Parametric shape and topology optimization: A new level set approach based on cardinal basis functions

Summary The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function, level set methods can be directly coupled with mathematical programming to achieve better numerical robustness and computational effici...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 114; no. 1; pp. 66 - 87
Main Authors Jiang, Long, Chen, Shikui, Jiao, Xiangmin
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 06.04.2018
Subjects
Online AccessGet full text
ISSN0029-5981
1097-0207
DOI10.1002/nme.5733

Cover

Abstract Summary The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function, level set methods can be directly coupled with mathematical programming to achieve better numerical robustness and computational efficiency. Moreover, the parametric level set scheme can not only inherit the primary advantages of the conventional level set methods, such as clear boundary representation and the flexibility in handling topological changes, but also alleviate some undesired features from the conventional level set methods, such as the need for reinitialization. However, in the existing radial basis function–based parametric level set method, it is difficult to identify the range of the design variables. Besides, the parametric level set evolution often struggles with large fluctuations during the optimization process. Those issues cause difficulties both in numerical stability and in material property mapping. In this paper, a cardinal basis function is constructed based on the radial basis function partition of unity collocation method to parameterize the level set function. The benefit of using cardinal basis function is that the range of the design variables can now be clearly specified as the value of the level set function. A distance regularization energy functional is also introduced, aiming to maintain the desired signed distance property during the level set evolution. With this desired feature, the level set evolution is stabilized against large fluctuations. In addition, the material properties mapped from the level set function to the finite element model can be more accurate.
AbstractList The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function, level set methods can be directly coupled with mathematical programming to achieve better numerical robustness and computational efficiency. Moreover, the parametric level set scheme can not only inherit the primary advantages of the conventional level set methods, such as clear boundary representation and the flexibility in handling topological changes, but also alleviate some undesired features from the conventional level set methods, such as the need for reinitialization. However, in the existing radial basis function–based parametric level set method, it is difficult to identify the range of the design variables. Besides, the parametric level set evolution often struggles with large fluctuations during the optimization process. Those issues cause difficulties both in numerical stability and in material property mapping. In this paper, a cardinal basis function is constructed based on the radial basis function partition of unity collocation method to parameterize the level set function. The benefit of using cardinal basis function is that the range of the design variables can now be clearly specified as the value of the level set function. A distance regularization energy functional is also introduced, aiming to maintain the desired signed distance property during the level set evolution. With this desired feature, the level set evolution is stabilized against large fluctuations. In addition, the material properties mapped from the level set function to the finite element model can be more accurate.
Summary The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function, level set methods can be directly coupled with mathematical programming to achieve better numerical robustness and computational efficiency. Moreover, the parametric level set scheme can not only inherit the primary advantages of the conventional level set methods, such as clear boundary representation and the flexibility in handling topological changes, but also alleviate some undesired features from the conventional level set methods, such as the need for reinitialization. However, in the existing radial basis function–based parametric level set method, it is difficult to identify the range of the design variables. Besides, the parametric level set evolution often struggles with large fluctuations during the optimization process. Those issues cause difficulties both in numerical stability and in material property mapping. In this paper, a cardinal basis function is constructed based on the radial basis function partition of unity collocation method to parameterize the level set function. The benefit of using cardinal basis function is that the range of the design variables can now be clearly specified as the value of the level set function. A distance regularization energy functional is also introduced, aiming to maintain the desired signed distance property during the level set evolution. With this desired feature, the level set evolution is stabilized against large fluctuations. In addition, the material properties mapped from the level set function to the finite element model can be more accurate.
Author Jiao, Xiangmin
Chen, Shikui
Jiang, Long
Author_xml – sequence: 1
  givenname: Long
  surname: Jiang
  fullname: Jiang, Long
  organization: State University of New York at Stony Brook
– sequence: 2
  givenname: Shikui
  orcidid: 0000-0003-1841-2102
  surname: Chen
  fullname: Chen, Shikui
  email: shikui.chen@stonybrook.edu
  organization: State University of New York at Stony Brook
– sequence: 3
  givenname: Xiangmin
  surname: Jiao
  fullname: Jiao, Xiangmin
  organization: State University of New York at Stony Brook
BookMark eNp1kEtLAzEUhYNUsK2CPyHgxs3UZDJpMu5K8QX1sdB1yORhU6bJmEwt9dc707oSXV249zuXc84IDHzwBoBzjCYYofzKr82EMkKOwBCjkmUoR2wAht2pzGjJ8QkYpbRCCGOKyBDYFxnl2rTRKZiWsjFQeg3b0IQ6vO9gaFq3dl-ydcFfwxn0Zgtr82lqmEwLZdPEINUSVjIZDYOHSkbtvKz7jUvQbrzqpekUHFtZJ3P2M8fg7fbmdX6fLZ7vHuazRabykpCspARRZXmuKdeMSkVUiZktDEeVpqhChEvGqLZoOuVMFhUxRaUNtxUrKK4wGYOLw9_O2MfGpFaswiZ2hpLIESaYMsaLjpocKBVDStFYoVy7z9hG6WqBkei7FF2Xou-yE1z-EjTRrWXc_YVmB3TrarP7lxNPjzd7_hsuZIV6
CitedBy_id crossref_primary_10_1115_1_4067921
crossref_primary_10_1016_j_ijrefrig_2021_12_010
crossref_primary_10_1007_s00158_021_02958_4
crossref_primary_10_1016_j_cma_2023_116457
crossref_primary_10_1007_s00158_021_03086_9
crossref_primary_10_1016_j_mechmachtheory_2020_104216
crossref_primary_10_1080_10618562_2019_1681412
crossref_primary_10_1115_1_4042580
crossref_primary_10_1016_j_mser_2023_100755
crossref_primary_10_1007_s00158_019_02444_y
crossref_primary_10_1016_j_cma_2020_113574
crossref_primary_10_1115_1_4050105
crossref_primary_10_1007_s11465_019_0536_z
crossref_primary_10_1002_nme_5966
crossref_primary_10_1007_s00158_019_02355_y
crossref_primary_10_1115_1_4047900
crossref_primary_10_1007_s11465_019_0530_5
crossref_primary_10_1115_1_4047345
crossref_primary_10_32604_cmes_2023_023978
crossref_primary_10_1007_s11431_022_2295_4
crossref_primary_10_1016_j_finel_2021_103719
crossref_primary_10_1016_j_cma_2020_113321
crossref_primary_10_1016_j_cma_2020_113563
crossref_primary_10_1080_15435075_2024_2348061
crossref_primary_10_1007_s00158_018_2064_6
Cites_doi 10.1007/s00158-013-0978-6
10.1007/BF01637664
10.1016/j.cma.2014.11.002
10.1147/rd.112.0215
10.1007/s00158-010-0602-y
10.1007/BF01214002
10.5194/ms-2-91-2011
10.1016/0021-9991(88)90002-2
10.1016/0045-7825(88)90086-2
10.1006/jcph.1999.6345
10.1016/j.cma.2010.03.005
10.1115/1.4034972
10.1109/TIP.2010.2069690
10.1016/j.jcp.2006.06.029
10.1002/nme.829
10.1016/j.cma.2010.05.013
10.1002/nme.1943
10.1137/11S010840
10.1002/nme.386
10.1115/1.4031803
10.1007/s004190050248
10.1007/BF01650949
10.1007/BF01742754
10.1016/j.cma.2014.01.010
10.1007/s00466-017-1383-6
10.1115/1.4036941
10.1115/IMECE2013-64694
10.1016/S0045-7825(02)00559-5
10.1115/1.4027609
10.1007/s00466-014-1063-8
10.1016/j.cma.2015.05.005
10.1002/nme.1064
10.1016/j.jcp.2003.09.032
10.1016/j.cma.2017.05.003
10.1002/nme.1536
10.1016/j.cma.2017.03.044
10.1016/0045-7825(91)90044-7
10.1007/s00158-008-0250-7
10.1016/j.cma.2015.03.007
10.1002/nme.2874
10.1006/jcph.2000.6581
10.1002/nme.4296
10.1007/s10915-014-9935-9
10.1016/S1631-073X(02)02412-3
10.1007/s00158-016-1453-y
10.1007/s00158-005-0537-x
10.1017/CBO9780511543241
10.1017/S0962492900002671
10.1006/jcph.2001.6789
10.1016/j.cma.2014.08.017
10.1007/s00158-014-1190-z
10.1016/j.jcp.2007.08.011
10.1002/nme.5503
10.1002/nme.4258
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.5733
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 87
ExternalDocumentID 10_1002_nme_5733
NME5733
Genre article
GrantInformation_xml – fundername: The State University of New York
  funderid: 51007400
– fundername: Ford Motor Company
  funderid: 242090
– fundername: National Science Foundation
  funderid: CMMI1462270
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2933-95305cf82d58d75ac3c917f4e80bd50b038a775df06687a4b3e4bde8fb7451b13
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Fri Jul 25 12:09:29 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
Wed Oct 01 05:10:41 EDT 2025
Wed Jan 22 16:49:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2933-95305cf82d58d75ac3c917f4e80bd50b038a775df06687a4b3e4bde8fb7451b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1841-2102
PQID 2013157784
PQPubID 996376
PageCount 22
ParticipantIDs proquest_journals_2013157784
crossref_citationtrail_10_1002_nme_5733
crossref_primary_10_1002_nme_5733
wiley_primary_10_1002_nme_5733_NME5733
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 6 April 2018
PublicationDateYYYYMMDD 2018-04-06
PublicationDate_xml – month: 04
  year: 2018
  text: 6 April 2018
  day: 06
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 84
2004; 61
2007; 227
2002; 53
2010; 19
2007; 221
2003; 58
2004; 6
1988; 79
2003; 192
2007; 71
2017; 111
1988; 71
1998; 16
2015; 293
2015; 290
1991; 89
2001; 171
1967; 11
2006; 65
2005; 30
2010; 199
1986
2000; 163
1996; 5
2017; 321
2007; 1
2017; 323
1992; 4
2014; 54
2015; 283
2013; 48
1989; 1
2011; 2
2015; 51
2002; 334
1999; 69
2016; 53
2007
2006
2014; 272
2003
2011; 4
2016; 59
2010; 83
1999
2012; 91
2014; 81
2015; 64
2004; 194
2011; 43
2016; 138
1999; 155
2013
2009; 37
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
Bendsøe MP (e_1_2_9_2_1) 2003
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
Osher S (e_1_2_9_30_1) 2006
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
Wang MY (e_1_2_9_18_1) 2004; 6
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Sethian JA (e_1_2_9_33_1) 1999
e_1_2_9_9_1
e_1_2_9_25_1
Reddy JN (e_1_2_9_59_1) 1986
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 192
  start-page: 227
  issue: 1
  year: 2003
  end-page: 246
  article-title: A level set method for structural topology optimization
  publication-title: Comput Methods Appl Mech Eng
– volume: 84
  start-page: 081008
  issue: 8
  year: 2017
  article-title: Additive manufacturing‐oriented design of graded lattice structures through explicit topology optimization
  publication-title: J Appl Mech
– volume: 6
  start-page: 373
  year: 2004
  end-page: 396
  article-title: PDE‐driven level sets, shape sensitivity and curvature flow for structural topology optimization
  publication-title: Comput Model Eng Sci
– volume: 43
  start-page: 767
  issue: 6
  year: 2011
  end-page: 784
  article-title: On projection methods, convergence and robust formulations in topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 48
  start-page: 1031
  issue: 6
  year: 2013
  end-page: 1055
  article-title: Topology optimization approaches
  publication-title: Struct Multidiscip Optim
– volume: 163
  start-page: 489
  issue: 2
  year: 2000
  end-page: 528
  article-title: Structural boundary design via level set and immersed interface methods
  publication-title: J Comput Phys
– volume: 71
  start-page: 197
  issue: 2
  year: 1988
  end-page: 224
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput Methods Appl Mech Eng
– volume: 194
  start-page: 363
  issue: 1
  year: 2004
  end-page: 393
  article-title: Structural optimization using sensitivity analysis and a level‐set method
  publication-title: J Comput Phys
– volume: 53
  start-page: 1349
  issue: 6
  year: 2016
  end-page: 1382
  article-title: Thickness control in structural optimization via a level set method
  publication-title: Struct Multidiscip Optim
– volume: 199
  start-page: 2876
  issue: 45
  year: 2010
  end-page: 2891
  article-title: A topology optimization method based on the level set method incorporating a fictitious interface energy
  publication-title: Comput Methods Appl Mech Eng
– volume: 11
  start-page: 215
  issue: 2
  year: 1967
  end-page: 234
  article-title: On the partial difference equations of mathematical physics
  publication-title: IBM J
– volume: 59
  start-page: 933
  issue: 6
  year: 2016
  end-page: 965
– volume: 155
  start-page: 410
  issue: 2
  year: 1999
  end-page: 438
  article-title: A PDE‐based fast local level set method
  publication-title: J Comput Phys
– volume: 89
  start-page: 259
  issue: 1‐3
  year: 1991
  end-page: 279
  article-title: On CAD‐integrated structural topology and design optimization
  publication-title: Comput Methods Appl Mech Eng
– volume: 91
  start-page: 67
  issue: 1
  year: 2012
  end-page: 97
  article-title: Explicit level‐set‐based topology optimization using an exact Heaviside function and consistent sensitivity analysis
  publication-title: Int J Numer Methods Eng
– year: 1986
– volume: 4
  start-page: 250
  issue: 3‐4
  year: 1992
  end-page: 252
  article-title: Generalized shape optimization without homogenization
  publication-title: Struct Optim
– volume: 65
  start-page: 2060
  issue: 12
  year: 2006
  end-page: 2090
  article-title: Radial basis functions and level set method for structural topology optimization
  publication-title: Int J Numer Methods Eng
– volume: 91
  start-page: 843
  issue: 8
  year: 2012
  end-page: 871
  article-title: A new level set method for topology optimization of distributed compliant mechanisms
  publication-title: Int J Numer Methods Eng
– volume: 54
  start-page: 1357
  issue: 5
  year: 2014
  end-page: 1374
  article-title: A simple and efficient preconditioning scheme for Heaviside enriched XFEM
  publication-title: Comput Mech
– volume: 58
  start-page: 1571
  issue: 10
  year: 2003
  end-page: 1592
  article-title: Vector level sets for description of propagating cracks in finite elements
  publication-title: Int J Numer Methods Eng
– volume: 111
  start-page: 1252
  issue: 13
  year: 2017
  end-page: 1273
  article-title: Structural shape and topology optimization of cast parts using level set method
  publication-title: Int J Numer Methods Eng
– volume: 71
  start-page: 313
  issue: 3
  year: 2007
  end-page: 346
  article-title: Shape optimization with topological changes and parametric control
  publication-title: Int J Numer Methods Eng
– volume: 69
  start-page: 635
  issue: 9‐10
  year: 1999
  end-page: 654
  article-title: Material interpolation schemes in topology optimization
  publication-title: Arch Appl Mech
– volume: 51
  start-page: 1159
  issue: 5
  year: 2015
  end-page: 1172
  article-title: Matlab code for a level set‐based topology optimization method using a reaction diffusion equation
  publication-title: Struct Multidiscip Optim
– volume: 227
  start-page: 680
  issue: 1
  year: 2007
  end-page: 705
  article-title: Shape and topology optimization of compliant mechanisms using a parameterization level set method
  publication-title: J Comput Phys
– volume: 293
  start-page: 306
  year: 2015
  end-page: 327
  article-title: A geometry projection method for continuum‐based topology optimization with discrete elements
  publication-title: Comput Methods Appl Mech Eng
– volume: 138
  start-page: 011402
  issue: 1
  year: 2016
  article-title: Topology optimization of total femur structure: application of parameterized level set method under geometric constraints
  publication-title: J Mech Des
– volume: 334
  start-page: 1125
  issue: 12
  year: 2002
  end-page: 1130
  article-title: A level‐set method for shape optimization
  publication-title: C R Math
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  end-page: 202
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct Optim
– volume: 283
  start-page: 1570
  year: 2015
  end-page: 1586
  article-title: A multi‐material level set‐based topology and shape optimization method
  publication-title: Comput Methods Appl Mech Eng
– volume: 84
  start-page: 011011
  issue: 1
  year: 2017
  article-title: Structural topology optimization through explicit boundary evolution
  publication-title: J Appl Mech
– volume: 171
  start-page: 272
  issue: 1
  year: 2001
  end-page: 288
  article-title: Level set methods for optimization problems involving geometry and constraints: i. frequencies of a two‐density inhomogeneous drum
  publication-title: J Comput Phys
– volume: 321
  start-page: 316
  year: 2017
  end-page: 336
  article-title: Parametric structural shape & topology optimization with a variational distance‐regularized level set method
  publication-title: Comput Methods Appl Mech Eng
– year: 2007
– year: 2003
– volume: 323
  start-page: 27
  year: 2017
  end-page: 63
  article-title: Self‐supporting structure design in additive manufacturing through explicit topology optimization
  publication-title: Comput Methods Appl Mech Eng
– volume: 221
  start-page: 395
  issue: 1
  year: 2007
  end-page: 421
  article-title: An extended level set method for shape and topology optimization
  publication-title: J Comput Phys
– volume: 290
  start-page: 290
  year: 2015
  end-page: 313
  article-title: Explicit layout control in optimal design of structural systems with multiple embedding components
  publication-title: Comput Methods Appl Mech Eng
– volume: 64
  start-page: 341
  issue: 2
  year: 2015
  end-page: 367
  article-title: A radial basis function partition of unity collocation method for convection–diffusion equations arising in financial applications
  publication-title: J Sci Comput
– volume: 61
  start-page: 238
  issue: 2
  year: 2004
  end-page: 254
  article-title: Achieving minimum length scale in topology optimization using nodal design variables and projection functions
  publication-title: Int J Numer Methods Eng
– volume: 4
  start-page: 190
  year: 2011
  end-page: 209
  article-title: Choosing basis functions and shape parameters for radial basis function methods
  publication-title: SIAM Undergraduate Research Online
– volume: 5
  start-page: 309
  year: 1996
  end-page: 395
  article-title: Theory, algorithms, and applications of level set methods for propagating interfaces
  publication-title: Acta Numerica
– volume: 37
  start-page: 463
  issue: 5
  year: 2009
  end-page: 473
  article-title: Imposing maximum length scale in topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 1
  year: 2007
– volume: 79
  start-page: 12
  issue: 1
  year: 1988
  end-page: 49
  article-title: Fronts propagating with curvature‐dependent speed: algorithms based on Hamilton‐Jacobi formulations
  publication-title: J Comput Phys
– volume: 53
  start-page: 1959
  issue: 8
  year: 2002
  end-page: 1977
  article-title: The extended finite element method (XFEM) for solidification problems
  publication-title: Int J Numer Methods Eng
– volume: 272
  start-page: 354
  year: 2014
  end-page: 378
  article-title: Explicit feature control in structural topology optimization via level set method
  publication-title: Comput Methods Appl Mech Eng
– year: 2006
– volume: 283
  start-page: 1214
  year: 2015
  end-page: 1239
  article-title: Structural topology and shape optimization using a level set method with distance‐suppression scheme
  publication-title: Comput Methods Appl Mech Eng
– volume: 30
  start-page: 428
  issue: 6
  year: 2005
  end-page: 436
  article-title: A reevaluation of the SIMP method with filtering and an alternative formulation for solid–void topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 83
  start-page: 1580
  issue: 12
  year: 2010
  end-page: 1624
  article-title: A structural optimization method based on the level set method using a new geometry‐based re‐initialization scheme
  publication-title: Int J Numer Methods Eng
– volume: 16
  start-page: 68
  issue: 1
  year: 1998
  end-page: 75
  article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh‐dependencies and local minima
  publication-title: Struct Optimization
– volume: 1
  start-page: 81
  issue: 2
  year: 1989
  end-page: 89
  article-title: CONLIN: an efficient dual optimizer based on convex approximation concepts
  publication-title: Struct Optimization
– volume: 81
  start-page: 081009
  issue: 8
  year: 2014
  article-title: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework
  publication-title: J Appl Mech
– volume: 2
  start-page: 91
  issue: 1
  year: 2011
  end-page: 98
  article-title: Level set‐based topology optimisation of a compliant mechanism design using mathematical programming
  publication-title: Mech Sci
– volume: 199
  start-page: 2059
  issue: 29
  year: 2010
  end-page: 2071
  article-title: Full analytical sensitivities in NURBS based isogeometric shape optimization
  publication-title: Comput Methods Appl Mech Eng
– volume: 19
  start-page: 3243
  issue: 12
  year: 2010
  end-page: 3254
  article-title: Distance regularized level set evolution and its application to image segmentation
  publication-title: IEEE Trans Image Process
– year: 1999
– year: 2013
– ident: e_1_2_9_4_1
  doi: 10.1007/s00158-013-0978-6
– ident: e_1_2_9_49_1
  doi: 10.1007/BF01637664
– ident: e_1_2_9_48_1
– ident: e_1_2_9_60_1
  doi: 10.1016/j.cma.2014.11.002
– ident: e_1_2_9_32_1
  doi: 10.1147/rd.112.0215
– ident: e_1_2_9_12_1
  doi: 10.1007/s00158-010-0602-y
– ident: e_1_2_9_13_1
  doi: 10.1007/BF01214002
– ident: e_1_2_9_55_1
  doi: 10.5194/ms-2-91-2011
– ident: e_1_2_9_16_1
  doi: 10.1016/0021-9991(88)90002-2
– ident: e_1_2_9_3_1
  doi: 10.1016/0045-7825(88)90086-2
– volume-title: Applied Functional Analysis and Variational Methods in Engineering
  year: 1986
  ident: e_1_2_9_59_1
– volume: 6
  start-page: 373
  year: 2004
  ident: e_1_2_9_18_1
  article-title: PDE‐driven level sets, shape sensitivity and curvature flow for structural topology optimization
  publication-title: Comput Model Eng Sci
– ident: e_1_2_9_29_1
  doi: 10.1006/jcph.1999.6345
– ident: e_1_2_9_47_1
– ident: e_1_2_9_45_1
  doi: 10.1016/j.cma.2010.03.005
– ident: e_1_2_9_46_1
  doi: 10.1115/1.4034972
– ident: e_1_2_9_56_1
  doi: 10.1109/TIP.2010.2069690
– ident: e_1_2_9_63_1
– volume-title: Level Set Methods and Fast Marching Methods: Evolving Interfaces In Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
  year: 1999
  ident: e_1_2_9_33_1
– ident: e_1_2_9_43_1
  doi: 10.1016/j.jcp.2006.06.029
– ident: e_1_2_9_51_1
  doi: 10.1002/nme.829
– ident: e_1_2_9_35_1
  doi: 10.1016/j.cma.2010.05.013
– ident: e_1_2_9_44_1
  doi: 10.1002/nme.1943
– ident: e_1_2_9_62_1
  doi: 10.1137/11S010840
– ident: e_1_2_9_50_1
  doi: 10.1002/nme.386
– ident: e_1_2_9_27_1
  doi: 10.1115/1.4031803
– ident: e_1_2_9_7_1
  doi: 10.1007/s004190050248
– ident: e_1_2_9_5_1
  doi: 10.1007/BF01650949
– ident: e_1_2_9_6_1
  doi: 10.1007/BF01742754
– ident: e_1_2_9_21_1
  doi: 10.1016/j.cma.2014.01.010
– ident: e_1_2_9_26_1
  doi: 10.1007/s00466-017-1383-6
– ident: e_1_2_9_40_1
  doi: 10.1115/1.4036941
– ident: e_1_2_9_64_1
  doi: 10.1115/IMECE2013-64694
– ident: e_1_2_9_19_1
  doi: 10.1016/S0045-7825(02)00559-5
– volume-title: Level Set Methods and Dynamic Implicit Surfaces
  year: 2006
  ident: e_1_2_9_30_1
– ident: e_1_2_9_38_1
  doi: 10.1115/1.4027609
– ident: e_1_2_9_52_1
  doi: 10.1007/s00466-014-1063-8
– ident: e_1_2_9_9_1
  doi: 10.1016/j.cma.2015.05.005
– ident: e_1_2_9_11_1
  doi: 10.1002/nme.1064
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jcp.2003.09.032
– ident: e_1_2_9_22_1
  doi: 10.1016/j.cma.2017.05.003
– ident: e_1_2_9_42_1
  doi: 10.1002/nme.1536
– ident: e_1_2_9_57_1
  doi: 10.1016/j.cma.2017.03.044
– ident: e_1_2_9_65_1
  doi: 10.1016/0045-7825(91)90044-7
– ident: e_1_2_9_23_1
  doi: 10.1007/s00158-008-0250-7
– ident: e_1_2_9_10_1
  doi: 10.1016/j.cma.2015.03.007
– ident: e_1_2_9_31_1
  doi: 10.1002/nme.2874
– ident: e_1_2_9_58_1
  doi: 10.1006/jcph.2000.6581
– ident: e_1_2_9_54_1
  doi: 10.1002/nme.4296
– volume-title: Topology Optimization‐Theory, Methods, and Applications
  year: 2003
  ident: e_1_2_9_2_1
– ident: e_1_2_9_39_1
  doi: 10.1016/j.cma.2017.05.003
– ident: e_1_2_9_53_1
  doi: 10.1007/s10915-014-9935-9
– ident: e_1_2_9_20_1
  doi: 10.1016/S1631-073X(02)02412-3
– ident: e_1_2_9_36_1
  doi: 10.5194/ms-2-91-2011
– ident: e_1_2_9_24_1
  doi: 10.1007/s00158-016-1453-y
– ident: e_1_2_9_8_1
  doi: 10.1007/s00158-005-0537-x
– ident: e_1_2_9_61_1
  doi: 10.1017/CBO9780511543241
– ident: e_1_2_9_14_1
  doi: 10.1017/S0962492900002671
– ident: e_1_2_9_17_1
  doi: 10.1006/jcph.2001.6789
– ident: e_1_2_9_41_1
  doi: 10.1016/j.cma.2014.08.017
– ident: e_1_2_9_37_1
  doi: 10.1007/s00158-014-1190-z
– ident: e_1_2_9_28_1
  doi: 10.1016/j.jcp.2007.08.011
– ident: e_1_2_9_25_1
  doi: 10.1002/nme.5503
– ident: e_1_2_9_34_1
  doi: 10.1002/nme.4258
SSID ssj0011503
Score 2.3939097
Snippet Summary The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set...
The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 66
SubjectTerms Basis functions
Boundary representation
cardinal basis function
Collocation methods
Computing time
distance‐regularized evolution
Evolution
Finite element method
Mathematical models
Mathematical programming
Numerical stability
parametric level set method
Radial basis function
Regularization
Robustness (mathematics)
Topology optimization
Variations
Title Parametric shape and topology optimization: A new level set approach based on cardinal basis functions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.5733
https://www.proquest.com/docview/2013157784
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0029-5981
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yJ31wOhWnUyKIPnXrJWky34ZsiLAh4mDgQ8mtKG7dsN2D_npzeplTFMSn0nIS0pycnC_tly8InftKMdPVsRMTVzlEhdoRVCiHUUV0qKQiImdbjMKbMbmd0EnJqoS9MIU-xOqDG0RGPl9DgAuZdtZEQ2emDWJ-dvr1gjBfTd2vlKMA5wQVu4N2uVfpzrp-pyr4NRN9wst1kJpnmUEdPVbtK8glL-1lJtvq_Zt04_9eYAdtl-AT94rRsos2TNJA9RKI4jLM0wbaWlMptHfDlbRruofiOwF8LhD2x-mTWBgsEo2z4qyFNzy3U9Cs3Nt5hXvYonY8BWISTk2GKwVzDMlT43mCFYxQaJR98pxiSLN5JOyj8aD_cH3jlIc1OMoihgB-A7tUxdzXlGtm3R0ouxKMieGu1NSVbsAFY1THFuNwJogMDJHa8FgyQj3pBQeolswTc4iw8ozHmZR-wLTFS1LQ2PddYpix9rbmJrqsHBepUskcDtSYRoUGsx_Zro2ga5vobGW5KNQ7frBpVb6PyvhNIx9kiChjnDTRRe7EX8tHo2Efrkd_NTxGm7Z6ntN_whaqZa9Lc2KRTSZP8zH8AW9A92o
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-wwEB68PKgP3sX1mgMHferaS9JEfRJR9hzdRUTBB6HkVhS1K7Y-6K8308u6ioL4VFombZrJZL4kk28A_oZac7trUi-lvvaojo0nmdQeZ5qaWCtNZRlt0Ys7l_T_Fbsagf3mLEzFDzFYcEPLKMdrNHBckN4ZYg19sG1k8xuFcRq7aQoiovMBdxQinaiJ72C7ImiYZ_1wpyn50Re9A8xhmFr6meMZuG5qWIWX3LWfC9XWr5_IG3_5C7MwXeNPclB1mDkYsdk8zNRYlNSWns_D1BBRobvrDthd8wVIzySGdCG3P8lv5KMlMjOkqNItvJC-G4Ue6uOde-SAOOBO7jE2ieS2IA2JOUH_aUg_Ixo7KVbKPbnNCXra0hgW4fL46OKw49X5GjztQEOEO8E-06kIDROGO41H2k0GU2qFrwzzlR8JyTkzqYM5gkuqIkuVsSJVnLJABdESjGX9zC4D0YENBFcqjLhxkElJloahTy23Tt69uQXbjeYSXZOZY06N-6SiYQ4T17QJNm0L_gwkHysCjy9k1hrlJ7UJ50mITESMc0FbsFVq8dvySa97hNeVnwpuwkTnonuanP7rnazCpPuUKKOB4jUYK56e7boDOoXaKDv0G-mz-4s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD5iTJrGw9gKiG4wPGnantLmYscGnhC0YpdW1bRKfUCKfBVokFZLeIBfP59cum7aJMRTlOQ4cXx8fL4knz8DvI-15vbQuMDRUAdUpyaQTOqAM01NqpWmsmJbjNPzKf08Y7M1OG7nwtT6EMsPbhgZ1XiNAW4XxvVXVENvbA_V_J7AU8oOBfL5zr4ttaMQ6SQtv8Ofjlrl2TDutyX_zEW_AeYqTK3yzHATLtoa1vSSH73bUvX0_V_ijY98hJfwosGf5KTuMK9gzeYd2GywKGkivejAxopQod8bLdVdiy1wE4mULtT2J8WlXFgic0PKermFOzL3o9BNM73ziJwQD9zJNXKTSGFL0oqYE8yfhsxzorGTYqX8kauCYKatgmEbpsPB99PzoFmvIdAeNCT4Jzhk2onYMGG493ii_cugo1aEyrBQhYmQnDPjPMwRXFKVWKqMFU5xyiIVJTuwns9zuwtERzYSXKk44cZDJiWZi-OQWm69vb9yFz62nst0I2aOa2pcZ7UMc5z5ps2wabvwbmm5qAU8_mGz1zo_a0K4yGJUImKcC9qFD5UX_1s-G48GuH39UMMDeDY5G2ZfP42_vIHn_k6iIgOle7Be_ry1-x7nlOpt1Z9_AZiY-w8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+shape+and+topology+optimization%3A+A+new+level+set+approach+based+on+cardinal+basis+functions&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Long%2C+Jiang&rft.au=Chen%2C+Shikui&rft.au=Jiao%2C+Xiangmin&rft.date=2018-04-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=114&rft.issue=1&rft.spage=66&rft.epage=87&rft_id=info:doi/10.1002%2Fnme.5733&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon