Detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) Archimedes optimization algorithm using ultra‐low‐dose CT images
SUMMARY In this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm (AOA) using ultra‐low‐dose CT (ULDCT) images is proposed. Here, the ultra‐low‐dose CT images are gathered via real time dataset. The input i...
Saved in:
| Published in | Concurrency and computation Vol. 35; no. 21 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
25.09.2023
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0626 1532-0634 |
| DOI | 10.1002/cpe.7705 |
Cover
| Abstract | SUMMARY
In this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm (AOA) using ultra‐low‐dose CT (ULDCT) images is proposed. Here, the ultra‐low‐dose CT images are gathered via real time dataset. The input images are preprocessed with the help of convolutional auto‐encoder to recover the ULDCT images quality by removing noises. The preprocessed images are given to generalized additive models with structured interactions (GAMI) for extracting the radiomic features. The radiomic features, such as morphologic, gray scale statistic, Haralick texture are extracted using GAMI‐Net. The ASRNN classifier, whose weight parameters optimized with Archimedes optimization algorithm enables COVID‐19 ULDCT images classification as COVID‐19 or normal. The proposed approach is activated in MATLAB platform. The proposed ASRNN‐AOA‐ULDCT attains accuracy 22.08%, 24.03%, 34.76%, 34.65%, 26.89%, 45.86%, and 32.14%; precision 23.34%, 26.45%, 34.98%, 27.06%, 35.87%, 34.44%, and 22.36% better than the existing methods, such as DenseNet‐HHO‐ULDCT, ELM‐DNN‐ULDCT, EDL‐ULDCT, ResNet 50‐ULDCT, SDL‐ULDCT, CNN‐ULDCT, and DRNN‐ULDCT, respectively. |
|---|---|
| AbstractList | SUMMARY
In this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm (AOA) using ultra‐low‐dose CT (ULDCT) images is proposed. Here, the ultra‐low‐dose CT images are gathered via real time dataset. The input images are preprocessed with the help of convolutional auto‐encoder to recover the ULDCT images quality by removing noises. The preprocessed images are given to generalized additive models with structured interactions (GAMI) for extracting the radiomic features. The radiomic features, such as morphologic, gray scale statistic, Haralick texture are extracted using GAMI‐Net. The ASRNN classifier, whose weight parameters optimized with Archimedes optimization algorithm enables COVID‐19 ULDCT images classification as COVID‐19 or normal. The proposed approach is activated in MATLAB platform. The proposed ASRNN‐AOA‐ULDCT attains accuracy 22.08%, 24.03%, 34.76%, 34.65%, 26.89%, 45.86%, and 32.14%; precision 23.34%, 26.45%, 34.98%, 27.06%, 35.87%, 34.44%, and 22.36% better than the existing methods, such as DenseNet‐HHO‐ULDCT, ELM‐DNN‐ULDCT, EDL‐ULDCT, ResNet 50‐ULDCT, SDL‐ULDCT, CNN‐ULDCT, and DRNN‐ULDCT, respectively. In this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm (AOA) using ultra‐low‐dose CT (ULDCT) images is proposed. Here, the ultra‐low‐dose CT images are gathered via real time dataset. The input images are preprocessed with the help of convolutional auto‐encoder to recover the ULDCT images quality by removing noises. The preprocessed images are given to generalized additive models with structured interactions (GAMI) for extracting the radiomic features. The radiomic features, such as morphologic, gray scale statistic, Haralick texture are extracted using GAMI‐Net. The ASRNN classifier, whose weight parameters optimized with Archimedes optimization algorithm enables COVID‐19 ULDCT images classification as COVID‐19 or normal. The proposed approach is activated in MATLAB platform. The proposed ASRNN‐AOA‐ULDCT attains accuracy 22.08%, 24.03%, 34.76%, 34.65%, 26.89%, 45.86%, and 32.14%; precision 23.34%, 26.45%, 34.98%, 27.06%, 35.87%, 34.44%, and 22.36% better than the existing methods, such as DenseNet‐HHO‐ULDCT, ELM‐DNN‐ULDCT, EDL‐ULDCT, ResNet 50‐ULDCT, SDL‐ULDCT, CNN‐ULDCT, and DRNN‐ULDCT, respectively. SUMMARYIn this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm (AOA) using ultra‐low‐dose CT (ULDCT) images is proposed. Here, the ultra‐low‐dose CT images are gathered via real time dataset. The input images are preprocessed with the help of convolutional auto‐encoder to recover the ULDCT images quality by removing noises. The preprocessed images are given to generalized additive models with structured interactions (GAMI) for extracting the radiomic features. The radiomic features, such as morphologic, gray scale statistic, Haralick texture are extracted using GAMI‐Net. The ASRNN classifier, whose weight parameters optimized with Archimedes optimization algorithm enables COVID‐19 ULDCT images classification as COVID‐19 or normal. The proposed approach is activated in MATLAB platform. The proposed ASRNN‐AOA‐ULDCT attains accuracy 22.08%, 24.03%, 34.76%, 34.65%, 26.89%, 45.86%, and 32.14%; precision 23.34%, 26.45%, 34.98%, 27.06%, 35.87%, 34.44%, and 22.36% better than the existing methods, such as DenseNet‐HHO‐ULDCT, ELM‐DNN‐ULDCT, EDL‐ULDCT, ResNet 50‐ULDCT, SDL‐ULDCT, CNN‐ULDCT, and DRNN‐ULDCT, respectively. |
| Author | Sathish Kumar, P. J. Shajin, Francis H. Kannan, G. K, Karunambiga |
| Author_xml | – sequence: 1 givenname: G. orcidid: 0000-0003-4078-1473 surname: Kannan fullname: Kannan, G. email: ganesankannan777@gmail.com organization: Amrita College of Engineering and Technology – sequence: 2 givenname: Karunambiga surname: K fullname: K, Karunambiga organization: Karpagam Institute of Technology – sequence: 3 givenname: P. J. surname: Sathish Kumar fullname: Sathish Kumar, P. J. organization: Panimalar Engineering College – sequence: 4 givenname: Francis H. surname: Shajin fullname: Shajin, Francis H. organization: Anna University |
| BookMark | eNp1kUtOwzAURS0EEl-JJVhiAoMUfxonGVahfCQEiN80cp2XYkjiYDuqYMQSWANLYyW4LWKAYGI_2-fd56u7iVZb0wJCu5QMKCHsUHUwSBISr6ANGnMWEcGHqz81E-to07lHQiglnG6gjyPwoLw2LTYVzi_vz44-395phjvpNbQeT6SDEodn6X04z0EH0yaUssYWVG_tHGuht-GiBT8z9gnvj26uLy4O8MiqB91ACQ6bzutGv8qFhKynxmr_0ODe6XaK-9pbGQbXZhbW0jjA-S3WjZyC20Zrlawd7HzvW-jueHybn0bnlydn-eg8UizjccSCOcIhSzJGSsbTOJuUGU1TVbJKJlXFWSpoyZKhECpRIDihcawmQgiqsmEq-BbaW-p21jz34HzxaHrbhpEFS-M44ZzTJFD7S0pZ45yFquhs-Kd9KSgp5gkUIYFinkBAB79Qpf3CfzCr678aomXDTNfw8q9wkV-NF_wXez2cbA |
| CitedBy_id | crossref_primary_10_1016_j_imj_2024_100095 crossref_primary_10_1080_03772063_2023_2233465 crossref_primary_10_1016_j_bspc_2024_106146 |
| Cites_doi | 10.1080/22221751.2020.1744483 10.1002/jmv.25827 10.1016/j.irbm.2021.01.004 10.1007/s11655-020-3192-6 10.1016/j.compbiomed.2021.104306 10.1142/S0218126622500931 10.1016/j.ajp.2020.102053 10.1007/s15010-020-01432-5 10.1016/j.ejphar.2020.173381 10.1016/j.patcog.2021.108192 10.1007/s00330-020-07225-6 10.1007/s40745-020-00289-7 10.1007/s10489-020-01893-z 10.1002/jnm.3019 10.1016/j.asoc.2021.107698 10.1007/s00034-021-01850-2 10.1080/15567036.2021.1986606 10.1016/j.ajp.2020.102111 10.1007/s12664-020-01075-2 10.1109/NSS/MIC44867.2021.9875557 10.1016/j.heliyon.2017.e00393 10.1007/s00330-021-07715-1 10.1016/j.chaos.2020.110286 10.1016/j.knosys.2020.106548 10.1007/s10140-020-01886-y 10.1016/j.jcv.2020.104371 10.1016/j.mayocp.2020.05.013 10.1080/09720529.2020.1784535 10.1016/j.asoc.2020.106885 10.1016/j.phrs.2020.104896 |
| ContentType | Journal Article |
| Copyright | 2023 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2023 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.7705 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_7705 CPE7705 |
| Genre | article |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 1OB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2935-262603e97920d23859bd9188cd2fa7ff32861d27466c7ce630155cb6661c94863 |
| IEDL.DBID | DR2 |
| ISSN | 1532-0626 |
| IngestDate | Wed Aug 13 09:21:57 EDT 2025 Wed Oct 01 03:13:35 EDT 2025 Thu Apr 24 22:58:11 EDT 2025 Wed Jan 22 16:17:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2935-262603e97920d23859bd9188cd2fa7ff32861d27466c7ce630155cb6661c94863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4078-1473 |
| PQID | 2855733317 |
| PQPubID | 2045170 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2855733317 crossref_primary_10_1002_cpe_7705 crossref_citationtrail_10_1002_cpe_7705 wiley_primary_10_1002_cpe_7705_CPE7705 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 25 September 2023 |
| PublicationDateYYYYMMDD | 2023-09-25 |
| PublicationDate_xml | – month: 09 year: 2023 text: 25 September 2023 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2021; 42 2017; 3 2020; 141 2021; 28 2020; 39 2020; 127 2022; 41 2021; 120 2020; 884 2021; 51 2020; 7 2021; 98 2021; 31 2021; 212 2020; 95 2020; 51 2021 2020; 92 2020; 9 2022; 35 2020; 48 2020; 26 2022; 31 2020; 23 2021; 111 2020; 158 2021; 132 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Rajesh P (e_1_2_8_14_1) 2021 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
| References_xml | – volume: 92 start-page: 841 issue: 7 year: 2020 end-page: 848 article-title: The effectiveness of quarantine of Wuhan city against the Corona virus disease 2019 (COVID‐19): a well‐mixed SEIR model analysis publication-title: J Med Virol – volume: 51 start-page: 1531 issue: 3 year: 2021 end-page: 1551 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl Intell – volume: 111 year: 2021 article-title: Harris hawks optimisation with simulated annealing as a deep feature selection method for screening of COVID‐19 CT‐scans publication-title: Appl Soft Comput – volume: 42 start-page: 207 issue: 4 year: 2021 end-page: 214 article-title: COVID‐19 detection system using chest CT images and multiple kernels‐extreme learning machine based on deep neural network publication-title: IRBM – volume: 23 start-page: 1583 issue: 8 year: 2020 end-page: 1597 article-title: Prediction of COVID‐19 corona virus pandemic based on time series data using support vector machine publication-title: J Discret Math Sci Cryptogr – start-page: 1 year: 2021 end-page: 2 – volume: 212 year: 2021 article-title: ASRNN: a recurrent neural network with an attention model for sequence labeling publication-title: Knowl‐Based Syst – volume: 884 year: 2020 article-title: OUTBREAK of novel corona virus disease (COVID‐19): antecedence and aftermath publication-title: Eur J Pharmacol – volume: 98 year: 2021 article-title: The ensemble deep learning model for novel COVID‐19 on CT images publication-title: Appl Soft Comput – volume: 31 start-page: 6096 year: 2021 end-page: 6104 article-title: A deep learning algorithm using CT images to screen for Corona virus disease (COVID‐19) publication-title: Eur Radiol – volume: 28 start-page: 497 issue: 3 year: 2021 end-page: 505 article-title: Diagnosis of COVID‐19 using CT scan images and deep learning techniques publication-title: Emerg Radiol – volume: 3 issue: 8 year: 2017 article-title: Convolutional auto‐encoder for image denoising of ultra‐low‐dose CT publication-title: Heliyon – volume: 48 start-page: 543 issue: 4 year: 2020 end-page: 551 article-title: Clinical characteristics of 145 patients with corona virus disease 2019 (COVID‐19) in Taizhou, Zhejiang, China publication-title: Infection – volume: 41 start-page: 1751 issue: 3 year: 2022 end-page: 1774 article-title: An efficient VLSI architecture for fast motion estimation exploiting zero motion prejudgment technique and a new quadrant‐based search algorithm in HEVC publication-title: Circuits Syst Signal Process – volume: 39 start-page: 220 year: 2020 end-page: 231 article-title: Corona virus disease‐19 pandemic: the gastroenterologists' perspective publication-title: Indian J Gastroenterol – volume: 9 start-page: 707 issue: 1 year: 2020 end-page: 713 article-title: The different clinical characteristics of corona virus disease cases between children and their families in China–the character of children with COVID‐19 publication-title: Emerg Microbes Infect – volume: 51 year: 2020 article-title: Dealing with Corona virus anxiety and OCD publication-title: Asian J Psychiatr – volume: 7 start-page: 417 year: 2020 end-page: 425 article-title: Monitoring novel corona virus (COVID‐19) infections in India by cluster analysis publication-title: Ann Data Sci – volume: 158 year: 2020 article-title: Efficacy and safety of integrated traditional Chinese and Western medicine for Corona virus disease 2019 (COVID‐19): a systematic review and meta‐analysis publication-title: Pharmacol Res – volume: 31 start-page: 1420 issue: 3 year: 2021 end-page: 1431 article-title: Ultra‐low‐dose chest CT imaging of COVID‐19 patients using a deep residual neural network publication-title: Eur Radiol – volume: 31 issue: 5 year: 2022 article-title: FPGA realization of a reversible data hiding scheme for 5G MIMO‐OFDM system by chaotic key generation‐based paillier cryptography along with LDPC and its side channel estimation using machine learning technique publication-title: J Circuits Syst Comput – volume: 95 start-page: 1710 issue: 8 year: 2020 end-page: 1714 article-title: Sex hormones and novel corona virus infectious disease (COVID‐19) publication-title: Mayo Clin Proc – volume: 35 year: 2022 article-title: An optimal hybrid control scheme to achieve power quality enhancement in micro grid connected system publication-title: Int J Numer Model – start-page: 1 year: 2021 end-page: 9 article-title: Diminishing energy consumption cost and optimal energy management of photovoltaic aided electric vehicle (PV‐EV) by GFO‐VITG approach publication-title: Energy Sources A – volume: 51 year: 2020 article-title: A cross‐sectional study on mental health among health care workers during the outbreak of Corona virus disease 2019 publication-title: Asian J Psychiatr – volume: 141 year: 2020 article-title: Mathematical analysis of spread and control of the novel corona virus (COVID‐19) in China publication-title: Chaos Solitons Fractals – volume: 120 year: 2021 article-title: GAMI‐net: an explainable neural network based on generalized additive models with structured interactions publication-title: Pattern Recognit – volume: 26 start-page: 243 issue: 4 year: 2020 end-page: 250 article-title: Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID‐19)? A review of historical classics, research evidence and current prevention programs publication-title: Chin J Integr Med – volume: 132 year: 2021 article-title: Deep learning for diagnosis of COVID‐19 using 3D CT scans publication-title: Comput Biol Med – volume: 127 year: 2020 article-title: Prevalence and severity of corona virus disease 2019 (COVID‐19): a systematic review and meta‐analysis publication-title: J Clin Virol – ident: e_1_2_8_3_1 doi: 10.1080/22221751.2020.1744483 – ident: e_1_2_8_7_1 doi: 10.1002/jmv.25827 – ident: e_1_2_8_23_1 doi: 10.1016/j.irbm.2021.01.004 – ident: e_1_2_8_11_1 doi: 10.1007/s11655-020-3192-6 – ident: e_1_2_8_25_1 doi: 10.1016/j.compbiomed.2021.104306 – ident: e_1_2_8_15_1 doi: 10.1142/S0218126622500931 – ident: e_1_2_8_8_1 doi: 10.1016/j.ajp.2020.102053 – ident: e_1_2_8_9_1 doi: 10.1007/s15010-020-01432-5 – ident: e_1_2_8_17_1 doi: 10.1016/j.ejphar.2020.173381 – ident: e_1_2_8_29_1 doi: 10.1016/j.patcog.2021.108192 – ident: e_1_2_8_21_1 doi: 10.1007/s00330-020-07225-6 – ident: e_1_2_8_18_1 doi: 10.1007/s40745-020-00289-7 – ident: e_1_2_8_31_1 doi: 10.1007/s10489-020-01893-z – ident: e_1_2_8_12_1 doi: 10.1002/jnm.3019 – ident: e_1_2_8_22_1 doi: 10.1016/j.asoc.2021.107698 – ident: e_1_2_8_13_1 doi: 10.1007/s00034-021-01850-2 – start-page: 1 year: 2021 ident: e_1_2_8_14_1 article-title: Diminishing energy consumption cost and optimal energy management of photovoltaic aided electric vehicle (PV‐EV) by GFO‐VITG approach publication-title: Energy Sources A doi: 10.1080/15567036.2021.1986606 – ident: e_1_2_8_20_1 doi: 10.1016/j.ajp.2020.102111 – ident: e_1_2_8_19_1 doi: 10.1007/s12664-020-01075-2 – ident: e_1_2_8_26_1 doi: 10.1109/NSS/MIC44867.2021.9875557 – ident: e_1_2_8_28_1 doi: 10.1016/j.heliyon.2017.e00393 – ident: e_1_2_8_4_1 doi: 10.1007/s00330-021-07715-1 – ident: e_1_2_8_10_1 doi: 10.1016/j.chaos.2020.110286 – ident: e_1_2_8_30_1 doi: 10.1016/j.knosys.2020.106548 – ident: e_1_2_8_27_1 doi: 10.1007/s10140-020-01886-y – ident: e_1_2_8_2_1 doi: 10.1016/j.jcv.2020.104371 – ident: e_1_2_8_6_1 doi: 10.1016/j.mayocp.2020.05.013 – ident: e_1_2_8_16_1 doi: 10.1080/09720529.2020.1784535 – ident: e_1_2_8_24_1 doi: 10.1016/j.asoc.2020.106885 – ident: e_1_2_8_5_1 doi: 10.1016/j.phrs.2020.104896 |
| SSID | ssj0011031 |
| Score | 2.3695014 |
| Snippet | SUMMARY
In this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm... In this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm (AOA)... SUMMARYIn this article, the detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) with Archimedes optimization algorithm... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Archimedes optimization algorithm (AOA) attention segmental recurrent neural network (ASRNN) Coders Computed tomography convolutional auto‐encoder (CAE) COVID-19 generalized additive models with structured interactions (GAMI) Image classification Image quality Neural networks Optimization Optimization algorithms Radiomics Recurrent neural networks ultra‐low‐dose CT images |
| Title | Detection of COVID‐19 patient based on attention segmental recurrent neural network (ASRNN) Archimedes optimization algorithm using ultra‐low‐dose CT images |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7705 https://www.proquest.com/docview/2855733317 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-0634 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: ADMLS dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELWqnri0FIpYKGiQUIFDtomdOPGx2rYqSF1QaVElDpHjOEvV3aTaZIXEqZ_Qb-in9UuYcZItIJAqLkkU20piz3jeOOM3jL1WqvBVnEce_ePyQptoT5lIeznKstZa8iKi_c5HY3l4Gn44i866qEraC9PyQywX3Egz3HxNCq6zeueONNRc2mEcO_rSQEjnTR0vmaMCyl7QUqVyz0fQ3vPO-nynb_i7JbqDl7-CVGdlDtbZ1_792uCSi-GiyYbmxx_Ujf_3AQ_ZWgc-YbeVlg22YstHbL1P7ACdnj9mN3u2cSFaJVQFjD5-eb93e3UdKOhYWIFsXw5YTOycLl4Sajtp8wTAnJbwifQJiCwTb5RtqDm83f18PB6_A8d2i1bY1lDhjDXrtoKCnk6q-XnzbQYUjT-BxbSZa3zwtPqOx7yqLYxO4HyGU2C9yU4P9k9Gh16XzMEziCgokg49J2FVrLifI06IVJarIElMzgsdF4XgiQxy9JGlNLGxUhCYMxl6V4FRYSLFE7ZaVqV9ysBaBBba8EBgiQ5jXYhQiti3wsdLYwfsTT-wqemYzinhxjRtOZp5il2fUtcP2KtlzcuW3eMvdbZ62Ug7_a5TnkREJInga8C23SD_s306-rRP52f3rficPaCc9hSUwqMtttrMF_YFIp8me-lk_Cc2dwQQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5V5QAXWv7E0gKDhPg5ZJs4iROLU7VttYV2QWWLekCKvI6zVOwm1SYrJE48As_Ao_EkzORnCwgkxCWJYltJ7BnPN874G4DHSmWuitLQ4X9cTmBj7SgTaiclWdZaS5GFvN_5eCSHp8HLs_BsDV50e2EafojVghtrRj1fs4LzgvTOJWuoubD9KGL-0iuBJDeFEdHJijvK4_wFDVmqcFyC7R3zrCt2upa_2qJLgPkzTK3tzMEGvO_esAkv-dhfVpO--fwbeeN_fsImXG_xJ-42AnMD1mx-Eza63A7Yqvot-LZnqzpKK8ciw8Hrd4d737989RS2RKzI5i9FKmaCzjpkEks7bVIF4IJX8Zn3CZkvk27kTbQ5Ptt9ezIaPcea8JYMsS2xoElr3u4GRT2bFovz6sMcOSB_istZtdD04FnxiY5pUVocjPF8TrNgeRtOD_bHg6HT5nNwDIEKDqYj58m3KlLCTQkqhGqSKi-OTSoyHWWZL2LppeQmS2kiY6XPeM5MyMHyjApi6d-B9bzI7V1AawlbaCM8n0p0EOnMD6QfudZ36dLYHjztRjYxLdk559yYJQ1Ns0io6xPu-h48WtW8aAg-_lBnuxOOpFXxMhFxyFyShL968KQe5b-2TwZv9vl8718rPoSrw_HxUXJ0OHq1Bdc4xT3HqIhwG9arxdLeJyBUTR7UAv8Da5gIMQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1VRUK8UK5iocAgIS4P2SbO1eKp2u2q5bJUpUV9qBR5bWep2E1Wm6yQeOIT-AY-jS9hJpctIJAQL0kU20pijz3HzvEZgMdSZq6MTejwPy4nsIlypA6VY8iWlVKRyELe7_xmHO2fBC9Pw9MNeNHthWn0IdYLbtwz6vGaO7hdmGznQjVUL2w_jlm_9FIQyoT5fMOjtXaUx_ELGrFU4bgE2zvlWVfsdCV_9UUXAPNnmFr7mdEWnHVv2NBLPvZX1aSvP_8m3vifn3ANrrb4E3cbg7kOGza_AVtdbAdsu_pN-Da0Vc3SyrHIcPD2_cHw-5evnsRWiBXZ_RmkZBborCmTWNppEyoAl7yKz7pPyHqZdCNv2Ob4bPfd0Xj8HGvBW3LEtsSCBq15uxsU1WxaLM-rD3NkQv4UV7NqqejBs-ITHU1RWhwc4_mcRsHyFpyM9o4H-04bz8HRBCqYTEeTJ9_KWArXEFQI5cRIL0m0EZmKs8wXSeQZmiZHkY61jXzGc3pCEyxPyyCJ_NuwmRe5vQNoLWELpYXnU4oKYpX5QeTHrvVdutS2B0-7lk11K3bOMTdmaSPTLFKq-pSrvgeP1jkXjcDHH_Jsd8aRtl28TEUSspYk4a8ePKlb-a_l08HhHp_v_mvGh3D5cDhKXx-MX92DKxzhnikqItyGzWq5svcJB1WTB7W9_wAJ6Ae1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+COVID%E2%80%9019+patient+based+on+attention+segmental+recurrent+neural+network+%28ASRNN%29+Archimedes+optimization+algorithm+using+ultra%E2%80%90low%E2%80%90dose+CT+images&rft.jtitle=Concurrency+and+computation&rft.au=Kannan%2C+G&rft.au=Karunambiga%2C+K&rft.au=Sathish+Kumar%2C+P+J&rft.au=Shajin%2C+Francis+H&rft.date=2023-09-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=35&rft.issue=21&rft_id=info:doi/10.1002%2Fcpe.7705&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |