Performance analysis and validation of intelligent tool based on Brownian random walk‐based sand cat swarm optimization algorithm for parameter identification of various solar photovoltaic mathematical models
The photovoltaic (PV) system stands out as a viable energy source due to its environmental friendliness and cleanliness. The conversion rate at which solar power generation is still relatively low due to limitations imposed by advances in PV technology. For PV systems, an appropriate model with prec...
        Saved in:
      
    
          | Published in | International journal of numerical modelling Vol. 37; no. 2 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Chichester, UK
          John Wiley & Sons, Inc
    
        01.03.2024
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0894-3370 1099-1204  | 
| DOI | 10.1002/jnm.3163 | 
Cover
| Abstract | The photovoltaic (PV) system stands out as a viable energy source due to its environmental friendliness and cleanliness. The conversion rate at which solar power generation is still relatively low due to limitations imposed by advances in PV technology. For PV systems, an appropriate model with precise internal parameters is considerably more crucial to increase conversion efficiency further. Different PV mathematical models, such as single‐diode, two‐diode, and three‐diode, are available to model the PV system. Investigators are interested in assessing the accurate PV model parameters through the experimental voltage–current (I–V) samples or using the manufacturer's specifications. At the same time, the difficulty is in accurately assessing and developing a more trustworthy PV model with well‐optimized parameters. To address the parameter estimation of various solar PV models, in this article, a new bio‐inspired algorithm called Brownian random walk‐based Sand Cat Swarm Optimization Algorithm (SCSOA) named Boosted SCSOA (BSCSOA) is proposed and developed. Along with the Brownian random strategy, chaotic tent drift is also used to enhance the exploration and exploitation of SCSOA, and the proposed BSCSOA is applied to different models to estimate their parameters accurately. The effectiveness of the suggested BSCSOA is compared with other well‐known algorithms, including the basic SCSOA, in terms of statistical measures and fitness values. The obtained results demonstrated the superiority of the BSCSOA over the other algorithms for all PV models of the cell and module. | 
    
|---|---|
| AbstractList | The photovoltaic (PV) system stands out as a viable energy source due to its environmental friendliness and cleanliness. The conversion rate at which solar power generation is still relatively low due to limitations imposed by advances in PV technology. For PV systems, an appropriate model with precise internal parameters is considerably more crucial to increase conversion efficiency further. Different PV mathematical models, such as single‐diode, two‐diode, and three‐diode, are available to model the PV system. Investigators are interested in assessing the accurate PV model parameters through the experimental voltage–current (I–V) samples or using the manufacturer's specifications. At the same time, the difficulty is in accurately assessing and developing a more trustworthy PV model with well‐optimized parameters. To address the parameter estimation of various solar PV models, in this article, a new bio‐inspired algorithm called Brownian random walk‐based Sand Cat Swarm Optimization Algorithm (SCSOA) named Boosted SCSOA (BSCSOA) is proposed and developed. Along with the Brownian random strategy, chaotic tent drift is also used to enhance the exploration and exploitation of SCSOA, and the proposed BSCSOA is applied to different models to estimate their parameters accurately. The effectiveness of the suggested BSCSOA is compared with other well‐known algorithms, including the basic SCSOA, in terms of statistical measures and fitness values. The obtained results demonstrated the superiority of the BSCSOA over the other algorithms for all PV models of the cell and module. | 
    
| Author | Alex Stanley Raja, Thaveedhu Sivaraju, Selligoundanur Subramanian Kumar, Chandrasekaran Jaisiva, Selvaraj  | 
    
| Author_xml | – sequence: 1 givenname: Thaveedhu surname: Alex Stanley Raja fullname: Alex Stanley Raja, Thaveedhu email: alexstanleyrajat@gmail.com, alexstanleyraja@gmail.com organization: Bannari Amman Institute of Technology – sequence: 2 givenname: Chandrasekaran surname: Kumar fullname: Kumar, Chandrasekaran organization: Karpagam College of Engineering – sequence: 3 givenname: Selligoundanur Subramanian surname: Sivaraju fullname: Sivaraju, Selligoundanur Subramanian organization: R V S College of Engineering and Technology – sequence: 4 givenname: Selvaraj surname: Jaisiva fullname: Jaisiva, Selvaraj organization: Sri Krishna College of Technology  | 
    
| BookMark | eNp1kc1uEzEUhS1UJNIWiUewxIbNpPZ4ZjJeQsVPUflZwHp0Y3saB9s32E6isOoj9Nl4hD4JTgexQLCxLd3vnHuvzyk5CRgMIc84m3PG6ot18HPBO_GIzDiTsuI1a07IjPWyqYRYsCfkNKU1Y0zwtp6Rn59NHDF6CMpQCOAOyaby0HQHzmrIFgPFkdqQjXP2xoRMM6KjS0hG01J8FXEfLAQaiwo93YP7dn97N9XT0UlBpmkP0VPcZOvtj8kV3A1Gm1eelgHoBiJ4k02kVpcmdrTqT_MdRIvbRBM6KOQKM-7QZbCKesgrU45CO-pRG5fOyeMRXDJPf99n5Oub118u31XXn95eXb68rlQthahMb_pRLPu2E9wsmgb4kgtQrdYg6wZ6LruuXQjVsU72ugGpeauk6OTYtoyDFmfk-eS7ifh9a1Ie1riN5QvTIJiQXcsazgs1nygVMaVoxkHZ_LBZjmDdwNlwzG0ouQ3H3IrgxV-CTbQe4uFfaDWhe-vM4b_c8P7jhwf-F7DKsEE | 
    
| CitedBy_id | crossref_primary_10_1093_jcde_qwad094 crossref_primary_10_1007_s11831_024_10217_0 crossref_primary_10_1016_j_est_2024_113719  | 
    
| Cites_doi | 10.1016/J.EGYR.2022.11.092 10.3390/en10081213 10.1080/00051144.2020.1834062 10.1109/SeFeT55524.2022.9908680 10.1002/2050‐7038.13113 10.1007/S12065‐021‐00649‐Z 10.32604/CMC.2022.020847 10.1016/J.ENCONMAN.2020.113301 10.1016/j.solener.2010.02.012 10.1016/j.energy.2013.02.057 10.1049/IET‐RPG.2018.5649 10.1063/5.0066291 10.1109/4235.585893 10.1155/2013/362619 10.1016/j.solener.2018.06.092 10.1007/S00366‐022‐01604‐X/TABLES/15 10.1109/3477.484436 10.1155/2022/5473266 10.3390/en13123216 10.32604/CMC.2022.019611 10.1016/j.enconman.2018.05.035 10.1002/er.3359 10.1016/j.enconman.2017.08.088 10.3390/en11051060 10.1016/J.IJLEO.2021.168513 10.1080/15567036.2022.2100517 10.1016/j.knosys.2018.06.001 10.6113/JPE.2018.18.6.1805 10.1109/TSTE.2015.2389858 10.1016/j.egyr.2020.01.016 10.1016/j.energy.2014.05.011 10.1016/j.solener.2017.08.084 10.1016/j.enconman.2016.12.082 10.1016/J.SOLENER.2016.10.044 10.15866/IREE.V16I1.18955 10.1016/j.asoc.2019.105583 10.1016/j.apenergy.2012.06.036 10.1016/j.ijleo.2017.10.081 10.1016/J.ASEJ.2020.07.034 10.1109/JIOT.2021.3109075 10.1016/j.enconman.2020.113114 10.1155/2019/6871298 10.1016/J.IJLEO.2021.167973 10.1109/JPHOTOV.2017.2769000 10.1016/j.ijleo.2019.164041 10.1016/J.COMPELECENG.2022.107949 10.1016/j.isatra.2021.01.045 10.1016/J.ENCONMAN.2021.114051 10.1016/j.advengsoft.2017.05.014 10.1016/J.KNOSYS.2022.108422 10.3390/en10070865 10.1016/j.enconman.2018.10.069 10.1016/J.IJLEO.2022.169379 10.1007/s12652‐020‐02746‐w 10.1007/S10825‐021‐01812‐6 10.1016/j.enconman.2020.112764 10.1109/ICCSCE.2013.6719960 10.1049/RPG2.12475 10.1109/ACCESS.2020.3047936 10.1093/JCDE/QWAB065 10.1088/1757‐899X/937/1/012014 10.1016/j.asoc.2012.03.068 10.1016/j.rser.2016.03.049 10.1515/REVCE‐2016‐0058 10.1016/j.energy.2021.120136 10.1016/j.enconman.2019.02.003 10.1016/j.ijleo.2020.164559 10.1007/S10825‐022‐01987‐6 10.12785/ijcds/080506 10.1007/s40998‐019‐00257‐9 10.1007/s00521‐017‐2890‐2 10.1016/j.solener.2019.08.022 10.1109/LED.2019.2926315 10.1016/j.ijleo.2020.165277 10.1016/J.MATPR.2020.08.784 10.1007/s00202‐017‐0542‐2 10.1007/S10462‐020‐09906‐6 10.1109/ACCESS.2021.3061529 10.1049/EL.2018.0402 10.1007/S10825‐017‐1121‐5/FIGURES/8 10.1016/J.BSPC.2021.103401 10.1016/J.ASOC.2022.108574 10.1109/ACCESS.2021.3087739 10.1109/ACCESS.2021.3085529 10.1007/S10825‐022‐01891‐Z 10.1088/0957‐0233/12/11/322 10.32604/CMC.2022.016488 10.1007/S12652‐021‐03564‐4/TABLES/16 10.1016/J.COMPELECENG.2021.107304 10.3390/APP8112155  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd.  | 
    
| Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd.  | 
    
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| DOI | 10.1002/jnm.3163 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | CrossRef Civil Engineering Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Mathematics  | 
    
| EISSN | 1099-1204 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 10_1002_jnm_3163 JNM3163  | 
    
| Genre | article | 
    
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c2933-e8e8f3b85631e744a1b13ac5dda924a81966573c60698d4a9d15c9369f5501ad3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0894-3370 | 
    
| IngestDate | Sat Jul 26 00:00:50 EDT 2025 Wed Oct 01 04:51:43 EDT 2025 Thu Apr 24 23:12:35 EDT 2025 Wed Jan 22 17:19:38 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2933-e8e8f3b85631e744a1b13ac5dda924a81966573c60698d4a9d15c9369f5501ad3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3039650411 | 
    
| PQPubID | 1026348 | 
    
| PageCount | 39 | 
    
| ParticipantIDs | proquest_journals_3039650411 crossref_citationtrail_10_1002_jnm_3163 crossref_primary_10_1002_jnm_3163 wiley_primary_10_1002_jnm_3163_JNM3163  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | March/April 2024 2024-03-00 20240301  | 
    
| PublicationDateYYYYMMDD | 2024-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2024 text: March/April 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Chichester, UK | 
    
| PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis  | 
    
| PublicationTitle | International journal of numerical modelling | 
    
| PublicationYear | 2024 | 
    
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc  | 
    
| References | 2022; 252 2019; 2019 2021; 20 2022; 70 2021; 247 2022; 73 2019; 13 2018; 169 2020; 203 2020; 13 2017; 151 1997; 1 2022; 21 2020; 54 2017; 157 2017; 114 2020; 208 2016; 140 2020; 6 2018; 8 2022; 242 2018; 171 2021; 31 2013; 2013 2021; 236 2013; 13 2021; 116 2013; 53 2016; 40 2020; 211 2018; 30 2020; 44 2018; 34 2001; 12 1996; 26 2021; 2021 2019; 8 2021; 9 2021; 46 2018; 100 2015; 6 2019; 190 2021; 224 2013; 102 2020; 221 2020; 224 2022; 44 2020; 223 2021; 1 2022; 119 2021; 94 2019; 185 2017; 135 2010; 84 2022; 100 2021; 2396 2021; 16 2018; 18 2018; 155 2018; 17 2022; 264 2021; 10 2022; 2022 2021; 12 2019; 40 2022 2019; 85 2020 2022; 8 2017; 10 2018; 159 2022; 9 2019; 179 2016; 61 2022; 1 2013 2018; 11 2018; 54 2014; 72 2021; 62 2022; 16 e_1_2_11_70_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_87_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_82_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1  | 
    
| References_xml | – volume: 16 start-page: 60 issue: 1 year: 2021 end-page: 67 article-title: Performance evaluation of recent metaheuristic optimization algorithms for photovoltaic system parameter extraction publication-title: Int Rev Electric Eng (IREE) – volume: 6 start-page: 350 year: 2020 end-page: 357 article-title: Extraction of uncertain parameters of single‐diode model of a photovoltaic panel using simulated annealing optimization publication-title: Energy Rep – volume: 169 start-page: 345 year: 2018 end-page: 358 article-title: An improved explicit double‐diode model of solar cells: fitness verification and parameter extraction publication-title: Energ Conver Manage – volume: 20 start-page: 2563 issue: 6 year: 2021 end-page: 2593 article-title: Parameter estimation of three‐diode solar photovoltaic model using an improved‐African vultures optimization algorithm with Newton–Raphson method publication-title: J Computat Electron – volume: 21 start-page: 905 issue: 4 year: 2022 end-page: 941 article-title: Electrical parameter computation of various photovoltaic models using an enhanced jumping spider optimization with chaotic drifts publication-title: J Computat Electron – volume: 1 start-page: 1 year: 2022 end-page: 25 article-title: Sand cat swarm optimization: a nature‐inspired algorithm to solve global optimization problems publication-title: Eng Comput – volume: 236 year: 2021 article-title: Photovoltaic cell parameter estimation based on improved equilibrium optimizer algorithm publication-title: Energ Conver Manage – volume: 155 start-page: 351 year: 2018 end-page: 356 article-title: A novel elite opposition‐based Jaya algorithm for parameter estimation of photovoltaic cell models publication-title: Optik (Stuttg) – volume: 247 year: 2021 article-title: Orthogonal learning‐based gray wolf optimizer for identifying the uncertain parameters of various photovoltaic models publication-title: Optik (Stuttg) – volume: 203 year: 2020 article-title: A logistic chaotic JAYA algorithm for parameters identification of photovoltaic cell and module models publication-title: Optik (Stuttg) – volume: 73 year: 2022 article-title: An efficient multi‐thresholding based COVID‐19 CT images segmentation approach using an improved equilibrium optimizer publication-title: Biomed Signal Process Control – volume: 140 start-page: 265 year: 2016 end-page: 276 article-title: Parameter extraction of two diode solar PV model using fireworks algorithm publication-title: Solar Energy – volume: 1 start-page: 1 year: 2021 end-page: 23 article-title: Opposition decided gradient‐based optimizer with balance analysis and diversity maintenance for parameter identification of solar photovoltaic models publication-title: J Ambient Intell Humaniz Comput – volume: 119 year: 2022 article-title: Renewable sources‐based automatic load frequency control of interconnected systems using chaotic atom search optimization publication-title: Appl Soft Comput – volume: 102 start-page: 1160 year: 2013 end-page: 1177 article-title: A procedure to calculate the five‐parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data publication-title: Appl Energy – volume: 135 start-page: 463 year: 2017 end-page: 476 article-title: A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation publication-title: Energ Conver Manage – volume: 10 issue: 8 year: 2017 article-title: Photovoltaic cell parameter estimation using hybrid particle swarm optimization and simulated annealing publication-title: Energies (Basel) – volume: 12 start-page: 1693 issue: 2 year: 2021 end-page: 1700 article-title: Optimal model parameter estimation of solar and fuel cells using improved estimation of distribution algorithm publication-title: Ain Shams Eng J – volume: 18 start-page: 1805 issue: 6 year: 2018 end-page: 1818 article-title: Humpback whale assisted hybrid maximum power point tracking algorithm for partially shaded solar photovoltaic systems publication-title: J Power Electron – volume: 2022 start-page: 1 year: 2022 end-page: 9 article-title: The numerical algorithms and optimization approach used in extracting the parameters of the single‐diode and double‐diode photovoltaic (PV) models publication-title: Int J Photoenergy – volume: 2013 start-page: 10 year: 2013 end-page: 12 article-title: Parameter estimation of photovoltaic models via cuckoo search publication-title: J Appl Math – volume: 116 start-page: 139 year: 2021 end-page: 166 article-title: Enhanced chaotic JAYA algorithm for parameter estimation of photovoltaic cell/modules publication-title: ISA Trans – volume: 54 start-page: 519 issue: 8 year: 2018 end-page: 521 article-title: Analytical method for extraction of the single‐diode model parameters for photovoltaic panels from datasheet data publication-title: Electron Lett – volume: 10 year: 2021 article-title: Trustworthy and efficient routing algorithm for IoT‐FinTech applications using non‐linear Levy Brownian generalized Normal distribution optimization publication-title: IEEE Internet Things J – volume: 185 start-page: 866 year: 2019 end-page: 890 article-title: Collaborative swarm intelligence to estimate PV parameters publication-title: Energ Conver Manage – volume: 179 start-page: 362 year: 2019 end-page: 372 article-title: An efficient salp swarm‐inspired algorithm for parameters identification of photovoltaic cell models publication-title: Energy Convers Manag – volume: 61 start-page: 354 year: 2016 end-page: 371 article-title: Parameter estimation of solar photovoltaic (PV) cells : a review publication-title: Renew Sustain Energy Rev – volume: 11 start-page: 1060 issue: 5 year: 2018 article-title: A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (PV) models publication-title: Energies (Basel) – volume: 34 start-page: 503 issue: 4 year: 2018 end-page: 528 article-title: Solar photovoltaic applications: opportunities and challenges publication-title: Rev Chem Eng – volume: 72 start-page: 93 year: 2014 end-page: 102 article-title: Parameter identification of solar cells using artificial bee colony optimization publication-title: Energy – volume: 26 start-page: 29 issue: 1 year: 1996 end-page: 41 article-title: Ant system: optimization by a colony of cooperating agents publication-title: IEEE Trans Syst Man Cybern Part B (Cybern) – volume: 9 start-page: 24 issue: 1 year: 2022 end-page: 50 article-title: Multi‐objective equilibrium optimizer: framework and development for solving multi‐objective optimization problems publication-title: J Comput des Eng – volume: 8 start-page: 2155 issue: 11 year: 2018 article-title: Application of symbiotic organisms search algorithm for parameter extraction of solar cell models publication-title: Appl Sci – volume: 151 start-page: 107 year: 2017 end-page: 115 article-title: Parameter identification of photovoltaic cell model based on improved ant lion optimizer publication-title: Energ Conver Manage – volume: 2022 start-page: 1 issue: 1 year: 2022 end-page: 32 article-title: Parameter extraction of three‐diode solar photovoltaic model using a new metaheuristic resistance–capacitance optimization algorithm and improved Newton–Raphson method publication-title: J Computat Electron – volume: 13 start-page: 2932 issue: 5 year: 2013 end-page: 2946 article-title: Gases brownian motion optimization: an algorithm for optimization (GBMO) publication-title: Appl Soft Comput – volume: 8 start-page: 248 issue: 1 year: 2018 end-page: 256 article-title: Wind‐driven optimization technique for estimation of solar photovoltaic parameters publication-title: IEEE J Photovolt – volume: 8 start-page: 2210 issue: 5 year: 2019 article-title: Analysis and simulation of bio‐inspired intelligent Salp swarm MPPT method for the PV systems under partial shaded conditions publication-title: Int J Comput Digit Syst – volume: 9 start-page: 84263 year: 2021 end-page: 84295 article-title: A new arithmetic optimization algorithm for solving real‐world multiobjective CEC‐2021 constrained optimization problems: diversity analysis and validations publication-title: IEEE Access – year: 2022 – volume: 114 start-page: 48 year: 2017 end-page: 70 article-title: Spotted hyena optimizer: a novel bio‐inspired based metaheuristic technique for engineering applications publication-title: Adv Eng Softw – volume: 13 issue: 12 year: 2020 article-title: Evaluation of mathematical model to characterize the performance of conventional and hybrid PV array topologies under static and dynamic shading patterns publication-title: Energies (Basel) – volume: 70 start-page: 4803 issue: 3 year: 2022 end-page: 4827 article-title: IRKO: an improved Runge‐Kutta optimization algorithm for global optimization problems publication-title: Comput Mater Cont – volume: 12 start-page: 9953 year: 2021 end-page: 9976 article-title: A chaos‐based constrained optimization algorithm publication-title: J Ambient Intell Humaniz Comput – volume: 208 year: 2020 article-title: A new metaphor‐less algorithms for the photovoltaic cell parameter estimation publication-title: Optik (Stuttg) – volume: 31 issue: 11 year: 2021 article-title: Review on parameter estimation techniques of solar photovoltaic systems publication-title: Int Trans Electrical Energy Syst – volume: 30 start-page: 2607 issue: 8 year: 2018 end-page: 2623 article-title: Parameter estimation for chaotic systems via a hybrid flower pollination algorithm publication-title: Neural Comput Appl – volume: 221 year: 2020 article-title: Parameter extraction of photovoltaic models using an enhanced Lévy flight bat algorithm publication-title: Energ Conver Manage – volume: 10 start-page: 865 issue: 7 year: 2017 article-title: A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells publication-title: Energies (Basel) – volume: 62 start-page: 1 issue: 1 year: 2021 end-page: 20 article-title: A novel salp swarm assisted hybrid maximum power point tracking algorithm for the solar photovoltaic power generation systems publication-title: Automatika – volume: 12 start-page: 1922 issue: 11 year: 2001 end-page: 1925 article-title: Solar cell parameter extraction using genetic algorithms publication-title: Meas Sci Technol – volume: 85 start-page: 105583 year: 2019 article-title: CCSA: conscious neighborhood‐based crow search algorithm for solving global optimization problems publication-title: Appl Soft Comput J – volume: 8 start-page: 15249 year: 2022 end-page: 15285 article-title: An enhanced gradient‐based optimizer for parameter estimation of various solar photovoltaic models publication-title: Energy Rep – volume: 9 start-page: 35382 year: 2021 end-page: 35398 article-title: Turbulent flow of water‐based optimization using new objective function for parameter extraction of six photovoltaic models publication-title: IEEE Access – volume: 13 start-page: 1009 issue: 7 year: 2019 end-page: 1023 article-title: Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques publication-title: IET Renew Power Gener – volume: 53 start-page: 1 year: 2013 end-page: 13 article-title: Solar power generation by PV (photovoltaic) technology: a review publication-title: Energy – volume: 211 issue: Jan year: 2020 article-title: Orthogonal Nelder‐Mead moth flame method for parameters identification of photovoltaic modules publication-title: Energ Conver Manage – volume: 16 start-page: 1733 issue: 8 year: 2022 end-page: 1772 article-title: Constraint estimation in three‐diode solar photovoltaic model using Gaussian and Cauchy mutation‐based hunger games search optimizer and enhanced Newton–Raphson method publication-title: IET Renew Power Gener – volume: 2021 start-page: 1 year: 2021 end-page: 27 article-title: MOMPA: multi‐objective marine predator algorithm for solving multi‐objective optimization problems publication-title: Evolut Intell – volume: 242 year: 2022 article-title: MOTEO: a novel physics‐based multiobjective thermal exchange optimization algorithm to design truss structures publication-title: Knowl Based Syst – volume: 2396 issue: 1 year: 2021 article-title: A review on solar photovoltaic systems and its application in electricity generation publication-title: AIP Conf Proc – volume: 17 start-page: 784 issue: 2 year: 2018 end-page: 790 article-title: Photovoltaic module parameter estimation using an analytical approach and least squares method publication-title: J Comput Electron – volume: 6 start-page: 509 issue: 2 year: 2015 end-page: 515 article-title: Shuffled frog leaping algorithm for photovoltaic model identification publication-title: IEEE Trans Sustain Energy – volume: 224 year: 2020 article-title: Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models publication-title: Energ Conver Manage – volume: 54 start-page: 2323 issue: 3 year: 2020 end-page: 2409 article-title: Performance assessment of the metaheuristic optimization algorithms: an exhaustive review publication-title: Artif Intell Rev – volume: 40 start-page: 343 issue: 3 year: 2016 end-page: 352 article-title: Parameter estimation of photovoltaic model via parallel particle swarm optimization algorithm publication-title: Int J Energy Res – volume: 171 start-page: 435 year: 2018 end-page: 446 article-title: Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms publication-title: Solar Energy – volume: 264 year: 2022 article-title: A novel chaotic‐driven tuna swarm optimizer with Newton‐Raphson method for parameter identification of three‐diode equivalent circuit model of solar photovoltaic cells/modules publication-title: Optik (Stuttg) – volume: 252 year: 2022 article-title: Solar photovoltaic model parameter estimation based on orthogonally‐adapted gradient‐based optimization publication-title: Optik (Stuttg) – volume: 9 start-page: 84982 year: 2021 end-page: 85016 article-title: MOPGO: a new physics‐based multi‐objective plasma generation optimizer for solving structural optimization problems publication-title: IEEE Access – volume: 2019 start-page: 1 year: 2019 end-page: 17 article-title: A modified dragonfly optimization algorithm for single‐ and multiobjective problems using brownian motion publication-title: Comput Intell Neurosci – volume: 223 issue: August year: 2020 article-title: A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters publication-title: Optik (Stuttg) – volume: 157 start-page: 778 year: 2017 end-page: 791 article-title: A novel optimal parameters identification of triple‐junction solar cell based on a recently meta‐heuristic water cycle algorithm publication-title: Solar Energy – volume: 94 year: 2021 article-title: An efficient manta ray foraging optimization algorithm for parameter extraction of three‐diode photovoltaic model publication-title: Comput Electric Eng – volume: 224 year: 2021 article-title: Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method publication-title: Energy – volume: 190 start-page: 465 issue: Aug year: 2019 end-page: 474 article-title: Parameter estimation of photovoltaic models with memetic adaptive differential evolution publication-title: Solar Energy – volume: 1 start-page: 67 issue: 1 year: 1997 end-page: 82 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evolut Computat – volume: 100 year: 2022 article-title: Optimal vehicle‐to‐grid and grid‐to‐vehicle scheduling strategy with uncertainty management using improved marine predator algorithm publication-title: Comput Electric Eng – volume: 9 start-page: 3229 year: 2021 end-page: 3248 article-title: MOSMA : multi‐objective slime mould algorithm based on elitist non‐dominated sorting publication-title: IEEE Access – volume: 46 start-page: 5315 year: 2021 end-page: 5321 article-title: Extraction of uncertain parameters of single‐diode photovoltaic module using hybrid particle swarm optimization and grey wolf optimization algorithm publication-title: Mater Today Proc – year: 2020 – volume: 100 start-page: 971 issue: 2 year: 2018 end-page: 981 article-title: Seven‐parameter PV model estimation using differential evolution publication-title: Electric Eng – volume: 40 start-page: 1511 issue: 9 year: 2019 end-page: 1514 article-title: A particle‐swarm‐optimization‐based parameter extraction routine for three‐diode lumped parameter model of organic solar cells publication-title: IEEE Electron Device Lett – volume: 159 start-page: 20 year: 2018 end-page: 50 article-title: Emperor penguin optimizer: a bio‐inspired algorithm for engineering problems publication-title: Knowl Based Syst – volume: 70 start-page: 2435 issue: 2 year: 2022 end-page: 2452 article-title: Multi‐objective grey wolf optimization algorithm for solving real‐world bldc motor design problem publication-title: Comput Mater Cont – volume: 44 start-page: 767 issue: 2 year: 2020 end-page: 779 article-title: Photovoltaic cells parameter estimation using an enhanced teaching–learning‐based optimization algorithm publication-title: Iran J Sci Technol Trans Electr Eng – volume: 84 start-page: 860 issue: 5 year: 2010 end-page: 866 article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction publication-title: Solar Energy – volume: 70 start-page: 557 issue: 1 year: 2022 end-page: 579 article-title: BHGSO: binary hunger games search optimization algorithm for feature selection problem publication-title: Comput Mater Cont – volume: 44 start-page: 6709 issue: 3 year: 2022 end-page: 6736 article-title: A systematic review of solar photovoltaic energy systems design modelling, algorithms, and software publication-title: Energ Sources Part A – year: 2013 – ident: e_1_2_11_62_1 doi: 10.1016/J.EGYR.2022.11.092 – ident: e_1_2_11_81_1 doi: 10.3390/en10081213 – ident: e_1_2_11_45_1 doi: 10.1080/00051144.2020.1834062 – ident: e_1_2_11_14_1 doi: 10.1109/SeFeT55524.2022.9908680 – ident: e_1_2_11_10_1 doi: 10.1002/2050‐7038.13113 – ident: e_1_2_11_50_1 doi: 10.1007/S12065‐021‐00649‐Z – ident: e_1_2_11_58_1 doi: 10.32604/CMC.2022.020847 – ident: e_1_2_11_68_1 doi: 10.1016/J.ENCONMAN.2020.113301 – ident: e_1_2_11_26_1 doi: 10.1016/j.solener.2010.02.012 – ident: e_1_2_11_3_1 doi: 10.1016/j.energy.2013.02.057 – ident: e_1_2_11_5_1 doi: 10.1049/IET‐RPG.2018.5649 – ident: e_1_2_11_6_1 doi: 10.1063/5.0066291 – ident: e_1_2_11_82_1 doi: 10.1109/4235.585893 – ident: e_1_2_11_33_1 doi: 10.1155/2013/362619 – ident: e_1_2_11_36_1 doi: 10.1016/j.solener.2018.06.092 – ident: e_1_2_11_83_1 doi: 10.1007/S00366‐022‐01604‐X/TABLES/15 – ident: e_1_2_11_30_1 doi: 10.1109/3477.484436 – ident: e_1_2_11_7_1 doi: 10.1155/2022/5473266 – ident: e_1_2_11_4_1 doi: 10.3390/en13123216 – ident: e_1_2_11_59_1 doi: 10.32604/CMC.2022.019611 – ident: e_1_2_11_87_1 doi: 10.1016/j.enconman.2018.05.035 – ident: e_1_2_11_28_1 doi: 10.1002/er.3359 – ident: e_1_2_11_49_1 doi: 10.1016/j.enconman.2017.08.088 – ident: e_1_2_11_32_1 doi: 10.3390/en11051060 – ident: e_1_2_11_60_1 doi: 10.1016/J.IJLEO.2021.168513 – ident: e_1_2_11_8_1 doi: 10.1080/15567036.2022.2100517 – ident: e_1_2_11_47_1 doi: 10.1016/j.knosys.2018.06.001 – ident: e_1_2_11_35_1 doi: 10.6113/JPE.2018.18.6.1805 – ident: e_1_2_11_42_1 doi: 10.1109/TSTE.2015.2389858 – ident: e_1_2_11_86_1 doi: 10.1016/j.egyr.2020.01.016 – ident: e_1_2_11_29_1 doi: 10.1016/j.energy.2014.05.011 – ident: e_1_2_11_31_1 doi: 10.1016/j.solener.2017.08.084 – ident: e_1_2_11_37_1 doi: 10.1016/j.enconman.2016.12.082 – ident: e_1_2_11_55_1 doi: 10.1016/J.SOLENER.2016.10.044 – ident: e_1_2_11_22_1 doi: 10.15866/IREE.V16I1.18955 – ident: e_1_2_11_39_1 doi: 10.1016/j.asoc.2019.105583 – ident: e_1_2_11_80_1 doi: 10.1016/j.apenergy.2012.06.036 – ident: e_1_2_11_75_1 doi: 10.1016/j.ijleo.2017.10.081 – ident: e_1_2_11_16_1 doi: 10.1016/J.ASEJ.2020.07.034 – ident: e_1_2_11_89_1 doi: 10.1109/JIOT.2021.3109075 – ident: e_1_2_11_73_1 doi: 10.1016/j.enconman.2020.113114 – ident: e_1_2_11_74_1 doi: 10.1155/2019/6871298 – ident: e_1_2_11_12_1 doi: 10.1016/J.IJLEO.2021.167973 – ident: e_1_2_11_38_1 doi: 10.1109/JPHOTOV.2017.2769000 – ident: e_1_2_11_41_1 doi: 10.1016/j.ijleo.2019.164041 – ident: e_1_2_11_51_1 doi: 10.1016/J.COMPELECENG.2022.107949 – ident: e_1_2_11_40_1 doi: 10.1016/j.isatra.2021.01.045 – ident: e_1_2_11_52_1 doi: 10.1016/J.ENCONMAN.2021.114051 – ident: e_1_2_11_48_1 doi: 10.1016/j.advengsoft.2017.05.014 – ident: e_1_2_11_70_1 doi: 10.1016/J.KNOSYS.2022.108422 – ident: e_1_2_11_91_1 doi: 10.3390/en10070865 – ident: e_1_2_11_44_1 doi: 10.1016/j.enconman.2018.10.069 – ident: e_1_2_11_63_1 doi: 10.1016/J.IJLEO.2022.169379 – ident: e_1_2_11_76_1 doi: 10.1007/s12652‐020‐02746‐w – ident: e_1_2_11_69_1 doi: 10.1007/S10825‐021‐01812‐6 – ident: e_1_2_11_72_1 doi: 10.1016/j.enconman.2020.112764 – ident: e_1_2_11_84_1 doi: 10.1109/ICCSCE.2013.6719960 – ident: e_1_2_11_15_1 doi: 10.1049/RPG2.12475 – ident: e_1_2_11_56_1 doi: 10.1109/ACCESS.2020.3047936 – ident: e_1_2_11_78_1 doi: 10.1093/JCDE/QWAB065 – ident: e_1_2_11_17_1 doi: 10.1088/1757‐899X/937/1/012014 – ident: e_1_2_11_88_1 doi: 10.1016/j.asoc.2012.03.068 – ident: e_1_2_11_13_1 doi: 10.1016/j.rser.2016.03.049 – ident: e_1_2_11_2_1 doi: 10.1515/REVCE‐2016‐0058 – ident: e_1_2_11_77_1 doi: 10.1016/j.energy.2021.120136 – ident: e_1_2_11_9_1 doi: 10.1016/j.enconman.2019.02.003 – ident: e_1_2_11_79_1 doi: 10.1016/j.ijleo.2020.164559 – ident: e_1_2_11_20_1 doi: 10.1007/S10825‐022‐01987‐6 – ident: e_1_2_11_46_1 doi: 10.12785/ijcds/080506 – ident: e_1_2_11_54_1 doi: 10.1007/s40998‐019‐00257‐9 – ident: e_1_2_11_90_1 doi: 10.1007/s00521‐017‐2890‐2 – ident: e_1_2_11_24_1 doi: 10.1016/j.solener.2019.08.022 – ident: e_1_2_11_27_1 doi: 10.1109/LED.2019.2926315 – ident: e_1_2_11_57_1 doi: 10.1016/j.ijleo.2020.165277 – ident: e_1_2_11_11_1 doi: 10.1016/J.MATPR.2020.08.784 – ident: e_1_2_11_23_1 doi: 10.1007/s00202‐017‐0542‐2 – ident: e_1_2_11_21_1 doi: 10.1007/S10462‐020‐09906‐6 – ident: e_1_2_11_71_1 doi: 10.1109/ACCESS.2021.3061529 – ident: e_1_2_11_18_1 doi: 10.1049/EL.2018.0402 – ident: e_1_2_11_19_1 doi: 10.1007/S10825‐017‐1121‐5/FIGURES/8 – ident: e_1_2_11_53_1 doi: 10.1016/J.BSPC.2021.103401 – ident: e_1_2_11_64_1 doi: 10.1016/J.ASOC.2022.108574 – ident: e_1_2_11_67_1 doi: 10.1109/ACCESS.2021.3087739 – ident: e_1_2_11_65_1 doi: 10.1109/ACCESS.2021.3085529 – ident: e_1_2_11_66_1 doi: 10.1007/S10825‐022‐01891‐Z – ident: e_1_2_11_25_1 doi: 10.1088/0957‐0233/12/11/322 – ident: e_1_2_11_34_1 doi: 10.32604/CMC.2022.016488 – ident: e_1_2_11_61_1 doi: 10.1007/S12652‐021‐03564‐4/TABLES/16 – ident: e_1_2_11_85_1 doi: 10.1016/J.COMPELECENG.2021.107304 – ident: e_1_2_11_43_1 doi: 10.3390/APP8112155  | 
    
| SSID | ssj0003152 | 
    
| Score | 2.3637888 | 
    
| Snippet | The photovoltaic (PV) system stands out as a viable energy source due to its environmental friendliness and cleanliness. The conversion rate at which solar... | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Algorithms Brownian random walk chaotic drift mathematical modelling Mathematical models Optimization Optimization algorithms Parameter estimation Parameter identification Photovoltaic cells photovoltaic models Random walk sand cat swarm optimization algorithm Solar power generation  | 
    
| Title | Performance analysis and validation of intelligent tool based on Brownian random walk‐based sand cat swarm optimization algorithm for parameter identification of various solar photovoltaic mathematical models | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnm.3163 https://www.proquest.com/docview/3039650411  | 
    
| Volume | 37 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-1204 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0003152 issn: 0894-3370 databaseCode: ABDBF dateStart: 19880301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1099-1204 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0003152 issn: 0894-3370 databaseCode: AMVHM dateStart: 19880301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0894-3370 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1204 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003152 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYqTu2B_lGxLa0GqYJTYL3Oj3OsqiKEtAhVRULiEDm2A2E3a7TxFokTj8Cz8Qh9ko7jJAsVSKinJLKT2PLY833J-BtCvmolOboOFkglkaBwHQUOJQRhiu6hyJnmTWzO-DDePw4PTqKTNqrS7YXx-hD9Bzc3M5r12k1wkde7S9HQi1mFhDN2Qp-UxQ2b-rlUjmI-2c6Qp2HAWDLsdGeHo93uxoeeaAkv74PUxsvsvSanXft8cMlkZ2HzHXn9j3Tj_3XgDVltwSd889bylrzQs3fk1T1JQrwa9zqu9Xtyd7TcVwCi1S_BEwVooKVPxwSmgLIX9rRgjZmCc44KsLCh-WiCgD5RmQquxHTy5-bWl9fuSVJYqK_EvAKDy1fV7gsFMT0z89KeV4ANAKdQXrnIHShVG9_Uv_w30n2zqKF2LB0uz401uOZaUUqo-s5gt5ukP_UaOd778ev7ftBmgQgkQhEWaK55wXIexYzqJAwFzSkTMlJKIHcUiGjczyMmkYmlXIUiVTSSLk1hgeSLCsU-kJWZmel1ArGiOs7TJKKJDBXy5zgf6oTTOKG6YLoYkO3OIjLZSqS7TB3TzIs7jzIcs8yN2YBs9jUvvSzII3U2OqPK2oWhzhAxpAiKQ0oHZKuxjifvzw4Ox-748bkVP5GXI4RcPkJug6zY-UJ_Rshk8y_N5PgLNr4aLQ | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKOQAHyl_FQoFBQnBKu147iaOeEKJaSneFUCv1gBQ5tkNDN-tqk6USJx6BZ-MR-iQdx0m2IJAQpySKncTy2PN9zvgbQl4YrQS6DhYorZCgCBMGDiUEPEH3kGfMiCY2ZzKNxkd8_zg8XiO73V4Yrw_RL7i5kdHM126AuwXpnZVq6Jd5iYwzYtfIdR4hTXGI6ONKO4r5dDtDkfCAsXjYKc8ORztdzV990QpgXoWpjZ_Z2yCfui_04SWn28s621bffhNv_M8m3CG3W_wJr73B3CVrZn6P3LqiSohXk17KtbpPfn5YbS0A2UqY4IkGtNHCZ2QCm0PRa3vWUFs7A-cfNeDNhumjFQK6RW1LOJez04vvP_z9yj1JyRqqc7koweIMVrZbQ0HOPttFUZ-UgB8ATqS8dME7UOg2xKl_-Vdk_HZZQeWIOpyd2NritFvLQkHZNwab3eT9qR6Qo723h2_GQZsIIlCIRlhghBE5y0QYMWpiziXNKJMq1FoifZQIatz_I6aQjCVCc5loGiqXqTBH_kWlZptkfW7n5iGBSFMTZUkc0lhxjRQ6yoYmFjSKqcmZyQfkVWcSqWpV0l2yjlnq9Z1HKfZZ6vpsQJ73Jc-8Msgfymx1VpW2c0OVImhIEBdzSgfkZWMef62f7k8n7vjoXws-IzfGh5OD9ODd9P1jcnOECMwHzG2R9XqxNE8QQdXZ02akXAK6EB5O | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKkRAc-EdsKTBICE5p1-v8OOKEKKtS2FWFqNQDUuTYDk27Wa82Xipx4hF4Nh6BJ2EcJ9mCQEKckshOYstjz_cl428IeaqV5Og6WCCVRILCdRQ4lBCEKbqHImeaN7E5k2m8fxQeHEfHG-RFtxfG60P0H9zczGjWazfB9UIVu2vV0NN5hYwzZpfI5TBKuYvn23u_1o5iPt3OkKdhwFgy7JRnh6Pd7s5ffdEaYF6EqY2fGd8gH7sW-vCSs52VzXfkl9_EG_-zCzfJ9RZ_wktvMLfIhp7fJtcuqBLi1aSXcq3vkO-H660FIFoJEzxRgDZa-oxMYAooe21PC9aYGTj_qAALG6aPVgjoFpWp4FzMzn58_ebLa_ckKSzU52JZgcEVrGq3hoKYfTLL0p5UgA0AJ1JeueAdKFUb4tS__DMyfrOqoXZEHRYnxhpcdq0oJVR9Z7DbTd6f-i45Gr_-8Go_aBNBBBLRCAs017xgOY9iRnUShoLmlAkZKSWQPgoENe7_EZNIxlKuQpEqGkmXqbBA_kWFYvfI5tzM9X0CsaI6ztMkookMFVLoOB_qhNM4obpguhiQ551JZLJVSXfJOmaZ13ceZThmmRuzAXnS11x4ZZA_1NnurCpr14Y6Q9CQIi4OKR2QZ415_PX-7GA6ccetf634mFw53Btn795M3z4gV0cIwHy83DbZtMuVfogAyuaPmonyEzsYHdI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+and+validation+of+intelligent+tool+based+on+Brownian+random+walk%E2%80%90based+sand+cat+swarm+optimization+algorithm+for+parameter+identification+of+various+solar+photovoltaic+mathematical+models&rft.jtitle=International+journal+of+numerical+modelling&rft.au=Alex+Stanley+Raja%2C+Thaveedhu&rft.au=Kumar%2C+Chandrasekaran&rft.au=Sivaraju%2C+Selligoundanur+Subramanian&rft.au=Jaisiva%2C+Selvaraj&rft.date=2024-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0894-3370&rft.eissn=1099-1204&rft.volume=37&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjnm.3163&rft.externalDBID=10.1002%252Fjnm.3163&rft.externalDocID=JNM3163 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-3370&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-3370&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-3370&client=summon |