Detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) Archimedes optimization algorithm using ultra‐low‐dose CT images

SUMMARY In this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm (AOA) using ultra‐low‐dose CT (ULDCT) images is proposed. Here, the ultra‐low‐dose CT images are gathered via real time dataset. The input i...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 35; no. 21
Main Authors Kannan, G., K, Karunambiga, Sathish Kumar, P. J., Shajin, Francis H.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 25.09.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.7705

Cover

Abstract SUMMARY In this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm (AOA) using ultra‐low‐dose CT (ULDCT) images is proposed. Here, the ultra‐low‐dose CT images are gathered via real time dataset. The input images are preprocessed with the help of convolutional auto‐encoder to recover the ULDCT images quality by removing noises. The preprocessed images are given to generalized additive models with structured interactions (GAMI) for extracting the radiomic features. The radiomic features, such as morphologic, gray scale statistic, Haralick texture are extracted using GAMI‐Net. The ASRNN classifier, whose weight parameters optimized with Archimedes optimization algorithm enables COVID‐19 ULDCT images classification as COVID‐19 or normal. The proposed approach is activated in MATLAB platform. The proposed ASRNN‐AOA‐ULDCT attains accuracy 22.08%, 24.03%, 34.76%, 34.65%, 26.89%, 45.86%, and 32.14%; precision 23.34%, 26.45%, 34.98%, 27.06%, 35.87%, 34.44%, and 22.36% better than the existing methods, such as DenseNet‐HHO‐ULDCT, ELM‐DNN‐ULDCT, EDL‐ULDCT, ResNet 50‐ULDCT, SDL‐ULDCT, CNN‐ULDCT, and DRNN‐ULDCT, respectively.
AbstractList SUMMARY In this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm (AOA) using ultra‐low‐dose CT (ULDCT) images is proposed. Here, the ultra‐low‐dose CT images are gathered via real time dataset. The input images are preprocessed with the help of convolutional auto‐encoder to recover the ULDCT images quality by removing noises. The preprocessed images are given to generalized additive models with structured interactions (GAMI) for extracting the radiomic features. The radiomic features, such as morphologic, gray scale statistic, Haralick texture are extracted using GAMI‐Net. The ASRNN classifier, whose weight parameters optimized with Archimedes optimization algorithm enables COVID‐19 ULDCT images classification as COVID‐19 or normal. The proposed approach is activated in MATLAB platform. The proposed ASRNN‐AOA‐ULDCT attains accuracy 22.08%, 24.03%, 34.76%, 34.65%, 26.89%, 45.86%, and 32.14%; precision 23.34%, 26.45%, 34.98%, 27.06%, 35.87%, 34.44%, and 22.36% better than the existing methods, such as DenseNet‐HHO‐ULDCT, ELM‐DNN‐ULDCT, EDL‐ULDCT, ResNet 50‐ULDCT, SDL‐ULDCT, CNN‐ULDCT, and DRNN‐ULDCT, respectively.
In this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm (AOA) using ultra‐low‐dose CT (ULDCT) images is proposed. Here, the ultra‐low‐dose CT images are gathered via real time dataset. The input images are preprocessed with the help of convolutional auto‐encoder to recover the ULDCT images quality by removing noises. The preprocessed images are given to generalized additive models with structured interactions (GAMI) for extracting the radiomic features. The radiomic features, such as morphologic, gray scale statistic, Haralick texture are extracted using GAMI‐Net. The ASRNN classifier, whose weight parameters optimized with Archimedes optimization algorithm enables COVID‐19 ULDCT images classification as COVID‐19 or normal. The proposed approach is activated in MATLAB platform. The proposed ASRNN‐AOA‐ULDCT attains accuracy 22.08%, 24.03%, 34.76%, 34.65%, 26.89%, 45.86%, and 32.14%; precision 23.34%, 26.45%, 34.98%, 27.06%, 35.87%, 34.44%, and 22.36% better than the existing methods, such as DenseNet‐HHO‐ULDCT, ELM‐DNN‐ULDCT, EDL‐ULDCT, ResNet 50‐ULDCT, SDL‐ULDCT, CNN‐ULDCT, and DRNN‐ULDCT, respectively.
SUMMARYIn this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm (AOA) using ultra‐low‐dose CT (ULDCT) images is proposed. Here, the ultra‐low‐dose CT images are gathered via real time dataset. The input images are preprocessed with the help of convolutional auto‐encoder to recover the ULDCT images quality by removing noises. The preprocessed images are given to generalized additive models with structured interactions (GAMI) for extracting the radiomic features. The radiomic features, such as morphologic, gray scale statistic, Haralick texture are extracted using GAMI‐Net. The ASRNN classifier, whose weight parameters optimized with Archimedes optimization algorithm enables COVID‐19 ULDCT images classification as COVID‐19 or normal. The proposed approach is activated in MATLAB platform. The proposed ASRNN‐AOA‐ULDCT attains accuracy 22.08%, 24.03%, 34.76%, 34.65%, 26.89%, 45.86%, and 32.14%; precision 23.34%, 26.45%, 34.98%, 27.06%, 35.87%, 34.44%, and 22.36% better than the existing methods, such as DenseNet‐HHO‐ULDCT, ELM‐DNN‐ULDCT, EDL‐ULDCT, ResNet 50‐ULDCT, SDL‐ULDCT, CNN‐ULDCT, and DRNN‐ULDCT, respectively.
Author Sathish Kumar, P. J.
Shajin, Francis H.
Kannan, G.
K, Karunambiga
Author_xml – sequence: 1
  givenname: G.
  orcidid: 0000-0003-4078-1473
  surname: Kannan
  fullname: Kannan, G.
  email: ganesankannan777@gmail.com
  organization: Amrita College of Engineering and Technology
– sequence: 2
  givenname: Karunambiga
  surname: K
  fullname: K, Karunambiga
  organization: Karpagam Institute of Technology
– sequence: 3
  givenname: P. J.
  surname: Sathish Kumar
  fullname: Sathish Kumar, P. J.
  organization: Panimalar Engineering College
– sequence: 4
  givenname: Francis H.
  surname: Shajin
  fullname: Shajin, Francis H.
  organization: Anna University
BookMark eNp1kUtOwzAURS0EEl-JJVhiAoMUfxonGVahfCQEiN80cp2XYkjiYDuqYMQSWANLYyW4LWKAYGI_2-fd56u7iVZb0wJCu5QMKCHsUHUwSBISr6ANGnMWEcGHqz81E-to07lHQiglnG6gjyPwoLw2LTYVzi_vz44-395phjvpNbQeT6SDEodn6X04z0EH0yaUssYWVG_tHGuht-GiBT8z9gnvj26uLy4O8MiqB91ACQ6bzutGv8qFhKynxmr_0ODe6XaK-9pbGQbXZhbW0jjA-S3WjZyC20Zrlawd7HzvW-jueHybn0bnlydn-eg8UizjccSCOcIhSzJGSsbTOJuUGU1TVbJKJlXFWSpoyZKhECpRIDihcawmQgiqsmEq-BbaW-p21jz34HzxaHrbhpEFS-M44ZzTJFD7S0pZ45yFquhs-Kd9KSgp5gkUIYFinkBAB79Qpf3CfzCr678aomXDTNfw8q9wkV-NF_wXez2cbA
CitedBy_id crossref_primary_10_1016_j_imj_2024_100095
crossref_primary_10_1080_03772063_2023_2233465
crossref_primary_10_1016_j_bspc_2024_106146
Cites_doi 10.1080/22221751.2020.1744483
10.1002/jmv.25827
10.1016/j.irbm.2021.01.004
10.1007/s11655-020-3192-6
10.1016/j.compbiomed.2021.104306
10.1142/S0218126622500931
10.1016/j.ajp.2020.102053
10.1007/s15010-020-01432-5
10.1016/j.ejphar.2020.173381
10.1016/j.patcog.2021.108192
10.1007/s00330-020-07225-6
10.1007/s40745-020-00289-7
10.1007/s10489-020-01893-z
10.1002/jnm.3019
10.1016/j.asoc.2021.107698
10.1007/s00034-021-01850-2
10.1080/15567036.2021.1986606
10.1016/j.ajp.2020.102111
10.1007/s12664-020-01075-2
10.1109/NSS/MIC44867.2021.9875557
10.1016/j.heliyon.2017.e00393
10.1007/s00330-021-07715-1
10.1016/j.chaos.2020.110286
10.1016/j.knosys.2020.106548
10.1007/s10140-020-01886-y
10.1016/j.jcv.2020.104371
10.1016/j.mayocp.2020.05.013
10.1080/09720529.2020.1784535
10.1016/j.asoc.2020.106885
10.1016/j.phrs.2020.104896
ContentType Journal Article
Copyright 2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.7705
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_7705
CPE7705
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2935-262603e97920d23859bd9188cd2fa7ff32861d27466c7ce630155cb6661c94863
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Wed Aug 13 09:21:57 EDT 2025
Wed Oct 01 03:13:35 EDT 2025
Thu Apr 24 22:58:11 EDT 2025
Wed Jan 22 16:17:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2935-262603e97920d23859bd9188cd2fa7ff32861d27466c7ce630155cb6661c94863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4078-1473
PQID 2855733317
PQPubID 2045170
PageCount 18
ParticipantIDs proquest_journals_2855733317
crossref_primary_10_1002_cpe_7705
crossref_citationtrail_10_1002_cpe_7705
wiley_primary_10_1002_cpe_7705_CPE7705
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 September 2023
PublicationDateYYYYMMDD 2023-09-25
PublicationDate_xml – month: 09
  year: 2023
  text: 25 September 2023
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 42
2017; 3
2020; 141
2021; 28
2020; 39
2020; 127
2022; 41
2021; 120
2020; 884
2021; 51
2020; 7
2021; 98
2021; 31
2021; 212
2020; 95
2020; 51
2021
2020; 92
2020; 9
2022; 35
2020; 48
2020; 26
2022; 31
2020; 23
2021; 111
2020; 158
2021; 132
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Rajesh P (e_1_2_8_14_1) 2021
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 92
  start-page: 841
  issue: 7
  year: 2020
  end-page: 848
  article-title: The effectiveness of quarantine of Wuhan city against the Corona virus disease 2019 (COVID‐19): a well‐mixed SEIR model analysis
  publication-title: J Med Virol
– volume: 51
  start-page: 1531
  issue: 3
  year: 2021
  end-page: 1551
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl Intell
– volume: 111
  year: 2021
  article-title: Harris hawks optimisation with simulated annealing as a deep feature selection method for screening of COVID‐19 CT‐scans
  publication-title: Appl Soft Comput
– volume: 42
  start-page: 207
  issue: 4
  year: 2021
  end-page: 214
  article-title: COVID‐19 detection system using chest CT images and multiple kernels‐extreme learning machine based on deep neural network
  publication-title: IRBM
– volume: 23
  start-page: 1583
  issue: 8
  year: 2020
  end-page: 1597
  article-title: Prediction of COVID‐19 corona virus pandemic based on time series data using support vector machine
  publication-title: J Discret Math Sci Cryptogr
– start-page: 1
  year: 2021
  end-page: 2
– volume: 212
  year: 2021
  article-title: ASRNN: a recurrent neural network with an attention model for sequence labeling
  publication-title: Knowl‐Based Syst
– volume: 884
  year: 2020
  article-title: OUTBREAK of novel corona virus disease (COVID‐19): antecedence and aftermath
  publication-title: Eur J Pharmacol
– volume: 98
  year: 2021
  article-title: The ensemble deep learning model for novel COVID‐19 on CT images
  publication-title: Appl Soft Comput
– volume: 31
  start-page: 6096
  year: 2021
  end-page: 6104
  article-title: A deep learning algorithm using CT images to screen for Corona virus disease (COVID‐19)
  publication-title: Eur Radiol
– volume: 28
  start-page: 497
  issue: 3
  year: 2021
  end-page: 505
  article-title: Diagnosis of COVID‐19 using CT scan images and deep learning techniques
  publication-title: Emerg Radiol
– volume: 3
  issue: 8
  year: 2017
  article-title: Convolutional auto‐encoder for image denoising of ultra‐low‐dose CT
  publication-title: Heliyon
– volume: 48
  start-page: 543
  issue: 4
  year: 2020
  end-page: 551
  article-title: Clinical characteristics of 145 patients with corona virus disease 2019 (COVID‐19) in Taizhou, Zhejiang, China
  publication-title: Infection
– volume: 41
  start-page: 1751
  issue: 3
  year: 2022
  end-page: 1774
  article-title: An efficient VLSI architecture for fast motion estimation exploiting zero motion prejudgment technique and a new quadrant‐based search algorithm in HEVC
  publication-title: Circuits Syst Signal Process
– volume: 39
  start-page: 220
  year: 2020
  end-page: 231
  article-title: Corona virus disease‐19 pandemic: the gastroenterologists' perspective
  publication-title: Indian J Gastroenterol
– volume: 9
  start-page: 707
  issue: 1
  year: 2020
  end-page: 713
  article-title: The different clinical characteristics of corona virus disease cases between children and their families in China–the character of children with COVID‐19
  publication-title: Emerg Microbes Infect
– volume: 51
  year: 2020
  article-title: Dealing with Corona virus anxiety and OCD
  publication-title: Asian J Psychiatr
– volume: 7
  start-page: 417
  year: 2020
  end-page: 425
  article-title: Monitoring novel corona virus (COVID‐19) infections in India by cluster analysis
  publication-title: Ann Data Sci
– volume: 158
  year: 2020
  article-title: Efficacy and safety of integrated traditional Chinese and Western medicine for Corona virus disease 2019 (COVID‐19): a systematic review and meta‐analysis
  publication-title: Pharmacol Res
– volume: 31
  start-page: 1420
  issue: 3
  year: 2021
  end-page: 1431
  article-title: Ultra‐low‐dose chest CT imaging of COVID‐19 patients using a deep residual neural network
  publication-title: Eur Radiol
– volume: 31
  issue: 5
  year: 2022
  article-title: FPGA realization of a reversible data hiding scheme for 5G MIMO‐OFDM system by chaotic key generation‐based paillier cryptography along with LDPC and its side channel estimation using machine learning technique
  publication-title: J Circuits Syst Comput
– volume: 95
  start-page: 1710
  issue: 8
  year: 2020
  end-page: 1714
  article-title: Sex hormones and novel corona virus infectious disease (COVID‐19)
  publication-title: Mayo Clin Proc
– volume: 35
  year: 2022
  article-title: An optimal hybrid control scheme to achieve power quality enhancement in micro grid connected system
  publication-title: Int J Numer Model
– start-page: 1
  year: 2021
  end-page: 9
  article-title: Diminishing energy consumption cost and optimal energy management of photovoltaic aided electric vehicle (PV‐EV) by GFO‐VITG approach
  publication-title: Energy Sources A
– volume: 51
  year: 2020
  article-title: A cross‐sectional study on mental health among health care workers during the outbreak of Corona virus disease 2019
  publication-title: Asian J Psychiatr
– volume: 141
  year: 2020
  article-title: Mathematical analysis of spread and control of the novel corona virus (COVID‐19) in China
  publication-title: Chaos Solitons Fractals
– volume: 120
  year: 2021
  article-title: GAMI‐net: an explainable neural network based on generalized additive models with structured interactions
  publication-title: Pattern Recognit
– volume: 26
  start-page: 243
  issue: 4
  year: 2020
  end-page: 250
  article-title: Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID‐19)? A review of historical classics, research evidence and current prevention programs
  publication-title: Chin J Integr Med
– volume: 132
  year: 2021
  article-title: Deep learning for diagnosis of COVID‐19 using 3D CT scans
  publication-title: Comput Biol Med
– volume: 127
  year: 2020
  article-title: Prevalence and severity of corona virus disease 2019 (COVID‐19): a systematic review and meta‐analysis
  publication-title: J Clin Virol
– ident: e_1_2_8_3_1
  doi: 10.1080/22221751.2020.1744483
– ident: e_1_2_8_7_1
  doi: 10.1002/jmv.25827
– ident: e_1_2_8_23_1
  doi: 10.1016/j.irbm.2021.01.004
– ident: e_1_2_8_11_1
  doi: 10.1007/s11655-020-3192-6
– ident: e_1_2_8_25_1
  doi: 10.1016/j.compbiomed.2021.104306
– ident: e_1_2_8_15_1
  doi: 10.1142/S0218126622500931
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ajp.2020.102053
– ident: e_1_2_8_9_1
  doi: 10.1007/s15010-020-01432-5
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ejphar.2020.173381
– ident: e_1_2_8_29_1
  doi: 10.1016/j.patcog.2021.108192
– ident: e_1_2_8_21_1
  doi: 10.1007/s00330-020-07225-6
– ident: e_1_2_8_18_1
  doi: 10.1007/s40745-020-00289-7
– ident: e_1_2_8_31_1
  doi: 10.1007/s10489-020-01893-z
– ident: e_1_2_8_12_1
  doi: 10.1002/jnm.3019
– ident: e_1_2_8_22_1
  doi: 10.1016/j.asoc.2021.107698
– ident: e_1_2_8_13_1
  doi: 10.1007/s00034-021-01850-2
– start-page: 1
  year: 2021
  ident: e_1_2_8_14_1
  article-title: Diminishing energy consumption cost and optimal energy management of photovoltaic aided electric vehicle (PV‐EV) by GFO‐VITG approach
  publication-title: Energy Sources A
  doi: 10.1080/15567036.2021.1986606
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ajp.2020.102111
– ident: e_1_2_8_19_1
  doi: 10.1007/s12664-020-01075-2
– ident: e_1_2_8_26_1
  doi: 10.1109/NSS/MIC44867.2021.9875557
– ident: e_1_2_8_28_1
  doi: 10.1016/j.heliyon.2017.e00393
– ident: e_1_2_8_4_1
  doi: 10.1007/s00330-021-07715-1
– ident: e_1_2_8_10_1
  doi: 10.1016/j.chaos.2020.110286
– ident: e_1_2_8_30_1
  doi: 10.1016/j.knosys.2020.106548
– ident: e_1_2_8_27_1
  doi: 10.1007/s10140-020-01886-y
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jcv.2020.104371
– ident: e_1_2_8_6_1
  doi: 10.1016/j.mayocp.2020.05.013
– ident: e_1_2_8_16_1
  doi: 10.1080/09720529.2020.1784535
– ident: e_1_2_8_24_1
  doi: 10.1016/j.asoc.2020.106885
– ident: e_1_2_8_5_1
  doi: 10.1016/j.phrs.2020.104896
SSID ssj0011031
Score 2.3695014
Snippet SUMMARY In this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm...
In this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm (AOA)...
SUMMARYIn this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Archimedes optimization algorithm (AOA)
attention segmental recurrent neural network (ASRNN)
Coders
Computed tomography
convolutional auto‐encoder (CAE)
COVID-19
generalized additive models with structured interactions (GAMI)
Image classification
Image quality
Neural networks
Optimization
Optimization algorithms
Radiomics
Recurrent neural networks
ultra‐low‐dose CT images
Title Detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) Archimedes optimization algorithm using ultra‐low‐dose CT images
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7705
https://www.proquest.com/docview/2855733317
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: ADMLS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELWqnri0FIpYKGiQUIFDtomdOPGx2rYqSF1QaVElDpHjOEvV3aTaZIXEqZ_Qb-in9UuYcZItIJAqLkkU20piz3jeOOM3jL1WqvBVnEce_ePyQptoT5lIeznKstZa8iKi_c5HY3l4Gn44i866qEraC9PyQywX3Egz3HxNCq6zeueONNRc2mEcO_rSQEjnTR0vmaMCyl7QUqVyz0fQ3vPO-nynb_i7JbqDl7-CVGdlDtbZ1_792uCSi-GiyYbmxx_Ujf_3AQ_ZWgc-YbeVlg22YstHbL1P7ACdnj9mN3u2cSFaJVQFjD5-eb93e3UdKOhYWIFsXw5YTOycLl4Sajtp8wTAnJbwifQJiCwTb5RtqDm83f18PB6_A8d2i1bY1lDhjDXrtoKCnk6q-XnzbQYUjT-BxbSZa3zwtPqOx7yqLYxO4HyGU2C9yU4P9k9Gh16XzMEziCgokg49J2FVrLifI06IVJarIElMzgsdF4XgiQxy9JGlNLGxUhCYMxl6V4FRYSLFE7ZaVqV9ysBaBBba8EBgiQ5jXYhQiti3wsdLYwfsTT-wqemYzinhxjRtOZp5il2fUtcP2KtlzcuW3eMvdbZ62Ug7_a5TnkREJInga8C23SD_s306-rRP52f3rficPaCc9hSUwqMtttrMF_YFIp8me-lk_Cc2dwQQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5V5QAXWv7E0gKDhPg5ZJs4iROLU7VttYV2QWWLekCKvI6zVOwm1SYrJE48As_Ao_EkzORnCwgkxCWJYltJ7BnPN874G4DHSmWuitLQ4X9cTmBj7SgTaiclWdZaS5GFvN_5eCSHp8HLs_BsDV50e2EafojVghtrRj1fs4LzgvTOJWuoubD9KGL-0iuBJDeFEdHJijvK4_wFDVmqcFyC7R3zrCt2upa_2qJLgPkzTK3tzMEGvO_esAkv-dhfVpO--fwbeeN_fsImXG_xJ-42AnMD1mx-Eza63A7Yqvot-LZnqzpKK8ciw8Hrd4d737989RS2RKzI5i9FKmaCzjpkEks7bVIF4IJX8Zn3CZkvk27kTbQ5Ptt9ezIaPcea8JYMsS2xoElr3u4GRT2bFovz6sMcOSB_istZtdD04FnxiY5pUVocjPF8TrNgeRtOD_bHg6HT5nNwDIEKDqYj58m3KlLCTQkqhGqSKi-OTSoyHWWZL2LppeQmS2kiY6XPeM5MyMHyjApi6d-B9bzI7V1AawlbaCM8n0p0EOnMD6QfudZ36dLYHjztRjYxLdk559yYJQ1Ns0io6xPu-h48WtW8aAg-_lBnuxOOpFXxMhFxyFyShL968KQe5b-2TwZv9vl8718rPoSrw_HxUXJ0OHq1Bdc4xT3HqIhwG9arxdLeJyBUTR7UAv8Da5gIMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1VRUK8UK5iocAgIS4P2SbO1eKp2u2q5bJUpUV9qBR5bWep2E1Wm6yQeOIT-AY-jS9hJpctIJAQL0kU20pijz3HzvEZgMdSZq6MTejwPy4nsIlypA6VY8iWlVKRyELe7_xmHO2fBC9Pw9MNeNHthWn0IdYLbtwz6vGaO7hdmGznQjVUL2w_jlm_9FIQyoT5fMOjtXaUx_ELGrFU4bgE2zvlWVfsdCV_9UUXAPNnmFr7mdEWnHVv2NBLPvZX1aSvP_8m3vifn3ANrrb4E3cbg7kOGza_AVtdbAdsu_pN-Da0Vc3SyrHIcPD2_cHw-5evnsRWiBXZ_RmkZBborCmTWNppEyoAl7yKz7pPyHqZdCNv2Ob4bPfd0Xj8HGvBW3LEtsSCBq15uxsU1WxaLM-rD3NkQv4UV7NqqejBs-ITHU1RWhwc4_mcRsHyFpyM9o4H-04bz8HRBCqYTEeTJ9_KWArXEFQI5cRIL0m0EZmKs8wXSeQZmiZHkY61jXzGc3pCEyxPyyCJ_NuwmRe5vQNoLWELpYXnU4oKYpX5QeTHrvVdutS2B0-7lk11K3bOMTdmaSPTLFKq-pSrvgeP1jkXjcDHH_Jsd8aRtl28TEUSspYk4a8ePKlb-a_l08HhHp_v_mvGh3D5cDhKXx-MX92DKxzhnikqItyGzWq5svcJB1WTB7W9_wAJ6Ae1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+COVID%E2%80%9019+patient+based+on+attention+segmental+recurrent+neural+network+%28ASRNN%29+Archimedes+optimization+algorithm+using+ultra%E2%80%90low%E2%80%90dose+CT+images&rft.jtitle=Concurrency+and+computation&rft.au=Kannan%2C+G&rft.au=Karunambiga%2C+K&rft.au=Sathish+Kumar%2C+P+J&rft.au=Shajin%2C+Francis+H&rft.date=2023-09-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=35&rft.issue=21&rft_id=info:doi/10.1002%2Fcpe.7705&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon