Assessments of downscaled climate data with a high‐resolution weather station network reveal consistent but predictable bias
Ecological analyses often incorporate high‐resolution environmental data to capture species‐environment relationships in modelling applications, and downscaled climate data are increasingly being used for such analyses. While such data products provide high precision, the accuracy of these data is s...
        Saved in:
      
    
          | Published in | International journal of climatology Vol. 39; no. 6; pp. 3091 - 3103 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Chichester, UK
          John Wiley & Sons, Ltd
    
        01.05.2019
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0899-8418 1097-0088  | 
| DOI | 10.1002/joc.6005 | 
Cover
| Abstract | Ecological analyses often incorporate high‐resolution environmental data to capture species‐environment relationships in modelling applications, and downscaled climate data are increasingly being used for such analyses. While such data products provide high precision, the accuracy of these data is seldom directly tested. Consequently, introduced bias from downscaling algorithms may propagate through analyses that incorporate these data products. Here, we utilize data from the Foothills Climate Array (FCA), a mesoscale grid of 232 weather stations in the prairies and eastern slopes of the Rocky Mountains in southern Alberta, Canada, to evaluate several publicly available downscaled climate products. We consider daily, monthly, and annual records for a suite of temperature and humidity variables. The FCA data are ideal to evaluate climate downscaling because they contain multi‐year observations and cover a range of topographic conditions, from flat prairie grass‐ and croplands to mountainous terrain. We find that the downscaling algorithms improve the accuracy of climate variables over simple interpolations of low‐resolution data, but errors are often large at validation locations (e.g., several °C for temperature variables), and downscaled datasets show notable elevational and seasonal bias for all variables. A bias adjustment analysis demonstrates that such bias can be greatly reduced with relatively simple regression‐based models, even when only a small subset of observational data are used, provided they cover a relatively large spread of elevations. We discuss our findings in the context of climate change and ecological modelling and make general recommendations for consumers of downscaled climate data products.
Compared to a mesoscale network of observation stations in the Canadian Rocky Mountains, climate downscalings consistently demonstrate elevational and seasonal bias in residuals. For average temperatures, downscalings are generally warmer than observations at low and high elevations and cooler at middle elevations, particularly through winter months, though patterns vary across individual variables and datasets. Bias adjustment models improve accuracy and can be developed even with a small number of observation stations, provided those stations cover a wide breadth of elevation. | 
    
|---|---|
| AbstractList | Ecological analyses often incorporate high‐resolution environmental data to capture species‐environment relationships in modelling applications, and downscaled climate data are increasingly being used for such analyses. While such data products provide high precision, the accuracy of these data is seldom directly tested. Consequently, introduced bias from downscaling algorithms may propagate through analyses that incorporate these data products. Here, we utilize data from the Foothills Climate Array (FCA), a mesoscale grid of 232 weather stations in the prairies and eastern slopes of the Rocky Mountains in southern Alberta, Canada, to evaluate several publicly available downscaled climate products. We consider daily, monthly, and annual records for a suite of temperature and humidity variables. The FCA data are ideal to evaluate climate downscaling because they contain multi‐year observations and cover a range of topographic conditions, from flat prairie grass‐ and croplands to mountainous terrain. We find that the downscaling algorithms improve the accuracy of climate variables over simple interpolations of low‐resolution data, but errors are often large at validation locations (e.g., several °C for temperature variables), and downscaled datasets show notable elevational and seasonal bias for all variables. A bias adjustment analysis demonstrates that such bias can be greatly reduced with relatively simple regression‐based models, even when only a small subset of observational data are used, provided they cover a relatively large spread of elevations. We discuss our findings in the context of climate change and ecological modelling and make general recommendations for consumers of downscaled climate data products. Ecological analyses often incorporate high‐resolution environmental data to capture species‐environment relationships in modelling applications, and downscaled climate data are increasingly being used for such analyses. While such data products provide high precision, the accuracy of these data is seldom directly tested. Consequently, introduced bias from downscaling algorithms may propagate through analyses that incorporate these data products. Here, we utilize data from the Foothills Climate Array (FCA), a mesoscale grid of 232 weather stations in the prairies and eastern slopes of the Rocky Mountains in southern Alberta, Canada, to evaluate several publicly available downscaled climate products. We consider daily, monthly, and annual records for a suite of temperature and humidity variables. The FCA data are ideal to evaluate climate downscaling because they contain multi‐year observations and cover a range of topographic conditions, from flat prairie grass‐ and croplands to mountainous terrain. We find that the downscaling algorithms improve the accuracy of climate variables over simple interpolations of low‐resolution data, but errors are often large at validation locations (e.g., several °C for temperature variables), and downscaled datasets show notable elevational and seasonal bias for all variables. A bias adjustment analysis demonstrates that such bias can be greatly reduced with relatively simple regression‐based models, even when only a small subset of observational data are used, provided they cover a relatively large spread of elevations. We discuss our findings in the context of climate change and ecological modelling and make general recommendations for consumers of downscaled climate data products. Compared to a mesoscale network of observation stations in the Canadian Rocky Mountains, climate downscalings consistently demonstrate elevational and seasonal bias in residuals. For average temperatures, downscalings are generally warmer than observations at low and high elevations and cooler at middle elevations, particularly through winter months, though patterns vary across individual variables and datasets. Bias adjustment models improve accuracy and can be developed even with a small number of observation stations, provided those stations cover a wide breadth of elevation.  | 
    
| Author | Wood, Wendy H. Roberts, David R. Marshall, Shawn J.  | 
    
| Author_xml | – sequence: 1 givenname: David R. orcidid: 0000-0002-3437-2422 surname: Roberts fullname: Roberts, David R. email: droxroberts@gmail.com organization: University of Calgary – sequence: 2 givenname: Wendy H. surname: Wood fullname: Wood, Wendy H. organization: University of Calgary – sequence: 3 givenname: Shawn J. orcidid: 0000-0002-8300-1388 surname: Marshall fullname: Marshall, Shawn J. organization: University of Calgary  | 
    
| BookMark | eNp1kMtu2zAQRYkiAeo8gH4CgW66kcOHJIvLwGiaBAGyadfCkBrFdGXR5dARsinyCfnGfkkZu6siWREDnnsHc07Y0RhGZOyTFHMphLpYBzevhag-sJkUZlEI0TRHbCYaY4qmlM1HdkK0FkIYI-sZ-31JhEQbHBPx0PMuTCM5GLDjbvAbSMg7SMAnn1Yc-Mo_rP48v0SkMOySDyOfENIKI6cE-3nENIX4k0d8RBi4CyN5Srme213i24iddwnsgNx6oDN23MNAeP7vPWU_rr5-X14Xd_ffbpaXd4VTRleFsroGKHVV24XtTGW1U72GBjoEJVVTlsooDZgvNp1RWGrtbF3ZvhEu_5X6lH0-9G5j-LVDSu067OKYV7ZKZU1SLqo6U18OlIuBKGLfbmN2EJ9aKdpXuznl2le7GZ3_hzp_MJAi-OGtQHEITH7Ap3eL29v75Z7_C-vckCU | 
    
| CitedBy_id | crossref_primary_10_1038_s41598_019_41398_5 crossref_primary_10_1080_1573062X_2020_1828497 crossref_primary_10_1002_ece3_6407 crossref_primary_10_1007_s00704_022_04035_2 crossref_primary_10_5194_nhess_23_205_2023 crossref_primary_10_1139_as_2023_0065 crossref_primary_10_5194_hess_24_2671_2020 crossref_primary_10_1002_eap_2240 crossref_primary_10_1002_env_2822 crossref_primary_10_7717_peerj_12055  | 
    
| Cites_doi | 10.1017/CBO9780511754753 10.1002/joc.3711 10.1002/joc.1602 10.1111/j.1461-0248.2008.01231.x 10.1073/pnas.0404500101 10.1038/sdata.2018.16 10.5194/essd-10-595-2018 10.1029/2009JD013493 10.1175/JCLI-D-11-00408.1 10.1029/JD095iD02p01943 10.1002/joc.1276 10.18637/jss.v067.i01 10.1046/j.1523-1739.2001.015002320.x 10.1111/j.1365-2486.2008.01553.x 10.5194/essd-11-23-2019 10.1002/joc.1688 10.1175/1525-7541(2003)004<1025:TSOPAS>2.0.CO;2 10.5194/gmd-9-1937-2016 10.1289/ehp.7163 10.1657/1523-0430(2004)036[0272:GDACIT]2.0.CO;2 10.1080/07055900.2011.592130 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2 10.1029/2009JD011775 10.1098/rsbl.2008.0476 10.1175/BAMS-87-3-343 10.1177/030913339702100403 10.1007/s00382-017-3668-z 10.5194/cp-10-1453-2014 10.1007/BF00131534 10.1890/15-0745 10.1029/2006JD007561 10.1038/srep45242 10.32614/RJ-2012-011 10.1007/s00382-015-2688-9 10.3354/cr007085 10.1029/2007GL030295  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Royal Meteorological Society | 
    
| Copyright_xml | – notice: 2019 Royal Meteorological Society | 
    
| DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G  | 
    
| DOI | 10.1002/joc.6005 | 
    
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional  | 
    
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts  | 
    
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Meteorology & Climatology | 
    
| EISSN | 1097-0088 | 
    
| EndPage | 3103 | 
    
| ExternalDocumentID | 10_1002_joc_6005 JOC6005  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: The University of Calgary – fundername: Natural Sciences and Engineering Research Council of Canada – fundername: The Canada Research Chairs Program; Canada Foundation for Innovation  | 
    
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VOH W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WUPDE WXSBR WYISQ XG1 XJT XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX CITATION 7TG 7TN F1W H96 KL. L.G  | 
    
| ID | FETCH-LOGICAL-c2935-2b36aa4356b7bd95b3c2f3a8adea2128442923ae1099d92e433cb65bf80c44243 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0899-8418 | 
    
| IngestDate | Fri Jul 25 08:07:00 EDT 2025 Wed Oct 01 02:20:12 EDT 2025 Thu Apr 24 22:52:28 EDT 2025 Wed Aug 20 07:27:49 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2935-2b36aa4356b7bd95b3c2f3a8adea2128442923ae1099d92e433cb65bf80c44243 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8300-1388 0000-0002-3437-2422  | 
    
| PQID | 2209711756 | 
    
| PQPubID | 996368 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_journals_2209711756 crossref_primary_10_1002_joc_6005 crossref_citationtrail_10_1002_joc_6005 wiley_primary_10_1002_joc_6005_JOC6005  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | May 2019 2019-05-00 20190501  | 
    
| PublicationDateYYYYMMDD | 2019-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2019 text: May 2019  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Chichester, UK | 
    
| PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis  | 
    
| PublicationTitle | International journal of climatology | 
    
| PublicationYear | 2019 | 
    
| Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc  | 
    
| References | 2004; 101 1989; 3 1990; 95 2017; 7 1997; 21 2019; 11 2008; 14 2008 2008; 11 2007; 34 2009; 114 2005; 25 2016; 11 2004; 112 2015; 67 2007; 112 1996; 07 2018; 5 2018; 1 2006; 87 2004; 36 2010; 115 2008; 28 1999; 12 2003; 4 2018 2016 2001; 15 2015 2018; 50 2009; 5 2013 2012; 25 2011; 49 2012; 4 2018; 10 2016; 26 2014; 34 2016; 9 2016; 46 2014; 10 2007; 27 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Le Roux R. (e_1_2_6_19_1) 2018; 1 Thornton P.E. (e_1_2_6_36_1) 2016 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 IPCC (e_1_2_6_15_1) 2013 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 R Core Team (e_1_2_6_32_1) 2018 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_27_1 Wang T. (e_1_2_6_40_1) 2016; 11 e_1_2_6_26_1  | 
    
| References_xml | – volume: 3 start-page: 153 year: 1989 end-page: 162 article-title: Effects of changing spatial scale on the analysis of landscape pattern publication-title: Landscape Ecology – volume: 5 start-page: 180016 year: 2018 article-title: Inter‐comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA publication-title: Scientific Data – volume: 9 start-page: 1937 year: 2016 end-page: 1958 article-title: Overview of the coupled model Intercomparison project phase 6 (CMIP6) experimental design and organization publication-title: Geoscientific Model Development – volume: 15 start-page: 320 year: 2001 end-page: 331 article-title: Ecological consequences of recent climate change publication-title: Conservation Biology – volume: 07 start-page: 85 year: 1996 end-page: 95 article-title: Climate downscaling: techniques and application publication-title: Climate Research – volume: 4 start-page: 1025 year: 2003 end-page: 1043 article-title: The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain publication-title: Journal of Hydrometeorology – volume: 25 start-page: 4366 year: 2012 end-page: 4388 article-title: Downscaling extremes—an Intercomparison of multiple statistical methods for present climate publication-title: Journal of Climate – volume: 112 start-page: D11124 year: 2007 article-title: Surface temperature patterns in complex terrain: daily variations and long‐term change in the central Sierra Nevada, California publication-title: Journal of Geophysical Research: Atmospheres – volume: 21 start-page: 530 year: 1997 end-page: 548 article-title: Downscaling general circulation model output: a review of methods and limitations publication-title: Progress in Physical Geography: Earth and Environment – volume: 34 start-page: 623 year: 2014 end-page: 642 article-title: Updated high‐resolution grids of monthly climatic observations—the CRU TS3.10 dataset publication-title: International Journal of Climatology – volume: 10 start-page: 1453 year: 2014 end-page: 1471 article-title: Evolution of the large‐scale atmospheric circulation in response to changing ice sheets over the last glacial cycle publication-title: Climate of the Past – volume: 101 start-page: 12422 year: 2004 end-page: 12427 article-title: Emissions pathways, climate change, and impacts on California publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 87 start-page: 343 year: 2006 end-page: 360 article-title: North American regional reanalysis publication-title: Bulletin of the American Meteorological Society – volume: 67 start-page: 1 year: 2015 end-page: 48 article-title: Fitting linear mixed‐effects models using lme4 publication-title: Journal of Statistical Software – volume: 26 start-page: 1321 year: 2016 end-page: 1337 article-title: The effects of climate downscaling technique and observational data set on modeled ecological responses publication-title: Ecological Applications – volume: 112 start-page: 1557 year: 2004 end-page: 1563 article-title: Assessing ozone‐related health impacts under a changing climate publication-title: Environmental Health Perspectives – year: 2016 – volume: 115 start-page: D14122 year: 2010 article-title: Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains publication-title: Journal of Geophysical Research: Atmospheres – year: 2018 – volume: 11 start-page: 23 issue: 1 year: 2019 end-page: 34 article-title: Daily measurements of near‐surface humidity from a mesonet in the foothills of the Canadian Rocky Mountains, 2005–2010 publication-title: Earth System Science Data – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 12 start-page: 829 year: 1999 end-page: 856 article-title: Representing twentieth‐century space–time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology publication-title: Journal of Climate – volume: 95 start-page: 1943 year: 1990 end-page: 1953 article-title: Obtaining sub‐grid‐scale information from coarse‐resolution general circulation model output publication-title: Journal of Geophysical Research—Atmospheres – volume: 114 year: 2009 article-title: Calculating distributed glacier mass balance for the Swiss Alps from regional climate model output: a methodical description and interpretation of the results publication-title: Journal of Geophysical Research—Atmospheres – volume: 34 year: 2007 article-title: A general method for validating statistical downscaling methods under future climate change publication-title: Geophysical Research Letters – volume: 11 year: 2016 article-title: Locally downscaled and spatially customizable climate data for historical and future periods for North America publication-title: PLoS One – volume: 27 start-page: 1643 year: 2007 end-page: 1655 article-title: Statistical and dynamical downscaling of the Seine basin climate for hydro‐meteorological studies publication-title: International Journal of Climatology – volume: 36 start-page: 272 year: 2004 end-page: 279 article-title: Glacier distributions and climate in the Canadian Rockies publication-title: Arctic, Antarctic, and Alpine Research – volume: 28 start-page: 2031 year: 2008 end-page: 2064 article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States publication-title: International Journal of Climatology – volume: 14 start-page: 1089 year: 2008 end-page: 1103 article-title: Spatial scale affects bioclimate model projections of climate change impacts on mountain plants publication-title: Global Change Biology – volume: 11 start-page: 1135 year: 2008 end-page: 1146 article-title: Why is the choice of future climate scenarios for species distribution modelling important? publication-title: Ecology Letters – volume: 1 start-page: 1 year: 2018 end-page: 12 article-title: Analysis of spatio‐temporal bias of Weather Research and Forecasting temperatures based on weather pattern classification publication-title: International Journal of Climatology – volume: 7 start-page: srep45242 year: 2017 article-title: Influence of anthropogenic climate change on planetary wave resonance and extreme weather events publication-title: Scientific Reports – volume: 4 start-page: 38 year: 2012 end-page: 47 article-title: influence.ME: tools for detecting influential data in mixed effects models publication-title: The R Journal – volume: 10 start-page: 595 issue: 1 year: 2018 end-page: 607 article-title: Daily temperature records from a mesonet in the foothills of the Canadian Rocky Mountains, 2005‐2010 publication-title: Earth System Science Data – year: 2008 – volume: 50 start-page: 1161 year: 2018 end-page: 1176 article-title: Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts? publication-title: Climate Dynamics – volume: 46 start-page: 1991 year: 2016 end-page: 2023 article-title: Credibility of statistical downscaling under nonstationary climate publication-title: Climate Dynamics – volume: 5 start-page: 39 year: 2009 end-page: 43 article-title: Scale effects in species distribution models: implications for conservation planning under climate change publication-title: Biology Letters – volume: 49 start-page: 189 year: 2011 end-page: 205 article-title: Mesoscale temperature patterns in the Rocky Mountains and Foothills region of southern Alberta publication-title: Atmosphere‐Ocean – year: 2015 – year: 2013 – ident: e_1_2_6_2_1 doi: 10.1017/CBO9780511754753 – ident: e_1_2_6_11_1 doi: 10.1002/joc.3711 – ident: e_1_2_6_6_1 doi: 10.1002/joc.1602 – ident: e_1_2_6_5_1 doi: 10.1111/j.1461-0248.2008.01231.x – ident: e_1_2_6_12_1 doi: 10.1073/pnas.0404500101 – volume-title: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_6_15_1 – ident: e_1_2_6_16_1 doi: 10.1038/sdata.2018.16 – ident: e_1_2_6_18_1 – volume-title: R: A Language and Environment for Statistical Computing year: 2018 ident: e_1_2_6_32_1 – ident: e_1_2_6_44_1 doi: 10.5194/essd-10-595-2018 – ident: e_1_2_6_28_1 doi: 10.1029/2009JD013493 – ident: e_1_2_6_7_1 doi: 10.1175/JCLI-D-11-00408.1 – volume-title: Daymet: Daily Surface Weather Data on a 1‐km Grid for North America, Version 3 year: 2016 ident: e_1_2_6_36_1 – ident: e_1_2_6_41_1 doi: 10.1029/JD095iD02p01943 – ident: e_1_2_6_14_1 doi: 10.1002/joc.1276 – ident: e_1_2_6_4_1 doi: 10.18637/jss.v067.i01 – ident: e_1_2_6_26_1 doi: 10.1046/j.1523-1739.2001.015002320.x – ident: e_1_2_6_37_1 doi: 10.1111/j.1365-2486.2008.01553.x – ident: e_1_2_6_43_1 doi: 10.5194/essd-11-23-2019 – ident: e_1_2_6_9_1 doi: 10.1002/joc.1688 – ident: e_1_2_6_20_1 doi: 10.1175/1525-7541(2003)004<1025:TSOPAS>2.0.CO;2 – ident: e_1_2_6_10_1 doi: 10.5194/gmd-9-1937-2016 – ident: e_1_2_6_17_1 doi: 10.1289/ehp.7163 – volume: 1 start-page: 1 year: 2018 ident: e_1_2_6_19_1 article-title: Analysis of spatio‐temporal bias of Weather Research and Forecasting temperatures based on weather pattern classification publication-title: International Journal of Climatology – ident: e_1_2_6_35_1 doi: 10.1657/1523-0430(2004)036[0272:GDACIT]2.0.CO;2 – ident: e_1_2_6_8_1 doi: 10.1080/07055900.2011.592130 – ident: e_1_2_6_29_1 doi: 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2 – ident: e_1_2_6_23_1 doi: 10.1029/2009JD011775 – ident: e_1_2_6_34_1 doi: 10.1098/rsbl.2008.0476 – ident: e_1_2_6_27_1 doi: 10.1175/BAMS-87-3-343 – ident: e_1_2_6_42_1 doi: 10.1177/030913339702100403 – ident: e_1_2_6_25_1 doi: 10.1007/s00382-017-3668-z – ident: e_1_2_6_21_1 doi: 10.5194/cp-10-1453-2014 – ident: e_1_2_6_38_1 doi: 10.1007/BF00131534 – ident: e_1_2_6_31_1 doi: 10.1890/15-0745 – ident: e_1_2_6_22_1 doi: 10.1029/2006JD007561 – ident: e_1_2_6_3_1 – ident: e_1_2_6_24_1 doi: 10.1038/srep45242 – ident: e_1_2_6_30_1 doi: 10.32614/RJ-2012-011 – ident: e_1_2_6_33_1 doi: 10.1007/s00382-015-2688-9 – ident: e_1_2_6_13_1 doi: 10.3354/cr007085 – volume: 11 year: 2016 ident: e_1_2_6_40_1 article-title: Locally downscaled and spatially customizable climate data for historical and future periods for North America publication-title: PLoS One – ident: e_1_2_6_39_1 doi: 10.1029/2007GL030295  | 
    
| SSID | ssj0009916 | 
    
| Score | 2.3343337 | 
    
| Snippet | Ecological analyses often incorporate high‐resolution environmental data to capture species‐environment relationships in modelling applications, and downscaled... | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3091 | 
    
| SubjectTerms | Accuracy Agricultural land Algorithms Bias bias correction Climate change Climate models Climatic data Data processing Ecological models Ecological monitoring Environment models Environmental assessment Foothills Humidity lapse rate Mathematical models mesonet Modelling Mountains Prairies Products Regression analysis Resolution Rocky Mountains Slope Temperature topography validation Weather Weather stations  | 
    
| Title | Assessments of downscaled climate data with a high‐resolution weather station network reveal consistent but predictable bias | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.6005 https://www.proquest.com/docview/2209711756  | 
    
| Volume | 39 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0899-8418 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0088 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009916 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS-NAEF_Ep3vx_inW02MOxHtK3W7SbfIo5aQUVJATCj6E_RdQSypNysE9iB_Bz-gncWY3aVVOkHsKIbNkszuT_c3s7G8Y28-IcsQptLRUJ1EilIlSmdjIFVxbxbntGYp3nJzK0UUynvQnTVYlnYUJ_BDLgBtZhv9fk4ErXR2uSEOvZ6YrA31pL5bemzpfMUcR7PEAMsuiNOmlLe8sF4dtw5cr0QpePgepfpU5_sgu2_6F5JKb7qLWXfP3FXXj_33AJ7bRgE84Ctryma258gvrnCBuns19eB0OYDi9QhDr776yu6MlcWcFswIsxaJxVp0F4-UcUIopUDQXFBD38eP9A3rwjULDn4AwoQo7_lCGrHMg4ijsiaH0XNSzsga9qOF2TttGNZ3mAn2lqk12cfzr93AUNRUbIoOwoR8JHUulEIFJPdA26-vYiCJWqbKoDrQSUnGsWDnajrOZcEkcGy37uki5wWdJvMXWy1npthlwqXkhEnS4fJU0pQZWo-9WcGdkJgTvsJ_t7OWmoTOnqhrTPBAxixzHN6fx7bAfS8nbQOHxD5ndVgHyxoirHN-SDYjKVHbYgZ_JN9vn47MhXXfeK_iNfUDolYXUyV22Xs8Xbg_hTa2_e0V-AtfC-l4 | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhObSXJk1buknaTqGkJ28UWau16SksDZs0m0JJIIeC0Z8hP3jDrpdADiGPkGfMk3RGsnfb0kLpyRiPsCzNWN-MRt8w9iEnyhGv0dIyIxMptE0yJV3iS26c5tztWop3jI7V8FQenvXOltin9ixM5IeYB9zIMsL_mgycAtI7C9bQi7HtqsBfuiIVuimEiL4tuKMI-AQImedJJnezlnmWi5225a9r0QJg_gxTwzqzv8q-tz2M6SWX3Vltuvb2N_LG__yENfaswZ-wFxXmOVvy1TrrjBA6jychwg7bMLg6Rxwb7l6wu705d-cUxiU4CkfjxHoHNsh5oCxToIAuaCD648f7B3TiG52GmwgyYRo3_aGKiedA3FHYE0sZuqhqVQ1mVsP1hHaOajrQBeZcT1-y0_3PJ4Nh0hRtSCwih14iTKq0RhCmTN-4vGdSK8pUZ9qhRtBiSPWxUu1pR87lwss0tUb1TJlxi89k-ootV-PKv2bAleGlkOhzhUJpWvedQfet5N6qXAjeYR_b6Stsw2hOhTWuisjFLAoc34LGt8PezyWvI4vHH2S2Wg0oGjueFviWvE9spqrDtsNU_rV9cfh1QNeNfxV8x54MT0ZHxdHB8ZdN9hSRWB4zKbfYcj2Z-TeIdmrzNmj1D3ku_n8 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEB9KBfHF_-Jp1RGkPu01zWZzG3wqV49abRWx0Adhyb-Fatk77vYQfBA_gp-xn6SZZPdORUF8WpadsNlkZvObyeQ3AM8UUY54HSytNCITXNuslMJlvmbGacbcrqV4x9GxPDgRh6fF6Qa86M_CJH6IVcCNLCP-r8nA_czVO2vW0E9TO5SRv_SKKFRJ-Xz779fcUQR8IoRUKivFbtkzzzK-07f8dS1aA8yfYWpcZyY34GPfw5Re8nm4bM3Qfv2NvPE_P-EmXO_wJ-4lhbkFG765DYOjAJ2n8xhhx20cn58FHBvv7sC3vRV35wKnNToKR4eJ9Q5tlPNIWaZIAV3USPTHF99_BCe-02n8kkAmLtKmPzYp8RyJOyr0xFKGblC1pkWzbHE2p52jlg50oTnTi7twMnn5YXyQdUUbMhuQQ5Fxk0utAwiTZmScKkxueZ3rUrugEbQYUn2sXHvakXOKe5Hn1sjC1CWz4ZnI78FmM238fUAmDau5CD5XLJSm9ciZ4L7VzFupOGcDeN5PX2U7RnMqrHFeJS5mXoXxrWh8B_B0JTlLLB5_kNnqNaDq7HhRhbeoEbGZygFsx6n8a_vq8O2Yrg_-VfAJXH23P6nevDp-_RCuBSCmUiLlFmy286V_FMBOax5Hpb4EJHz-Aw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessments+of+downscaled+climate+data+with+a+high%E2%80%90resolution+weather+station+network+reveal+consistent+but+predictable+bias&rft.jtitle=International+journal+of+climatology&rft.au=Roberts%2C+David+R.&rft.au=Wood%2C+Wendy+H.&rft.au=Marshall%2C+Shawn+J.&rft.date=2019-05-01&rft.issn=0899-8418&rft.eissn=1097-0088&rft.volume=39&rft.issue=6&rft.spage=3091&rft.epage=3103&rft_id=info:doi/10.1002%2Fjoc.6005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_joc_6005 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-8418&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-8418&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-8418&client=summon |