Assessments of downscaled climate data with a high‐resolution weather station network reveal consistent but predictable bias

Ecological analyses often incorporate high‐resolution environmental data to capture species‐environment relationships in modelling applications, and downscaled climate data are increasingly being used for such analyses. While such data products provide high precision, the accuracy of these data is s...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of climatology Vol. 39; no. 6; pp. 3091 - 3103
Main Authors Roberts, David R., Wood, Wendy H., Marshall, Shawn J.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.05.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0899-8418
1097-0088
DOI10.1002/joc.6005

Cover

Abstract Ecological analyses often incorporate high‐resolution environmental data to capture species‐environment relationships in modelling applications, and downscaled climate data are increasingly being used for such analyses. While such data products provide high precision, the accuracy of these data is seldom directly tested. Consequently, introduced bias from downscaling algorithms may propagate through analyses that incorporate these data products. Here, we utilize data from the Foothills Climate Array (FCA), a mesoscale grid of 232 weather stations in the prairies and eastern slopes of the Rocky Mountains in southern Alberta, Canada, to evaluate several publicly available downscaled climate products. We consider daily, monthly, and annual records for a suite of temperature and humidity variables. The FCA data are ideal to evaluate climate downscaling because they contain multi‐year observations and cover a range of topographic conditions, from flat prairie grass‐ and croplands to mountainous terrain. We find that the downscaling algorithms improve the accuracy of climate variables over simple interpolations of low‐resolution data, but errors are often large at validation locations (e.g., several °C for temperature variables), and downscaled datasets show notable elevational and seasonal bias for all variables. A bias adjustment analysis demonstrates that such bias can be greatly reduced with relatively simple regression‐based models, even when only a small subset of observational data are used, provided they cover a relatively large spread of elevations. We discuss our findings in the context of climate change and ecological modelling and make general recommendations for consumers of downscaled climate data products. Compared to a mesoscale network of observation stations in the Canadian Rocky Mountains, climate downscalings consistently demonstrate elevational and seasonal bias in residuals. For average temperatures, downscalings are generally warmer than observations at low and high elevations and cooler at middle elevations, particularly through winter months, though patterns vary across individual variables and datasets. Bias adjustment models improve accuracy and can be developed even with a small number of observation stations, provided those stations cover a wide breadth of elevation.
AbstractList Ecological analyses often incorporate high‐resolution environmental data to capture species‐environment relationships in modelling applications, and downscaled climate data are increasingly being used for such analyses. While such data products provide high precision, the accuracy of these data is seldom directly tested. Consequently, introduced bias from downscaling algorithms may propagate through analyses that incorporate these data products. Here, we utilize data from the Foothills Climate Array (FCA), a mesoscale grid of 232 weather stations in the prairies and eastern slopes of the Rocky Mountains in southern Alberta, Canada, to evaluate several publicly available downscaled climate products. We consider daily, monthly, and annual records for a suite of temperature and humidity variables. The FCA data are ideal to evaluate climate downscaling because they contain multi‐year observations and cover a range of topographic conditions, from flat prairie grass‐ and croplands to mountainous terrain. We find that the downscaling algorithms improve the accuracy of climate variables over simple interpolations of low‐resolution data, but errors are often large at validation locations (e.g., several °C for temperature variables), and downscaled datasets show notable elevational and seasonal bias for all variables. A bias adjustment analysis demonstrates that such bias can be greatly reduced with relatively simple regression‐based models, even when only a small subset of observational data are used, provided they cover a relatively large spread of elevations. We discuss our findings in the context of climate change and ecological modelling and make general recommendations for consumers of downscaled climate data products.
Ecological analyses often incorporate high‐resolution environmental data to capture species‐environment relationships in modelling applications, and downscaled climate data are increasingly being used for such analyses. While such data products provide high precision, the accuracy of these data is seldom directly tested. Consequently, introduced bias from downscaling algorithms may propagate through analyses that incorporate these data products. Here, we utilize data from the Foothills Climate Array (FCA), a mesoscale grid of 232 weather stations in the prairies and eastern slopes of the Rocky Mountains in southern Alberta, Canada, to evaluate several publicly available downscaled climate products. We consider daily, monthly, and annual records for a suite of temperature and humidity variables. The FCA data are ideal to evaluate climate downscaling because they contain multi‐year observations and cover a range of topographic conditions, from flat prairie grass‐ and croplands to mountainous terrain. We find that the downscaling algorithms improve the accuracy of climate variables over simple interpolations of low‐resolution data, but errors are often large at validation locations (e.g., several °C for temperature variables), and downscaled datasets show notable elevational and seasonal bias for all variables. A bias adjustment analysis demonstrates that such bias can be greatly reduced with relatively simple regression‐based models, even when only a small subset of observational data are used, provided they cover a relatively large spread of elevations. We discuss our findings in the context of climate change and ecological modelling and make general recommendations for consumers of downscaled climate data products. Compared to a mesoscale network of observation stations in the Canadian Rocky Mountains, climate downscalings consistently demonstrate elevational and seasonal bias in residuals. For average temperatures, downscalings are generally warmer than observations at low and high elevations and cooler at middle elevations, particularly through winter months, though patterns vary across individual variables and datasets. Bias adjustment models improve accuracy and can be developed even with a small number of observation stations, provided those stations cover a wide breadth of elevation.
Author Wood, Wendy H.
Roberts, David R.
Marshall, Shawn J.
Author_xml – sequence: 1
  givenname: David R.
  orcidid: 0000-0002-3437-2422
  surname: Roberts
  fullname: Roberts, David R.
  email: droxroberts@gmail.com
  organization: University of Calgary
– sequence: 2
  givenname: Wendy H.
  surname: Wood
  fullname: Wood, Wendy H.
  organization: University of Calgary
– sequence: 3
  givenname: Shawn J.
  orcidid: 0000-0002-8300-1388
  surname: Marshall
  fullname: Marshall, Shawn J.
  organization: University of Calgary
BookMark eNp1kMtu2zAQRYkiAeo8gH4CgW66kcOHJIvLwGiaBAGyadfCkBrFdGXR5dARsinyCfnGfkkZu6siWREDnnsHc07Y0RhGZOyTFHMphLpYBzevhag-sJkUZlEI0TRHbCYaY4qmlM1HdkK0FkIYI-sZ-31JhEQbHBPx0PMuTCM5GLDjbvAbSMg7SMAnn1Yc-Mo_rP48v0SkMOySDyOfENIKI6cE-3nENIX4k0d8RBi4CyN5Srme213i24iddwnsgNx6oDN23MNAeP7vPWU_rr5-X14Xd_ffbpaXd4VTRleFsroGKHVV24XtTGW1U72GBjoEJVVTlsooDZgvNp1RWGrtbF3ZvhEu_5X6lH0-9G5j-LVDSu067OKYV7ZKZU1SLqo6U18OlIuBKGLfbmN2EJ9aKdpXuznl2le7GZ3_hzp_MJAi-OGtQHEITH7Ap3eL29v75Z7_C-vckCU
CitedBy_id crossref_primary_10_1038_s41598_019_41398_5
crossref_primary_10_1080_1573062X_2020_1828497
crossref_primary_10_1002_ece3_6407
crossref_primary_10_1007_s00704_022_04035_2
crossref_primary_10_5194_nhess_23_205_2023
crossref_primary_10_1139_as_2023_0065
crossref_primary_10_5194_hess_24_2671_2020
crossref_primary_10_1002_eap_2240
crossref_primary_10_1002_env_2822
crossref_primary_10_7717_peerj_12055
Cites_doi 10.1017/CBO9780511754753
10.1002/joc.3711
10.1002/joc.1602
10.1111/j.1461-0248.2008.01231.x
10.1073/pnas.0404500101
10.1038/sdata.2018.16
10.5194/essd-10-595-2018
10.1029/2009JD013493
10.1175/JCLI-D-11-00408.1
10.1029/JD095iD02p01943
10.1002/joc.1276
10.18637/jss.v067.i01
10.1046/j.1523-1739.2001.015002320.x
10.1111/j.1365-2486.2008.01553.x
10.5194/essd-11-23-2019
10.1002/joc.1688
10.1175/1525-7541(2003)004<1025:TSOPAS>2.0.CO;2
10.5194/gmd-9-1937-2016
10.1289/ehp.7163
10.1657/1523-0430(2004)036[0272:GDACIT]2.0.CO;2
10.1080/07055900.2011.592130
10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2
10.1029/2009JD011775
10.1098/rsbl.2008.0476
10.1175/BAMS-87-3-343
10.1177/030913339702100403
10.1007/s00382-017-3668-z
10.5194/cp-10-1453-2014
10.1007/BF00131534
10.1890/15-0745
10.1029/2006JD007561
10.1038/srep45242
10.32614/RJ-2012-011
10.1007/s00382-015-2688-9
10.3354/cr007085
10.1029/2007GL030295
ContentType Journal Article
Copyright 2019 Royal Meteorological Society
Copyright_xml – notice: 2019 Royal Meteorological Society
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1002/joc.6005
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1097-0088
EndPage 3103
ExternalDocumentID 10_1002_joc_6005
JOC6005
Genre article
GrantInformation_xml – fundername: The University of Calgary
– fundername: Natural Sciences and Engineering Research Council of Canada
– fundername: The Canada Research Chairs Program; Canada Foundation for Innovation
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VOH
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XJT
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c2935-2b36aa4356b7bd95b3c2f3a8adea2128442923ae1099d92e433cb65bf80c44243
IEDL.DBID DR2
ISSN 0899-8418
IngestDate Fri Jul 25 08:07:00 EDT 2025
Wed Oct 01 02:20:12 EDT 2025
Thu Apr 24 22:52:28 EDT 2025
Wed Aug 20 07:27:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2935-2b36aa4356b7bd95b3c2f3a8adea2128442923ae1099d92e433cb65bf80c44243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8300-1388
0000-0002-3437-2422
PQID 2209711756
PQPubID 996368
PageCount 14
ParticipantIDs proquest_journals_2209711756
crossref_primary_10_1002_joc_6005
crossref_citationtrail_10_1002_joc_6005
wiley_primary_10_1002_joc_6005_JOC6005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of climatology
PublicationYear 2019
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2004; 101
1989; 3
1990; 95
2017; 7
1997; 21
2019; 11
2008; 14
2008
2008; 11
2007; 34
2009; 114
2005; 25
2016; 11
2004; 112
2015; 67
2007; 112
1996; 07
2018; 5
2018; 1
2006; 87
2004; 36
2010; 115
2008; 28
1999; 12
2003; 4
2018
2016
2001; 15
2015
2018; 50
2009; 5
2013
2012; 25
2011; 49
2012; 4
2018; 10
2016; 26
2014; 34
2016; 9
2016; 46
2014; 10
2007; 27
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Le Roux R. (e_1_2_6_19_1) 2018; 1
Thornton P.E. (e_1_2_6_36_1) 2016
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
IPCC (e_1_2_6_15_1) 2013
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
R Core Team (e_1_2_6_32_1) 2018
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
Wang T. (e_1_2_6_40_1) 2016; 11
e_1_2_6_26_1
References_xml – volume: 3
  start-page: 153
  year: 1989
  end-page: 162
  article-title: Effects of changing spatial scale on the analysis of landscape pattern
  publication-title: Landscape Ecology
– volume: 5
  start-page: 180016
  year: 2018
  article-title: Inter‐comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA
  publication-title: Scientific Data
– volume: 9
  start-page: 1937
  year: 2016
  end-page: 1958
  article-title: Overview of the coupled model Intercomparison project phase 6 (CMIP6) experimental design and organization
  publication-title: Geoscientific Model Development
– volume: 15
  start-page: 320
  year: 2001
  end-page: 331
  article-title: Ecological consequences of recent climate change
  publication-title: Conservation Biology
– volume: 07
  start-page: 85
  year: 1996
  end-page: 95
  article-title: Climate downscaling: techniques and application
  publication-title: Climate Research
– volume: 4
  start-page: 1025
  year: 2003
  end-page: 1043
  article-title: The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain
  publication-title: Journal of Hydrometeorology
– volume: 25
  start-page: 4366
  year: 2012
  end-page: 4388
  article-title: Downscaling extremes—an Intercomparison of multiple statistical methods for present climate
  publication-title: Journal of Climate
– volume: 112
  start-page: D11124
  year: 2007
  article-title: Surface temperature patterns in complex terrain: daily variations and long‐term change in the central Sierra Nevada, California
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 21
  start-page: 530
  year: 1997
  end-page: 548
  article-title: Downscaling general circulation model output: a review of methods and limitations
  publication-title: Progress in Physical Geography: Earth and Environment
– volume: 34
  start-page: 623
  year: 2014
  end-page: 642
  article-title: Updated high‐resolution grids of monthly climatic observations—the CRU TS3.10 dataset
  publication-title: International Journal of Climatology
– volume: 10
  start-page: 1453
  year: 2014
  end-page: 1471
  article-title: Evolution of the large‐scale atmospheric circulation in response to changing ice sheets over the last glacial cycle
  publication-title: Climate of the Past
– volume: 101
  start-page: 12422
  year: 2004
  end-page: 12427
  article-title: Emissions pathways, climate change, and impacts on California
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 87
  start-page: 343
  year: 2006
  end-page: 360
  article-title: North American regional reanalysis
  publication-title: Bulletin of the American Meteorological Society
– volume: 67
  start-page: 1
  year: 2015
  end-page: 48
  article-title: Fitting linear mixed‐effects models using lme4
  publication-title: Journal of Statistical Software
– volume: 26
  start-page: 1321
  year: 2016
  end-page: 1337
  article-title: The effects of climate downscaling technique and observational data set on modeled ecological responses
  publication-title: Ecological Applications
– volume: 112
  start-page: 1557
  year: 2004
  end-page: 1563
  article-title: Assessing ozone‐related health impacts under a changing climate
  publication-title: Environmental Health Perspectives
– year: 2016
– volume: 115
  start-page: D14122
  year: 2010
  article-title: Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains
  publication-title: Journal of Geophysical Research: Atmospheres
– year: 2018
– volume: 11
  start-page: 23
  issue: 1
  year: 2019
  end-page: 34
  article-title: Daily measurements of near‐surface humidity from a mesonet in the foothills of the Canadian Rocky Mountains, 2005–2010
  publication-title: Earth System Science Data
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 12
  start-page: 829
  year: 1999
  end-page: 856
  article-title: Representing twentieth‐century space–time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology
  publication-title: Journal of Climate
– volume: 95
  start-page: 1943
  year: 1990
  end-page: 1953
  article-title: Obtaining sub‐grid‐scale information from coarse‐resolution general circulation model output
  publication-title: Journal of Geophysical Research—Atmospheres
– volume: 114
  year: 2009
  article-title: Calculating distributed glacier mass balance for the Swiss Alps from regional climate model output: a methodical description and interpretation of the results
  publication-title: Journal of Geophysical Research—Atmospheres
– volume: 34
  year: 2007
  article-title: A general method for validating statistical downscaling methods under future climate change
  publication-title: Geophysical Research Letters
– volume: 11
  year: 2016
  article-title: Locally downscaled and spatially customizable climate data for historical and future periods for North America
  publication-title: PLoS One
– volume: 27
  start-page: 1643
  year: 2007
  end-page: 1655
  article-title: Statistical and dynamical downscaling of the Seine basin climate for hydro‐meteorological studies
  publication-title: International Journal of Climatology
– volume: 36
  start-page: 272
  year: 2004
  end-page: 279
  article-title: Glacier distributions and climate in the Canadian Rockies
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 28
  start-page: 2031
  year: 2008
  end-page: 2064
  article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States
  publication-title: International Journal of Climatology
– volume: 14
  start-page: 1089
  year: 2008
  end-page: 1103
  article-title: Spatial scale affects bioclimate model projections of climate change impacts on mountain plants
  publication-title: Global Change Biology
– volume: 11
  start-page: 1135
  year: 2008
  end-page: 1146
  article-title: Why is the choice of future climate scenarios for species distribution modelling important?
  publication-title: Ecology Letters
– volume: 1
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Analysis of spatio‐temporal bias of Weather Research and Forecasting temperatures based on weather pattern classification
  publication-title: International Journal of Climatology
– volume: 7
  start-page: srep45242
  year: 2017
  article-title: Influence of anthropogenic climate change on planetary wave resonance and extreme weather events
  publication-title: Scientific Reports
– volume: 4
  start-page: 38
  year: 2012
  end-page: 47
  article-title: influence.ME: tools for detecting influential data in mixed effects models
  publication-title: The R Journal
– volume: 10
  start-page: 595
  issue: 1
  year: 2018
  end-page: 607
  article-title: Daily temperature records from a mesonet in the foothills of the Canadian Rocky Mountains, 2005‐2010
  publication-title: Earth System Science Data
– year: 2008
– volume: 50
  start-page: 1161
  year: 2018
  end-page: 1176
  article-title: Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?
  publication-title: Climate Dynamics
– volume: 46
  start-page: 1991
  year: 2016
  end-page: 2023
  article-title: Credibility of statistical downscaling under nonstationary climate
  publication-title: Climate Dynamics
– volume: 5
  start-page: 39
  year: 2009
  end-page: 43
  article-title: Scale effects in species distribution models: implications for conservation planning under climate change
  publication-title: Biology Letters
– volume: 49
  start-page: 189
  year: 2011
  end-page: 205
  article-title: Mesoscale temperature patterns in the Rocky Mountains and Foothills region of southern Alberta
  publication-title: Atmosphere‐Ocean
– year: 2015
– year: 2013
– ident: e_1_2_6_2_1
  doi: 10.1017/CBO9780511754753
– ident: e_1_2_6_11_1
  doi: 10.1002/joc.3711
– ident: e_1_2_6_6_1
  doi: 10.1002/joc.1602
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1461-0248.2008.01231.x
– ident: e_1_2_6_12_1
  doi: 10.1073/pnas.0404500101
– volume-title: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_6_15_1
– ident: e_1_2_6_16_1
  doi: 10.1038/sdata.2018.16
– ident: e_1_2_6_18_1
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2018
  ident: e_1_2_6_32_1
– ident: e_1_2_6_44_1
  doi: 10.5194/essd-10-595-2018
– ident: e_1_2_6_28_1
  doi: 10.1029/2009JD013493
– ident: e_1_2_6_7_1
  doi: 10.1175/JCLI-D-11-00408.1
– volume-title: Daymet: Daily Surface Weather Data on a 1‐km Grid for North America, Version 3
  year: 2016
  ident: e_1_2_6_36_1
– ident: e_1_2_6_41_1
  doi: 10.1029/JD095iD02p01943
– ident: e_1_2_6_14_1
  doi: 10.1002/joc.1276
– ident: e_1_2_6_4_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_6_26_1
  doi: 10.1046/j.1523-1739.2001.015002320.x
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1365-2486.2008.01553.x
– ident: e_1_2_6_43_1
  doi: 10.5194/essd-11-23-2019
– ident: e_1_2_6_9_1
  doi: 10.1002/joc.1688
– ident: e_1_2_6_20_1
  doi: 10.1175/1525-7541(2003)004<1025:TSOPAS>2.0.CO;2
– ident: e_1_2_6_10_1
  doi: 10.5194/gmd-9-1937-2016
– ident: e_1_2_6_17_1
  doi: 10.1289/ehp.7163
– volume: 1
  start-page: 1
  year: 2018
  ident: e_1_2_6_19_1
  article-title: Analysis of spatio‐temporal bias of Weather Research and Forecasting temperatures based on weather pattern classification
  publication-title: International Journal of Climatology
– ident: e_1_2_6_35_1
  doi: 10.1657/1523-0430(2004)036[0272:GDACIT]2.0.CO;2
– ident: e_1_2_6_8_1
  doi: 10.1080/07055900.2011.592130
– ident: e_1_2_6_29_1
  doi: 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2
– ident: e_1_2_6_23_1
  doi: 10.1029/2009JD011775
– ident: e_1_2_6_34_1
  doi: 10.1098/rsbl.2008.0476
– ident: e_1_2_6_27_1
  doi: 10.1175/BAMS-87-3-343
– ident: e_1_2_6_42_1
  doi: 10.1177/030913339702100403
– ident: e_1_2_6_25_1
  doi: 10.1007/s00382-017-3668-z
– ident: e_1_2_6_21_1
  doi: 10.5194/cp-10-1453-2014
– ident: e_1_2_6_38_1
  doi: 10.1007/BF00131534
– ident: e_1_2_6_31_1
  doi: 10.1890/15-0745
– ident: e_1_2_6_22_1
  doi: 10.1029/2006JD007561
– ident: e_1_2_6_3_1
– ident: e_1_2_6_24_1
  doi: 10.1038/srep45242
– ident: e_1_2_6_30_1
  doi: 10.32614/RJ-2012-011
– ident: e_1_2_6_33_1
  doi: 10.1007/s00382-015-2688-9
– ident: e_1_2_6_13_1
  doi: 10.3354/cr007085
– volume: 11
  year: 2016
  ident: e_1_2_6_40_1
  article-title: Locally downscaled and spatially customizable climate data for historical and future periods for North America
  publication-title: PLoS One
– ident: e_1_2_6_39_1
  doi: 10.1029/2007GL030295
SSID ssj0009916
Score 2.3343337
Snippet Ecological analyses often incorporate high‐resolution environmental data to capture species‐environment relationships in modelling applications, and downscaled...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3091
SubjectTerms Accuracy
Agricultural land
Algorithms
Bias
bias correction
Climate change
Climate models
Climatic data
Data processing
Ecological models
Ecological monitoring
Environment models
Environmental assessment
Foothills
Humidity
lapse rate
Mathematical models
mesonet
Modelling
Mountains
Prairies
Products
Regression analysis
Resolution
Rocky Mountains
Slope
Temperature
topography
validation
Weather
Weather stations
Title Assessments of downscaled climate data with a high‐resolution weather station network reveal consistent but predictable bias
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.6005
https://www.proquest.com/docview/2209711756
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0899-8418
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0088
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009916
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS-NAEF_Ep3vx_inW02MOxHtK3W7SbfIo5aQUVJATCj6E_RdQSypNysE9iB_Bz-gncWY3aVVOkHsKIbNkszuT_c3s7G8Y28-IcsQptLRUJ1EilIlSmdjIFVxbxbntGYp3nJzK0UUynvQnTVYlnYUJ_BDLgBtZhv9fk4ErXR2uSEOvZ6YrA31pL5bemzpfMUcR7PEAMsuiNOmlLe8sF4dtw5cr0QpePgepfpU5_sgu2_6F5JKb7qLWXfP3FXXj_33AJ7bRgE84Ctryma258gvrnCBuns19eB0OYDi9QhDr776yu6MlcWcFswIsxaJxVp0F4-UcUIopUDQXFBD38eP9A3rwjULDn4AwoQo7_lCGrHMg4ijsiaH0XNSzsga9qOF2TttGNZ3mAn2lqk12cfzr93AUNRUbIoOwoR8JHUulEIFJPdA26-vYiCJWqbKoDrQSUnGsWDnajrOZcEkcGy37uki5wWdJvMXWy1npthlwqXkhEnS4fJU0pQZWo-9WcGdkJgTvsJ_t7OWmoTOnqhrTPBAxixzHN6fx7bAfS8nbQOHxD5ndVgHyxoirHN-SDYjKVHbYgZ_JN9vn47MhXXfeK_iNfUDolYXUyV22Xs8Xbg_hTa2_e0V-AtfC-l4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhObSXJk1buknaTqGkJ28UWau16SksDZs0m0JJIIeC0Z8hP3jDrpdADiGPkGfMk3RGsnfb0kLpyRiPsCzNWN-MRt8w9iEnyhGv0dIyIxMptE0yJV3iS26c5tztWop3jI7V8FQenvXOltin9ixM5IeYB9zIMsL_mgycAtI7C9bQi7HtqsBfuiIVuimEiL4tuKMI-AQImedJJnezlnmWi5225a9r0QJg_gxTwzqzv8q-tz2M6SWX3Vltuvb2N_LG__yENfaswZ-wFxXmOVvy1TrrjBA6jychwg7bMLg6Rxwb7l6wu705d-cUxiU4CkfjxHoHNsh5oCxToIAuaCD648f7B3TiG52GmwgyYRo3_aGKiedA3FHYE0sZuqhqVQ1mVsP1hHaOajrQBeZcT1-y0_3PJ4Nh0hRtSCwih14iTKq0RhCmTN-4vGdSK8pUZ9qhRtBiSPWxUu1pR87lwss0tUb1TJlxi89k-ootV-PKv2bAleGlkOhzhUJpWvedQfet5N6qXAjeYR_b6Stsw2hOhTWuisjFLAoc34LGt8PezyWvI4vHH2S2Wg0oGjueFviWvE9spqrDtsNU_rV9cfh1QNeNfxV8x54MT0ZHxdHB8ZdN9hSRWB4zKbfYcj2Z-TeIdmrzNmj1D3ku_n8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEB9KBfHF_-Jp1RGkPu01zWZzG3wqV49abRWx0Adhyb-Fatk77vYQfBA_gp-xn6SZZPdORUF8WpadsNlkZvObyeQ3AM8UUY54HSytNCITXNuslMJlvmbGacbcrqV4x9GxPDgRh6fF6Qa86M_CJH6IVcCNLCP-r8nA_czVO2vW0E9TO5SRv_SKKFRJ-Xz779fcUQR8IoRUKivFbtkzzzK-07f8dS1aA8yfYWpcZyY34GPfw5Re8nm4bM3Qfv2NvPE_P-EmXO_wJ-4lhbkFG765DYOjAJ2n8xhhx20cn58FHBvv7sC3vRV35wKnNToKR4eJ9Q5tlPNIWaZIAV3USPTHF99_BCe-02n8kkAmLtKmPzYp8RyJOyr0xFKGblC1pkWzbHE2p52jlg50oTnTi7twMnn5YXyQdUUbMhuQQ5Fxk0utAwiTZmScKkxueZ3rUrugEbQYUn2sXHvakXOKe5Hn1sjC1CWz4ZnI78FmM238fUAmDau5CD5XLJSm9ciZ4L7VzFupOGcDeN5PX2U7RnMqrHFeJS5mXoXxrWh8B_B0JTlLLB5_kNnqNaDq7HhRhbeoEbGZygFsx6n8a_vq8O2Yrg_-VfAJXH23P6nevDp-_RCuBSCmUiLlFmy286V_FMBOax5Hpb4EJHz-Aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessments+of+downscaled+climate+data+with+a+high%E2%80%90resolution+weather+station+network+reveal+consistent+but+predictable+bias&rft.jtitle=International+journal+of+climatology&rft.au=Roberts%2C+David+R.&rft.au=Wood%2C+Wendy+H.&rft.au=Marshall%2C+Shawn+J.&rft.date=2019-05-01&rft.issn=0899-8418&rft.eissn=1097-0088&rft.volume=39&rft.issue=6&rft.spage=3091&rft.epage=3103&rft_id=info:doi/10.1002%2Fjoc.6005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_joc_6005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-8418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-8418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-8418&client=summon