Parametric shape and topology optimization: A new level set approach based on cardinal basis functions
Summary The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function, level set methods can be directly coupled with mathematical programming to achieve better numerical robustness and computational effici...
Saved in:
| Published in | International journal for numerical methods in engineering Vol. 114; no. 1; pp. 66 - 87 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Bognor Regis
Wiley Subscription Services, Inc
06.04.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0029-5981 1097-0207 |
| DOI | 10.1002/nme.5733 |
Cover
| Abstract | Summary
The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function, level set methods can be directly coupled with mathematical programming to achieve better numerical robustness and computational efficiency. Moreover, the parametric level set scheme can not only inherit the primary advantages of the conventional level set methods, such as clear boundary representation and the flexibility in handling topological changes, but also alleviate some undesired features from the conventional level set methods, such as the need for reinitialization. However, in the existing radial basis function–based parametric level set method, it is difficult to identify the range of the design variables. Besides, the parametric level set evolution often struggles with large fluctuations during the optimization process. Those issues cause difficulties both in numerical stability and in material property mapping. In this paper, a cardinal basis function is constructed based on the radial basis function partition of unity collocation method to parameterize the level set function. The benefit of using cardinal basis function is that the range of the design variables can now be clearly specified as the value of the level set function. A distance regularization energy functional is also introduced, aiming to maintain the desired signed distance property during the level set evolution. With this desired feature, the level set evolution is stabilized against large fluctuations. In addition, the material properties mapped from the level set function to the finite element model can be more accurate. |
|---|---|
| AbstractList | The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function, level set methods can be directly coupled with mathematical programming to achieve better numerical robustness and computational efficiency. Moreover, the parametric level set scheme can not only inherit the primary advantages of the conventional level set methods, such as clear boundary representation and the flexibility in handling topological changes, but also alleviate some undesired features from the conventional level set methods, such as the need for reinitialization. However, in the existing radial basis function–based parametric level set method, it is difficult to identify the range of the design variables. Besides, the parametric level set evolution often struggles with large fluctuations during the optimization process. Those issues cause difficulties both in numerical stability and in material property mapping. In this paper, a cardinal basis function is constructed based on the radial basis function partition of unity collocation method to parameterize the level set function. The benefit of using cardinal basis function is that the range of the design variables can now be clearly specified as the value of the level set function. A distance regularization energy functional is also introduced, aiming to maintain the desired signed distance property during the level set evolution. With this desired feature, the level set evolution is stabilized against large fluctuations. In addition, the material properties mapped from the level set function to the finite element model can be more accurate. Summary The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function, level set methods can be directly coupled with mathematical programming to achieve better numerical robustness and computational efficiency. Moreover, the parametric level set scheme can not only inherit the primary advantages of the conventional level set methods, such as clear boundary representation and the flexibility in handling topological changes, but also alleviate some undesired features from the conventional level set methods, such as the need for reinitialization. However, in the existing radial basis function–based parametric level set method, it is difficult to identify the range of the design variables. Besides, the parametric level set evolution often struggles with large fluctuations during the optimization process. Those issues cause difficulties both in numerical stability and in material property mapping. In this paper, a cardinal basis function is constructed based on the radial basis function partition of unity collocation method to parameterize the level set function. The benefit of using cardinal basis function is that the range of the design variables can now be clearly specified as the value of the level set function. A distance regularization energy functional is also introduced, aiming to maintain the desired signed distance property during the level set evolution. With this desired feature, the level set evolution is stabilized against large fluctuations. In addition, the material properties mapped from the level set function to the finite element model can be more accurate. |
| Author | Jiao, Xiangmin Chen, Shikui Jiang, Long |
| Author_xml | – sequence: 1 givenname: Long surname: Jiang fullname: Jiang, Long organization: State University of New York at Stony Brook – sequence: 2 givenname: Shikui orcidid: 0000-0003-1841-2102 surname: Chen fullname: Chen, Shikui email: shikui.chen@stonybrook.edu organization: State University of New York at Stony Brook – sequence: 3 givenname: Xiangmin surname: Jiao fullname: Jiao, Xiangmin organization: State University of New York at Stony Brook |
| BookMark | eNp1kEtLAzEUhYNUsK2CPyHgxs3UZDJpMu5K8QX1sdB1yORhU6bJmEwt9dc707oSXV249zuXc84IDHzwBoBzjCYYofzKr82EMkKOwBCjkmUoR2wAht2pzGjJ8QkYpbRCCGOKyBDYFxnl2rTRKZiWsjFQeg3b0IQ6vO9gaFq3dl-ydcFfwxn0Zgtr82lqmEwLZdPEINUSVjIZDYOHSkbtvKz7jUvQbrzqpekUHFtZJ3P2M8fg7fbmdX6fLZ7vHuazRabykpCspARRZXmuKdeMSkVUiZktDEeVpqhChEvGqLZoOuVMFhUxRaUNtxUrKK4wGYOLw9_O2MfGpFaswiZ2hpLIESaYMsaLjpocKBVDStFYoVy7z9hG6WqBkei7FF2Xou-yE1z-EjTRrWXc_YVmB3TrarP7lxNPjzd7_hsuZIV6 |
| CitedBy_id | crossref_primary_10_1115_1_4067921 crossref_primary_10_1016_j_ijrefrig_2021_12_010 crossref_primary_10_1007_s00158_021_02958_4 crossref_primary_10_1016_j_cma_2023_116457 crossref_primary_10_1007_s00158_021_03086_9 crossref_primary_10_1016_j_mechmachtheory_2020_104216 crossref_primary_10_1080_10618562_2019_1681412 crossref_primary_10_1115_1_4042580 crossref_primary_10_1016_j_mser_2023_100755 crossref_primary_10_1007_s00158_019_02444_y crossref_primary_10_1016_j_cma_2020_113574 crossref_primary_10_1115_1_4050105 crossref_primary_10_1007_s11465_019_0536_z crossref_primary_10_1002_nme_5966 crossref_primary_10_1007_s00158_019_02355_y crossref_primary_10_1115_1_4047900 crossref_primary_10_1007_s11465_019_0530_5 crossref_primary_10_1115_1_4047345 crossref_primary_10_32604_cmes_2023_023978 crossref_primary_10_1007_s11431_022_2295_4 crossref_primary_10_1016_j_finel_2021_103719 crossref_primary_10_1016_j_cma_2020_113321 crossref_primary_10_1016_j_cma_2020_113563 crossref_primary_10_1080_15435075_2024_2348061 crossref_primary_10_1007_s00158_018_2064_6 |
| Cites_doi | 10.1007/s00158-013-0978-6 10.1007/BF01637664 10.1016/j.cma.2014.11.002 10.1147/rd.112.0215 10.1007/s00158-010-0602-y 10.1007/BF01214002 10.5194/ms-2-91-2011 10.1016/0021-9991(88)90002-2 10.1016/0045-7825(88)90086-2 10.1006/jcph.1999.6345 10.1016/j.cma.2010.03.005 10.1115/1.4034972 10.1109/TIP.2010.2069690 10.1016/j.jcp.2006.06.029 10.1002/nme.829 10.1016/j.cma.2010.05.013 10.1002/nme.1943 10.1137/11S010840 10.1002/nme.386 10.1115/1.4031803 10.1007/s004190050248 10.1007/BF01650949 10.1007/BF01742754 10.1016/j.cma.2014.01.010 10.1007/s00466-017-1383-6 10.1115/1.4036941 10.1115/IMECE2013-64694 10.1016/S0045-7825(02)00559-5 10.1115/1.4027609 10.1007/s00466-014-1063-8 10.1016/j.cma.2015.05.005 10.1002/nme.1064 10.1016/j.jcp.2003.09.032 10.1016/j.cma.2017.05.003 10.1002/nme.1536 10.1016/j.cma.2017.03.044 10.1016/0045-7825(91)90044-7 10.1007/s00158-008-0250-7 10.1016/j.cma.2015.03.007 10.1002/nme.2874 10.1006/jcph.2000.6581 10.1002/nme.4296 10.1007/s10915-014-9935-9 10.1016/S1631-073X(02)02412-3 10.1007/s00158-016-1453-y 10.1007/s00158-005-0537-x 10.1017/CBO9780511543241 10.1017/S0962492900002671 10.1006/jcph.2001.6789 10.1016/j.cma.2014.08.017 10.1007/s00158-014-1190-z 10.1016/j.jcp.2007.08.011 10.1002/nme.5503 10.1002/nme.4258 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2018 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. – notice: Copyright © 2018 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/nme.5733 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics |
| EISSN | 1097-0207 |
| EndPage | 87 |
| ExternalDocumentID | 10_1002_nme_5733 NME5733 |
| Genre | article |
| GrantInformation_xml | – fundername: The State University of New York funderid: 51007400 – fundername: Ford Motor Company funderid: 242090 – fundername: National Science Foundation funderid: CMMI1462270 |
| GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2933-95305cf82d58d75ac3c917f4e80bd50b038a775df06687a4b3e4bde8fb7451b13 |
| IEDL.DBID | DR2 |
| ISSN | 0029-5981 |
| IngestDate | Fri Jul 25 12:09:29 EDT 2025 Thu Apr 24 22:56:09 EDT 2025 Wed Oct 01 05:10:41 EDT 2025 Wed Jan 22 16:49:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2933-95305cf82d58d75ac3c917f4e80bd50b038a775df06687a4b3e4bde8fb7451b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1841-2102 |
| PQID | 2013157784 |
| PQPubID | 996376 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2013157784 crossref_citationtrail_10_1002_nme_5733 crossref_primary_10_1002_nme_5733 wiley_primary_10_1002_nme_5733_NME5733 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 6 April 2018 |
| PublicationDateYYYYMMDD | 2018-04-06 |
| PublicationDate_xml | – month: 04 year: 2018 text: 6 April 2018 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal for numerical methods in engineering |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 84 2004; 61 2007; 227 2002; 53 2010; 19 2007; 221 2003; 58 2004; 6 1988; 79 2003; 192 2007; 71 2017; 111 1988; 71 1998; 16 2015; 293 2015; 290 1991; 89 2001; 171 1967; 11 2006; 65 2005; 30 2010; 199 1986 2000; 163 1996; 5 2017; 321 2007; 1 2017; 323 1992; 4 2014; 54 2015; 283 2013; 48 1989; 1 2011; 2 2015; 51 2002; 334 1999; 69 2016; 53 2007 2006 2014; 272 2003 2011; 4 2016; 59 2010; 83 1999 2012; 91 2014; 81 2015; 64 2004; 194 2011; 43 2016; 138 1999; 155 2013 2009; 37 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 Bendsøe MP (e_1_2_9_2_1) 2003 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 Osher S (e_1_2_9_30_1) 2006 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 Wang MY (e_1_2_9_18_1) 2004; 6 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Sethian JA (e_1_2_9_33_1) 1999 e_1_2_9_9_1 e_1_2_9_25_1 Reddy JN (e_1_2_9_59_1) 1986 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 192 start-page: 227 issue: 1 year: 2003 end-page: 246 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Eng – volume: 84 start-page: 081008 issue: 8 year: 2017 article-title: Additive manufacturing‐oriented design of graded lattice structures through explicit topology optimization publication-title: J Appl Mech – volume: 6 start-page: 373 year: 2004 end-page: 396 article-title: PDE‐driven level sets, shape sensitivity and curvature flow for structural topology optimization publication-title: Comput Model Eng Sci – volume: 43 start-page: 767 issue: 6 year: 2011 end-page: 784 article-title: On projection methods, convergence and robust formulations in topology optimization publication-title: Struct Multidiscip Optim – volume: 48 start-page: 1031 issue: 6 year: 2013 end-page: 1055 article-title: Topology optimization approaches publication-title: Struct Multidiscip Optim – volume: 163 start-page: 489 issue: 2 year: 2000 end-page: 528 article-title: Structural boundary design via level set and immersed interface methods publication-title: J Comput Phys – volume: 71 start-page: 197 issue: 2 year: 1988 end-page: 224 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput Methods Appl Mech Eng – volume: 194 start-page: 363 issue: 1 year: 2004 end-page: 393 article-title: Structural optimization using sensitivity analysis and a level‐set method publication-title: J Comput Phys – volume: 53 start-page: 1349 issue: 6 year: 2016 end-page: 1382 article-title: Thickness control in structural optimization via a level set method publication-title: Struct Multidiscip Optim – volume: 199 start-page: 2876 issue: 45 year: 2010 end-page: 2891 article-title: A topology optimization method based on the level set method incorporating a fictitious interface energy publication-title: Comput Methods Appl Mech Eng – volume: 11 start-page: 215 issue: 2 year: 1967 end-page: 234 article-title: On the partial difference equations of mathematical physics publication-title: IBM J – volume: 59 start-page: 933 issue: 6 year: 2016 end-page: 965 – volume: 155 start-page: 410 issue: 2 year: 1999 end-page: 438 article-title: A PDE‐based fast local level set method publication-title: J Comput Phys – volume: 89 start-page: 259 issue: 1‐3 year: 1991 end-page: 279 article-title: On CAD‐integrated structural topology and design optimization publication-title: Comput Methods Appl Mech Eng – volume: 91 start-page: 67 issue: 1 year: 2012 end-page: 97 article-title: Explicit level‐set‐based topology optimization using an exact Heaviside function and consistent sensitivity analysis publication-title: Int J Numer Methods Eng – year: 1986 – volume: 4 start-page: 250 issue: 3‐4 year: 1992 end-page: 252 article-title: Generalized shape optimization without homogenization publication-title: Struct Optim – volume: 65 start-page: 2060 issue: 12 year: 2006 end-page: 2090 article-title: Radial basis functions and level set method for structural topology optimization publication-title: Int J Numer Methods Eng – volume: 91 start-page: 843 issue: 8 year: 2012 end-page: 871 article-title: A new level set method for topology optimization of distributed compliant mechanisms publication-title: Int J Numer Methods Eng – volume: 54 start-page: 1357 issue: 5 year: 2014 end-page: 1374 article-title: A simple and efficient preconditioning scheme for Heaviside enriched XFEM publication-title: Comput Mech – volume: 58 start-page: 1571 issue: 10 year: 2003 end-page: 1592 article-title: Vector level sets for description of propagating cracks in finite elements publication-title: Int J Numer Methods Eng – volume: 111 start-page: 1252 issue: 13 year: 2017 end-page: 1273 article-title: Structural shape and topology optimization of cast parts using level set method publication-title: Int J Numer Methods Eng – volume: 71 start-page: 313 issue: 3 year: 2007 end-page: 346 article-title: Shape optimization with topological changes and parametric control publication-title: Int J Numer Methods Eng – volume: 69 start-page: 635 issue: 9‐10 year: 1999 end-page: 654 article-title: Material interpolation schemes in topology optimization publication-title: Arch Appl Mech – volume: 51 start-page: 1159 issue: 5 year: 2015 end-page: 1172 article-title: Matlab code for a level set‐based topology optimization method using a reaction diffusion equation publication-title: Struct Multidiscip Optim – volume: 227 start-page: 680 issue: 1 year: 2007 end-page: 705 article-title: Shape and topology optimization of compliant mechanisms using a parameterization level set method publication-title: J Comput Phys – volume: 293 start-page: 306 year: 2015 end-page: 327 article-title: A geometry projection method for continuum‐based topology optimization with discrete elements publication-title: Comput Methods Appl Mech Eng – volume: 138 start-page: 011402 issue: 1 year: 2016 article-title: Topology optimization of total femur structure: application of parameterized level set method under geometric constraints publication-title: J Mech Des – volume: 334 start-page: 1125 issue: 12 year: 2002 end-page: 1130 article-title: A level‐set method for shape optimization publication-title: C R Math – volume: 1 start-page: 193 issue: 4 year: 1989 end-page: 202 article-title: Optimal shape design as a material distribution problem publication-title: Struct Optim – volume: 283 start-page: 1570 year: 2015 end-page: 1586 article-title: A multi‐material level set‐based topology and shape optimization method publication-title: Comput Methods Appl Mech Eng – volume: 84 start-page: 011011 issue: 1 year: 2017 article-title: Structural topology optimization through explicit boundary evolution publication-title: J Appl Mech – volume: 171 start-page: 272 issue: 1 year: 2001 end-page: 288 article-title: Level set methods for optimization problems involving geometry and constraints: i. frequencies of a two‐density inhomogeneous drum publication-title: J Comput Phys – volume: 321 start-page: 316 year: 2017 end-page: 336 article-title: Parametric structural shape & topology optimization with a variational distance‐regularized level set method publication-title: Comput Methods Appl Mech Eng – year: 2007 – year: 2003 – volume: 323 start-page: 27 year: 2017 end-page: 63 article-title: Self‐supporting structure design in additive manufacturing through explicit topology optimization publication-title: Comput Methods Appl Mech Eng – volume: 221 start-page: 395 issue: 1 year: 2007 end-page: 421 article-title: An extended level set method for shape and topology optimization publication-title: J Comput Phys – volume: 290 start-page: 290 year: 2015 end-page: 313 article-title: Explicit layout control in optimal design of structural systems with multiple embedding components publication-title: Comput Methods Appl Mech Eng – volume: 64 start-page: 341 issue: 2 year: 2015 end-page: 367 article-title: A radial basis function partition of unity collocation method for convection–diffusion equations arising in financial applications publication-title: J Sci Comput – volume: 61 start-page: 238 issue: 2 year: 2004 end-page: 254 article-title: Achieving minimum length scale in topology optimization using nodal design variables and projection functions publication-title: Int J Numer Methods Eng – volume: 4 start-page: 190 year: 2011 end-page: 209 article-title: Choosing basis functions and shape parameters for radial basis function methods publication-title: SIAM Undergraduate Research Online – volume: 5 start-page: 309 year: 1996 end-page: 395 article-title: Theory, algorithms, and applications of level set methods for propagating interfaces publication-title: Acta Numerica – volume: 37 start-page: 463 issue: 5 year: 2009 end-page: 473 article-title: Imposing maximum length scale in topology optimization publication-title: Struct Multidiscip Optim – volume: 1 year: 2007 – volume: 79 start-page: 12 issue: 1 year: 1988 end-page: 49 article-title: Fronts propagating with curvature‐dependent speed: algorithms based on Hamilton‐Jacobi formulations publication-title: J Comput Phys – volume: 53 start-page: 1959 issue: 8 year: 2002 end-page: 1977 article-title: The extended finite element method (XFEM) for solidification problems publication-title: Int J Numer Methods Eng – volume: 272 start-page: 354 year: 2014 end-page: 378 article-title: Explicit feature control in structural topology optimization via level set method publication-title: Comput Methods Appl Mech Eng – year: 2006 – volume: 283 start-page: 1214 year: 2015 end-page: 1239 article-title: Structural topology and shape optimization using a level set method with distance‐suppression scheme publication-title: Comput Methods Appl Mech Eng – volume: 30 start-page: 428 issue: 6 year: 2005 end-page: 436 article-title: A reevaluation of the SIMP method with filtering and an alternative formulation for solid–void topology optimization publication-title: Struct Multidiscip Optim – volume: 83 start-page: 1580 issue: 12 year: 2010 end-page: 1624 article-title: A structural optimization method based on the level set method using a new geometry‐based re‐initialization scheme publication-title: Int J Numer Methods Eng – volume: 16 start-page: 68 issue: 1 year: 1998 end-page: 75 article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh‐dependencies and local minima publication-title: Struct Optimization – volume: 1 start-page: 81 issue: 2 year: 1989 end-page: 89 article-title: CONLIN: an efficient dual optimizer based on convex approximation concepts publication-title: Struct Optimization – volume: 81 start-page: 081009 issue: 8 year: 2014 article-title: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework publication-title: J Appl Mech – volume: 2 start-page: 91 issue: 1 year: 2011 end-page: 98 article-title: Level set‐based topology optimisation of a compliant mechanism design using mathematical programming publication-title: Mech Sci – volume: 199 start-page: 2059 issue: 29 year: 2010 end-page: 2071 article-title: Full analytical sensitivities in NURBS based isogeometric shape optimization publication-title: Comput Methods Appl Mech Eng – volume: 19 start-page: 3243 issue: 12 year: 2010 end-page: 3254 article-title: Distance regularized level set evolution and its application to image segmentation publication-title: IEEE Trans Image Process – year: 1999 – year: 2013 – ident: e_1_2_9_4_1 doi: 10.1007/s00158-013-0978-6 – ident: e_1_2_9_49_1 doi: 10.1007/BF01637664 – ident: e_1_2_9_48_1 – ident: e_1_2_9_60_1 doi: 10.1016/j.cma.2014.11.002 – ident: e_1_2_9_32_1 doi: 10.1147/rd.112.0215 – ident: e_1_2_9_12_1 doi: 10.1007/s00158-010-0602-y – ident: e_1_2_9_13_1 doi: 10.1007/BF01214002 – ident: e_1_2_9_55_1 doi: 10.5194/ms-2-91-2011 – ident: e_1_2_9_16_1 doi: 10.1016/0021-9991(88)90002-2 – ident: e_1_2_9_3_1 doi: 10.1016/0045-7825(88)90086-2 – volume-title: Applied Functional Analysis and Variational Methods in Engineering year: 1986 ident: e_1_2_9_59_1 – volume: 6 start-page: 373 year: 2004 ident: e_1_2_9_18_1 article-title: PDE‐driven level sets, shape sensitivity and curvature flow for structural topology optimization publication-title: Comput Model Eng Sci – ident: e_1_2_9_29_1 doi: 10.1006/jcph.1999.6345 – ident: e_1_2_9_47_1 – ident: e_1_2_9_45_1 doi: 10.1016/j.cma.2010.03.005 – ident: e_1_2_9_46_1 doi: 10.1115/1.4034972 – ident: e_1_2_9_56_1 doi: 10.1109/TIP.2010.2069690 – ident: e_1_2_9_63_1 – volume-title: Level Set Methods and Fast Marching Methods: Evolving Interfaces In Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science year: 1999 ident: e_1_2_9_33_1 – ident: e_1_2_9_43_1 doi: 10.1016/j.jcp.2006.06.029 – ident: e_1_2_9_51_1 doi: 10.1002/nme.829 – ident: e_1_2_9_35_1 doi: 10.1016/j.cma.2010.05.013 – ident: e_1_2_9_44_1 doi: 10.1002/nme.1943 – ident: e_1_2_9_62_1 doi: 10.1137/11S010840 – ident: e_1_2_9_50_1 doi: 10.1002/nme.386 – ident: e_1_2_9_27_1 doi: 10.1115/1.4031803 – ident: e_1_2_9_7_1 doi: 10.1007/s004190050248 – ident: e_1_2_9_5_1 doi: 10.1007/BF01650949 – ident: e_1_2_9_6_1 doi: 10.1007/BF01742754 – ident: e_1_2_9_21_1 doi: 10.1016/j.cma.2014.01.010 – ident: e_1_2_9_26_1 doi: 10.1007/s00466-017-1383-6 – ident: e_1_2_9_40_1 doi: 10.1115/1.4036941 – ident: e_1_2_9_64_1 doi: 10.1115/IMECE2013-64694 – ident: e_1_2_9_19_1 doi: 10.1016/S0045-7825(02)00559-5 – volume-title: Level Set Methods and Dynamic Implicit Surfaces year: 2006 ident: e_1_2_9_30_1 – ident: e_1_2_9_38_1 doi: 10.1115/1.4027609 – ident: e_1_2_9_52_1 doi: 10.1007/s00466-014-1063-8 – ident: e_1_2_9_9_1 doi: 10.1016/j.cma.2015.05.005 – ident: e_1_2_9_11_1 doi: 10.1002/nme.1064 – ident: e_1_2_9_15_1 doi: 10.1016/j.jcp.2003.09.032 – ident: e_1_2_9_22_1 doi: 10.1016/j.cma.2017.05.003 – ident: e_1_2_9_42_1 doi: 10.1002/nme.1536 – ident: e_1_2_9_57_1 doi: 10.1016/j.cma.2017.03.044 – ident: e_1_2_9_65_1 doi: 10.1016/0045-7825(91)90044-7 – ident: e_1_2_9_23_1 doi: 10.1007/s00158-008-0250-7 – ident: e_1_2_9_10_1 doi: 10.1016/j.cma.2015.03.007 – ident: e_1_2_9_31_1 doi: 10.1002/nme.2874 – ident: e_1_2_9_58_1 doi: 10.1006/jcph.2000.6581 – ident: e_1_2_9_54_1 doi: 10.1002/nme.4296 – volume-title: Topology Optimization‐Theory, Methods, and Applications year: 2003 ident: e_1_2_9_2_1 – ident: e_1_2_9_39_1 doi: 10.1016/j.cma.2017.05.003 – ident: e_1_2_9_53_1 doi: 10.1007/s10915-014-9935-9 – ident: e_1_2_9_20_1 doi: 10.1016/S1631-073X(02)02412-3 – ident: e_1_2_9_36_1 doi: 10.5194/ms-2-91-2011 – ident: e_1_2_9_24_1 doi: 10.1007/s00158-016-1453-y – ident: e_1_2_9_8_1 doi: 10.1007/s00158-005-0537-x – ident: e_1_2_9_61_1 doi: 10.1017/CBO9780511543241 – ident: e_1_2_9_14_1 doi: 10.1017/S0962492900002671 – ident: e_1_2_9_17_1 doi: 10.1006/jcph.2001.6789 – ident: e_1_2_9_41_1 doi: 10.1016/j.cma.2014.08.017 – ident: e_1_2_9_37_1 doi: 10.1007/s00158-014-1190-z – ident: e_1_2_9_28_1 doi: 10.1016/j.jcp.2007.08.011 – ident: e_1_2_9_25_1 doi: 10.1002/nme.5503 – ident: e_1_2_9_34_1 doi: 10.1002/nme.4258 |
| SSID | ssj0011503 |
| Score | 2.3939097 |
| Snippet | Summary
The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set... The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function,... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 66 |
| SubjectTerms | Basis functions Boundary representation cardinal basis function Collocation methods Computing time distance‐regularized evolution Evolution Finite element method Mathematical models Mathematical programming Numerical stability parametric level set method Radial basis function Regularization Robustness (mathematics) Topology optimization Variations |
| Title | Parametric shape and topology optimization: A new level set approach based on cardinal basis functions |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.5733 https://www.proquest.com/docview/2013157784 |
| Volume | 114 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0029-5981 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yJ31wOhWnUyKIPnXrJWky34ZsiLAh4mDgQ8mtKG7dsN2D_npzeplTFMSn0nIS0pycnC_tly8InftKMdPVsRMTVzlEhdoRVCiHUUV0qKQiImdbjMKbMbmd0EnJqoS9MIU-xOqDG0RGPl9DgAuZdtZEQ2emDWJ-dvr1gjBfTd2vlKMA5wQVu4N2uVfpzrp-pyr4NRN9wst1kJpnmUEdPVbtK8glL-1lJtvq_Zt04_9eYAdtl-AT94rRsos2TNJA9RKI4jLM0wbaWlMptHfDlbRruofiOwF8LhD2x-mTWBgsEo2z4qyFNzy3U9Cs3Nt5hXvYonY8BWISTk2GKwVzDMlT43mCFYxQaJR98pxiSLN5JOyj8aD_cH3jlIc1OMoihgB-A7tUxdzXlGtm3R0ouxKMieGu1NSVbsAFY1THFuNwJogMDJHa8FgyQj3pBQeolswTc4iw8ozHmZR-wLTFS1LQ2PddYpix9rbmJrqsHBepUskcDtSYRoUGsx_Zro2ga5vobGW5KNQ7frBpVb6PyvhNIx9kiChjnDTRRe7EX8tHo2Efrkd_NTxGm7Z6ntN_whaqZa9Lc2KRTSZP8zH8AW9A92o |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-wwEB68PKgP3sX1mgMHferaS9JEfRJR9hzdRUTBB6HkVhS1K7Y-6K8308u6ioL4VFombZrJZL4kk28A_oZac7trUi-lvvaojo0nmdQeZ5qaWCtNZRlt0Ys7l_T_Fbsagf3mLEzFDzFYcEPLKMdrNHBckN4ZYg19sG1k8xuFcRq7aQoiovMBdxQinaiJ72C7ImiYZ_1wpyn50Re9A8xhmFr6meMZuG5qWIWX3LWfC9XWr5_IG3_5C7MwXeNPclB1mDkYsdk8zNRYlNSWns_D1BBRobvrDthd8wVIzySGdCG3P8lv5KMlMjOkqNItvJC-G4Ue6uOde-SAOOBO7jE2ieS2IA2JOUH_aUg_Ixo7KVbKPbnNCXra0hgW4fL46OKw49X5GjztQEOEO8E-06kIDROGO41H2k0GU2qFrwzzlR8JyTkzqYM5gkuqIkuVsSJVnLJABdESjGX9zC4D0YENBFcqjLhxkElJloahTy23Tt69uQXbjeYSXZOZY06N-6SiYQ4T17QJNm0L_gwkHysCjy9k1hrlJ7UJ50mITESMc0FbsFVq8dvySa97hNeVnwpuwkTnonuanP7rnazCpPuUKKOB4jUYK56e7boDOoXaKDv0G-mz-4s |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD5iTJrGw9gKiG4wPGnantLmYscGnhC0YpdW1bRKfUCKfBVokFZLeIBfP59cum7aJMRTlOQ4cXx8fL4knz8DvI-15vbQuMDRUAdUpyaQTOqAM01NqpWmsmJbjNPzKf08Y7M1OG7nwtT6EMsPbhgZ1XiNAW4XxvVXVENvbA_V_J7AU8oOBfL5zr4ttaMQ6SQtv8Ofjlrl2TDutyX_zEW_AeYqTK3yzHATLtoa1vSSH73bUvX0_V_ijY98hJfwosGf5KTuMK9gzeYd2GywKGkivejAxopQod8bLdVdiy1wE4mULtT2J8WlXFgic0PKermFOzL3o9BNM73ziJwQD9zJNXKTSGFL0oqYE8yfhsxzorGTYqX8kauCYKatgmEbpsPB99PzoFmvIdAeNCT4Jzhk2onYMGG493ii_cugo1aEyrBQhYmQnDPjPMwRXFKVWKqMFU5xyiIVJTuwns9zuwtERzYSXKk44cZDJiWZi-OQWm69vb9yFz62nst0I2aOa2pcZ7UMc5z5ps2wabvwbmm5qAU8_mGz1zo_a0K4yGJUImKcC9qFD5UX_1s-G48GuH39UMMDeDY5G2ZfP42_vIHn_k6iIgOle7Be_ry1-x7nlOpt1Z9_AZiY-w8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+shape+and+topology+optimization%3A+A+new+level+set+approach+based+on+cardinal+basis+functions&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Long%2C+Jiang&rft.au=Chen%2C+Shikui&rft.au=Jiao%2C+Xiangmin&rft.date=2018-04-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=114&rft.issue=1&rft.spage=66&rft.epage=87&rft_id=info:doi/10.1002%2Fnme.5733&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |