020; 79
2020; 34
2016; 91
2015; 8
2018; 24
2017; 72
2020; 7
2021; 13
2015; 25
2021; 12
2016; 2
2021; 11
2017; 16
2015; 42
2019; 23
2017; 76
2015; 110
2015
2020; 21
2016; 8
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
Choudhury SS (e_1_2_8_10_1) 2021; 13
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Ali Z (e_1_2_8_38_1) 2020; 21
e_1_2_8_7_1
Kuanr M (e_1_2_8_11_1) 2020; 17
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Jiang S (e_1_2_8_16_1) 2015; 17
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_37_1
Pandharbale PB (e_1_2_8_6_1) 2021; 11
Garanayak M (e_1_2_8_9_1) 2020; 7
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 2
  start-page: 113
  issue: 2
  year: 2016
  end-page: 123
  article-title: A recommendation system based on hierarchical clustering of an article‐level citation network
  publication-title: IEEE Trans Big Data
– volume: 72
  start-page: 37
  year: 2017
  end-page: 48
  article-title: A hybrid knowledge‐based recommender system for e‐learning based on ontology and sequential pattern mining
  publication-title: Future Gener Comput Syst
– volume: 16
  start-page: 7138
  issue: 11
  year: 2017
  end-page: 7151
  article-title: A kernel‐power‐density‐based algorithm for channel multipath components clustering
  publication-title: IEEE Trans Wirel Commun
– volume: 4
  start-page: 183
  issue: 3
  year: 2021
  end-page: 194
  article-title: Effective density‐based clustering algorithms for incomplete data
  publication-title: Big Data Min Anal
– volume: 25
  start-page: 99
  issue: 2
  year: 2015
  end-page: 154
  article-title: Recommender systems based on user reviews: the state of the art
  publication-title: User Model User‐Adapt Interact
– volume: 97
  start-page: 188
  year: 2016
  end-page: 202
  article-title: A non‐negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model
  publication-title: Knowl‐Based Syst
– volume: 79
  start-page: 3807
  issue: 5
  year: 2020
  end-page: 3829
  article-title: A novel approach on particle agent swarm optimization (PASO) in semantic mining for web page recommender system of multimedia data: a health care perspective
  publication-title: Multimed Tools Appl
– volume: 7
  issue: 26
  year: 2020
  article-title: An automated recommender system for educational institute in India
  publication-title: EAI Endorsed Trans Scalable Inf Syst
– volume: 72
  start-page: 97
  year: 2015
  end-page: 109
  article-title: A semantic enhanced hybrid recommendation approach: a case study of e‐government tourism service recommendation system
  publication-title: Decis Support Syst
– volume: 13
  start-page: 475
  issue: 2
  year: 2021
  end-page: 482
  article-title: Multimodal trust based recommender system with machine learning approaches for movie recommendation
  publication-title: Int J Inf Technol
– volume: 4
  start-page: 139
  issue: 3
  year: 2021
  end-page: 154
  article-title: Improvising personalized travel recommendation system with recency effects
  publication-title: Big Data Min Anal
– volume: 29
  start-page: 235
  issue: 1
  year: 2018
  end-page: 243
  article-title: Web page recommendation via twofold clustering: considering user behavior and topic relation
  publication-title: Neural Comput Appl
– volume: 22
  start-page: 228
  issue: 2
  year: 2017
  end-page: 239
  article-title: The recommendation system of micro‐blog topic based on user clustering
  publication-title: Mob Netw Appl
– volume: 100
  start-page: 175
  year: 2016
  end-page: 187
  article-title: User profiling approaches for demographic recommender systems
  publication-title: Knowl‐Based Syst
– volume: 8
  issue: 1
  year: 2016
  article-title: Sprank: semantic path‐based ranking for top‐n recommendations using linked open data
  publication-title: ACM Trans Intell Syst Technol
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  end-page: 20
  article-title: Agricultural recommendation system for crops using different machine learning regression methods
  publication-title: Int J Agric Environ Inf Syst
– volume: 34
  issue: 3
  year: 2020
  article-title: Webpage recommendation system using interesting subgraphs and Laplace based k‐nearest neighbor
  publication-title: Int J Pattern Recognit Artif Intell
– volume: 16
  start-page: 261
  issue: 3
  year: 2015
  end-page: 273
  article-title: Recommendation systems: principles, methods and evaluation
  publication-title: Egypt Inform J
– volume: 8
  start-page: 453
  issue: 3
  year: 2015
  end-page: 466
  article-title: Unified collaborative and content‐based web service recommendation
  publication-title: IEEE Trans Serv Comput
– volume: 110
  start-page: 31
  issue: 4
  year: 2015
  end-page: 36
  article-title: Survey on collaborative filtering, content‐based filtering and hybrid recommendation system
  publication-title: Int J Comput Appl
– volume: 11
  start-page: 1
  issue: 5
  year: 2021
  end-page: 15
  article-title: Novel clustering‐based web service recommendation framework
  publication-title: Int J Syst Dyn Appl
– volume: 8
  start-page: 782
  issue: 5
  year: 2015
  end-page: 794
  article-title: Time aware and data sparsity tolerant web service recommendation based on improved collaborative filtering
  publication-title: IEEE Trans Serv Comput
– volume: 26
  start-page: 886
  issue: 6
  year: 2021
  end-page: 893
  article-title: News keyword extraction algorithm based on semantic clustering and word graph model
  publication-title: Tsinghua Sci Technol
– start-page: 1
  year: 2015
  end-page: 34
– volume: 24
  start-page: 163
  issue: 2
  year: 2018
  end-page: 173
  article-title: A content‐based recommendation algorithm for learning resources
  publication-title: Multimed Syst
– volume: 148
  start-page: 85
  year: 2018
  end-page: 99
  article-title: HAR‐SI: a novel hybrid article recommendation approach integrating with social information in scientific social network
  publication-title: Knowl‐Based Syst
– volume: 23
  start-page: 93
  issue: 2
  year: 2019
  end-page: 101
  article-title: Recommender system using item based collaborative filtering (CF) and K‐means
  publication-title: Int J Knowl‐Based Intell Eng Syst
– volume: 27
  start-page: 386
  issue: 2
  year: 2021
  end-page: 395
  article-title: Nonnegative matrix tri‐factorization based clustering in a heterogeneous information network with star network schema
  publication-title: Tsinghua Sci Technol
– volume: 17
  start-page: 377
  issue: 3
  year: 2020
  end-page: 392
  article-title: Location‐based personalized recommendation systems for the tourists in India
  publication-title: Int J Bus Intell Data Min
– volume: 76
  start-page: 21481
  issue: 20
  year: 2017
  end-page: 21496
  article-title: An effective web page recommender system with fuzzy c‐mean clustering
  publication-title: Multimed Tools Appl
– volume: 91
  start-page: 134
  year: 2016
  end-page: 139
  article-title: User based collaborative filtering using fuzzy C‐means
  publication-title: Measurement
– volume: 69
  start-page: 29
  year: 2017
  end-page: 39
  article-title: Collaborative filtering and deep learningbased recommendation system for cold start items
  publication-title: Expert Syst Appl
– volume: 37
  start-page: 205
  issue: 1
  year: 2019
  end-page: 216
  article-title: Optimal rough fuzzy clustering for user profile ontology based web page recommendation analysis
  publication-title: J Intell Fuzzy Syst
– volume: 42
  start-page: 1202
  issue: 3
  year: 2015
  end-page: 1222
  article-title: RecomMetz. A context‐aware knowledge‐based mobile recommender system for movie showtimes
  publication-title: Expert Syst Appl
– start-page: 119
  year: 2015
  end-page: 159
– volume: 17
  start-page: 907
  issue: 6
  year: 2015
  end-page: 918
  article-title: Author topic model‐based collaborative filtering for personalized POI recommendations
  publication-title: IEEE Trans Multimed
– volume: 21
  start-page: 1
  year: 2020
  end-page: 44
  article-title: A graph‐based taxonomy of citation recommendation models
  publication-title: Artif Intell Rev
– ident: e_1_2_8_36_1
  doi: 10.1007/s11042-018-7141-8
– ident: e_1_2_8_29_1
  doi: 10.26599/TST.2020.9010051
– ident: e_1_2_8_30_1
  doi: 10.1016/j.measurement.2016.05.058
– ident: e_1_2_8_13_1
  doi: 10.3233/KES-190402
– ident: e_1_2_8_32_1
  doi: 10.1007/s00521-016-2444-z
– ident: e_1_2_8_3_1
  doi: 10.1016/j.eij.2015.06.005
– ident: e_1_2_8_4_1
  doi: 10.1016/j.future.2017.02.049
– volume: 17
  start-page: 907
  issue: 6
  year: 2015
  ident: e_1_2_8_16_1
  article-title: Author topic model‐based collaborative filtering for personalized POI recommendations
  publication-title: IEEE Trans Multimed
– ident: e_1_2_8_5_1
  doi: 10.1007/978-1-4899-7637-6_1
– ident: e_1_2_8_15_1
  doi: 10.1007/978-1-4899-7637-6_4
– volume: 11
  start-page: 1
  issue: 5
  year: 2021
  ident: e_1_2_8_6_1
  article-title: Novel clustering‐based web service recommendation framework
  publication-title: Int J Syst Dyn Appl
– ident: e_1_2_8_26_1
  doi: 10.1016/j.knosys.2015.12.018
– ident: e_1_2_8_28_1
  doi: 10.26599/BDMA.2021.9020001
– ident: e_1_2_8_23_1
  doi: 10.1109/TSC.2014.2355842
– ident: e_1_2_8_20_1
  doi: 10.1145/2899005
– ident: e_1_2_8_2_1
  doi: 10.5120/19308-0760
– ident: e_1_2_8_37_1
  doi: 10.1142/S0218001420530031
– ident: e_1_2_8_39_1
  doi: 10.3233/JIFS-179078
– ident: e_1_2_8_8_1
  doi: 10.4018/IJAEIS.20210101.oa1
– ident: e_1_2_8_14_1
  doi: 10.1007/s11257-015-9155-5
– ident: e_1_2_8_27_1
  doi: 10.26599/TST.2020.9010049
– ident: e_1_2_8_19_1
  doi: 10.1016/j.knosys.2016.03.006
– ident: e_1_2_8_31_1
  doi: 10.1007/s11042-016-4078-7
– volume: 13
  start-page: 475
  issue: 2
  year: 2021
  ident: e_1_2_8_10_1
  article-title: Multimodal trust based recommender system with machine learning approaches for movie recommendation
  publication-title: Int J Inf Technol
– ident: e_1_2_8_33_1
  doi: 10.1007/s11036-016-0790-9
– ident: e_1_2_8_21_1
  doi: 10.1016/j.dss.2015.02.001
– ident: e_1_2_8_17_1
  doi: 10.1016/j.eswa.2016.09.040
– volume: 17
  start-page: 377
  issue: 3
  year: 2020
  ident: e_1_2_8_11_1
  article-title: Location‐based personalized recommendation systems for the tourists in India
  publication-title: Int J Bus Intell Data Min
– ident: e_1_2_8_7_1
  doi: 10.1109/ICIMIA48430.2020.9074853
– ident: e_1_2_8_18_1
  doi: 10.1016/j.eswa.2014.09.016
– ident: e_1_2_8_22_1
  doi: 10.1109/TWC.2017.2740206
– ident: e_1_2_8_24_1
  doi: 10.1109/TSC.2014.2381611
– volume: 21
  start-page: 1
  year: 2020
  ident: e_1_2_8_38_1
  article-title: A graph‐based taxonomy of citation recommendation models
  publication-title: Artif Intell Rev
– ident: e_1_2_8_25_1
  doi: 10.1109/TBDATA.2016.2541167
– ident: e_1_2_8_35_1
  doi: 10.1016/j.knosys.2018.02.024
– ident: e_1_2_8_34_1
  doi: 10.1007/s00530-017-0539-8
– volume: 7
  start-page: e9
  issue: 26
  year: 2020
  ident: e_1_2_8_9_1
  article-title: An automated recommender system for educational institute in India
  publication-title: EAI Endorsed Trans Scalable Inf Syst
– ident: e_1_2_8_12_1
  doi: 10.26599/BDMA.2020.9020026
SSID ssj0011031
Score 2.328096
Snippet Summary Web‐page recommendation system (RS) plays a major role in smart web systems. The core technology is the RS, which helps users find their interests or...
Web‐page recommendation system (RS) plays a major role in smart web systems. The core technology is the RS, which helps users find their interests or discover...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Clustering
Coders
Datasets
Decision making
density based clustering
dynamic graph‐based model
Evaluation
News
Preferences
Ranking
Recommender systems
unsupervised‐deep auto encoder
user preference vector
Websites
Title Deep auto‐encoder based clustering algorithm for graph‐based web page recommendation system
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7505
https://www.proquest.com/docview/2755372766
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: ADMLS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSwMxEMeDePJifWK1SgTR07bZTbLtHqW2FEERsVDwsORVFfui3V48-RH8jH4SZ_bRqiiIpz3sZMlmksw_IfkNISfMWFPXruFZp6QnjOt7KhDSs8LqwGrTD9PsDVfXYacrLnuyl5-qxLswGR9iseGGIyOdr3GAKz2rLaGhZuKqEO7wfrnPw3Q1dbsgR_mYvSBDpQYeA9FecGdZUCsKfo1ES3n5WaSmUaZdIvdF_bLDJc_VeaKr5uUbuvF_P7BB1nPxSc-z3rJJVtxoi5SKxA40H-fbJL5wbkLVPBm_v74h6dLCW4x3lprBHNEKEPCoGjyMp0_J45CC8KUp-RrMMzOYnClOVRQX3MOhy1M30QwcvUO67dZds-PlmRg8A3IAfMi0iiDU877UNpJC-WGf28A2fBYhP54LqYWSWvtOg4QLmAUhxbXgBnoATBp8l6yOxiO3R6hQnEXWRAgiFFyxiDvE3IGQZHX4ZqNMzgqvxCbHlGO2jEGcAZaDGNotxnYrk-OF5SRDc_xgUykcG-eDcxZDjSUH3RaGZXKaeujX8nHzpoXP_b8aHpA1TEiPmzSBrJDVZDp3hyBbEn2UdtAPfJ7rzQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JThwxEIZLZHKAC0NYxLAkRkJw6sHTtptpcUIsGlYhBBKHSJa3SRCzCXounHiEPGOehKpehgQlUpRTH7rccrtcrt9W91cAm9x5t2tDO_LBqEi60I1MLFXkpbext66b5NUbLi6Tzq08vVN3U7BX_QtT8CEmB24UGfl6TQFOB9I7b9RQNwpNzHfqA3yUCW5TSBFdT9hRLapfUMBS44ijbK_IszzeqVr-noveBOavMjXPM8d1-Fr1sPi85KE5zmzTPb-DN_7nK8zBbKk_2X4xYT7BVBjMQ72q7cDKUF8AfRjCiJlxNvz58oNglx7vUsrzzPXGRFfAnMdM79vw8T773meofVkOv0bzwgzXZ0arFaM9d78fyupNrGBHL8Lt8dHNQScqizFEDhUBupFbk2K2F11lfaqkaSVd4WPfbvGUEPJCKiuNsrYVLKq4mHvUUsJK4XAS4LohlqA2GA7CMjBpBE-9S4lFKIXhqQhEukMtyXfxme0GbFdu0a4klVPBjJ4uGMuxxnHTNG4N2JhYjgo6xx9s1irP6jI-nzT2WAmUbknSgK3cRX9trw-ujui68q-GX2C6c3Nxrs9PLs9WYYbq09OZTazWoJY9jsM6qpjMfs5n6ytB2u_u
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHbZEQly4UUBdKayQEp2y9sZ3diBPahwqU1QpRqQcky6-0Vfelkr1w6kfoZ-STMJPHtkVFqnrKIePI8Xg8_1jObwDeceddx4Zu5INRkXQhi0wsVeSlt7G3LkuK6g3fRsnBkfxyrI7X4GP9L0zJh1htuFFkFOs1BXhY-Gz_mhrqFqGF-U6twyOp0i6d5-t_X7Gj2lS_oISlxhFH2V6TZ3m8X7e8nYuuBeZNmVrkmWEDftY9LI-XnLeWuW253__AGx_4Ck9hs9Kf7FM5YZ7BWphtQaOu7cCqUH8Ouh_CgpllPv9zeUWwS493KeV55iZLoitgzmNmcjK_OMtPpwy1Lyvg12hemuH6zGi1YvTNPZ2GqnoTK9nRL-BoOPjRO4iqYgyRQ0WAbuTWpJjtRaasT5U07SQTPvbdNk8JIS-kstIoa9vBooqLuUctJawUDicBrhviJWzM5rOwDUwawVPvUmIRSmF4KgKR7lBL8g4-s9uED7VbtKtI5VQwY6JLxnKscdw0jVsT3q4sFyWd4w6bndqzuorPXxp7rARKtyRpwvvCRf9tr3vjAV1f3ddwDx6P-0N9-Hn09TU8ofL0tGUTqx3YyC-W4Q2KmNzuFpP1LwC273I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+auto%E2%80%90encoder+based+clustering+algorithm+for+graph%E2%80%90based+web+page+recommendation+system&rft.jtitle=Concurrency+and+computation&rft.au=Alagappan%2C+Jothi+Kumar&rft.au=Victor%2C+Savaridoss+Paul&rft.date=2023-01-25&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=35&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.7505&rft.externalDBID=10.1002%252Fcpe.7505&rft.externalDocID=CPE7505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon