Seismic control of tall buildings using vertically distributed multiple tuned mass dampers

Summary Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to many researchers due to its simplicity, optimizing its parameters and positions is very challenging. The sensitivity of TMD to structure'...

Full description

Saved in:
Bibliographic Details
Published inThe structural design of tall and special buildings Vol. 33; no. 14
Main Authors Akhlagh Pasand, Ali, Zahrai, Seyed Mehdi
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 10.10.2024
Subjects
Online AccessGet full text
ISSN1541-7794
1541-7808
DOI10.1002/tal.2123

Cover

Abstract Summary Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to many researchers due to its simplicity, optimizing its parameters and positions is very challenging. The sensitivity of TMD to structure's frequency changes is among its weaknesses and if parameters of this system are not optimally tuned, the efficiency of this system decreases. To solve this problem, multiple tuned mass dampers (MTMDs) have been proposed. In this research, in order to study and compare single tuned mass damper (STMD) with MTMDs vertically distributed according to modal analysis, a 20‐story building is used. The structure is analyzed in OpenSees under seven ground motions with a peak ground acceleration (PGA) of 1.0 g. To optimize TMD parameters, particle swarm optimization (PSO) algorithm is used and the results are compared to those obtained from Den Hartog's approach. To be able to use PSO algorithm and optimize TMD design parameters, Matlab and OpenSees are linked together. In this paper, more than one vibration mode is used to tune and distribute dampers to overcome higher mode effects in high‐rise buildings. The results showed that depending on their different layouts and different optimization methods used, MTMDs reduce the average maximum responses of the structure by up to 12.1%. This is while STMD is able to reduce maximum responses of the structure by 4.3%.
AbstractList Summary Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to many researchers due to its simplicity, optimizing its parameters and positions is very challenging. The sensitivity of TMD to structure's frequency changes is among its weaknesses and if parameters of this system are not optimally tuned, the efficiency of this system decreases. To solve this problem, multiple tuned mass dampers (MTMDs) have been proposed. In this research, in order to study and compare single tuned mass damper (STMD) with MTMDs vertically distributed according to modal analysis, a 20‐story building is used. The structure is analyzed in OpenSees under seven ground motions with a peak ground acceleration (PGA) of 1.0 g. To optimize TMD parameters, particle swarm optimization (PSO) algorithm is used and the results are compared to those obtained from Den Hartog's approach. To be able to use PSO algorithm and optimize TMD design parameters, Matlab and OpenSees are linked together. In this paper, more than one vibration mode is used to tune and distribute dampers to overcome higher mode effects in high‐rise buildings. The results showed that depending on their different layouts and different optimization methods used, MTMDs reduce the average maximum responses of the structure by up to 12.1%. This is while STMD is able to reduce maximum responses of the structure by 4.3%.
Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to many researchers due to its simplicity, optimizing its parameters and positions is very challenging. The sensitivity of TMD to structure's frequency changes is among its weaknesses and if parameters of this system are not optimally tuned, the efficiency of this system decreases. To solve this problem, multiple tuned mass dampers (MTMDs) have been proposed. In this research, in order to study and compare single tuned mass damper (STMD) with MTMDs vertically distributed according to modal analysis, a 20‐story building is used. The structure is analyzed in OpenSees under seven ground motions with a peak ground acceleration (PGA) of 1.0 g. To optimize TMD parameters, particle swarm optimization (PSO) algorithm is used and the results are compared to those obtained from Den Hartog's approach. To be able to use PSO algorithm and optimize TMD design parameters, Matlab and OpenSees are linked together. In this paper, more than one vibration mode is used to tune and distribute dampers to overcome higher mode effects in high‐rise buildings. The results showed that depending on their different layouts and different optimization methods used, MTMDs reduce the average maximum responses of the structure by up to 12.1%. This is while STMD is able to reduce maximum responses of the structure by 4.3%.
Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to many researchers due to its simplicity, optimizing its parameters and positions is very challenging. The sensitivity of TMD to structure's frequency changes is among its weaknesses and if parameters of this system are not optimally tuned, the efficiency of this system decreases. To solve this problem, multiple tuned mass dampers (MTMDs) have been proposed. In this research, in order to study and compare single tuned mass damper (STMD) with MTMDs vertically distributed according to modal analysis, a 20‐story building is used. The structure is analyzed in OpenSees under seven ground motions with a peak ground acceleration (PGA) of 1.0 g. To optimize TMD parameters, particle swarm optimization (PSO) algorithm is used and the results are compared to those obtained from Den Hartog's approach. To be able to use PSO algorithm and optimize TMD design parameters, Matlab and OpenSees are linked together. In this paper, more than one vibration mode is used to tune and distribute dampers to overcome higher mode effects in high‐rise buildings. The results showed that depending on their different layouts and different optimization methods used, MTMDs reduce the average maximum responses of the structure by up to 12.1%. This is while STMD is able to reduce maximum responses of the structure by 4.3%.
Author Zahrai, Seyed Mehdi
Akhlagh Pasand, Ali
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0002-1067-4581
  surname: Akhlagh Pasand
  fullname: Akhlagh Pasand, Ali
  organization: University of Tehran
– sequence: 2
  givenname: Seyed Mehdi
  orcidid: 0000-0003-2759-2424
  surname: Zahrai
  fullname: Zahrai, Seyed Mehdi
  email: mzahrai@ut.ac.ir
  organization: University of Ottawa
BookMark eNp1kE1LAzEQhoNUsFbBnxDw4mXrJNmvHEvxCwoerBcvIbubSEr2wySr9N-btXoRPc0M87zvMO8pmnV9pxC6ILAkAPQ6SLukhLIjNCdZSpKihHL20xc8PUGn3u8ACIeMzdHLkzK-NTWu-y643uJe42hhcTUa25ju1ePRx4LflQumjps9bowPzlRjUA1uRxvMYBUOYzeN0nvcyHZQzp-hYy2tV-ffdYGeb2-26_tk83j3sF5tkppyxhKSK51J0EVFGialynOiZQq6ybnmugFKM1pXistCAYOUV1mVcQ2aMQokLYEt0OXBd3D926h8ELt-dF08KRhhkJMSeBmpqwNVu957p7QYnGml2wsCYkpOxLfFlFxEl7_Q2gQZzJSQNPYvQXIQfBir9v8ai-1q88V_AjnzgeM
CitedBy_id crossref_primary_10_1002_tal_2211
crossref_primary_10_3389_fbuil_2025_1559530
Cites_doi 10.1016/j.istruc.2022.05.014
10.1007/s00158-017-1764-7
10.1002/stc.2163
10.1115/1.3085888
10.12989/imm.2013.6.4.339
10.1109/ACC.2000.878954
10.1016/j.oceaneng.2018.04.041
10.12989/sss.2011.8.3.239
10.1016/j.engstruct.2008.11.017
10.1061/(ASCE)0733-9399(2009)135:4(265)
10.1109/CED.2017.8308124
10.1016/j.proeng.2017.09.087
10.1061/(ASCE)0733-9445(1998)124:11(1272)
10.1016/j.ymssp.2010.01.009
10.1061/(ASCE)EM.1943-7889.0000211
10.1061/(ASCE)0733-9399(2004)130:4(366)
10.1002/tal.499
10.1016/j.proeng.2015.11.079
10.1007/s11803-012-0130-4
10.1142/S0219455421501200
10.1155/2014/198719
10.9712/KASS.2016.16.4.091
10.1016/j.engstruct.2018.06.002
10.1061/(ASCE)0733-9399(1995)121:4(555)
10.1002/eqe.4290130105
10.1016/S0141-0296(01)00092-X
10.1007/s11709-020-0671-y
10.1016/j.soildyn.2013.04.002
10.1016/j.engstruct.2016.06.006
10.12989/sss.2005.1.1.001
10.1016/j.engstruct.2011.05.024
10.1002/stc.297
10.1002/tal.702
10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z
10.1002/eqe.2379
10.1016/j.phpro.2014.07.044
10.1002/tal.1576
10.1002/eqe.4290100304
10.1007/978-3-319-46173-1
10.1016/j.istruc.2022.07.037
10.1109/ACC.2009.5160718
10.1002/eqe.811
10.12989/sss.2019.23.5.449
10.1007/s11803-015-0009-2
10.1061/(ASCE)0733-9399(2008)134:2(163)
10.1061/(ASCE)0733-9445(2001)127:9(1054)
10.1109/ICNN.1995.488968
10.1061/(ASCE)0733-9399(2004)130:4(524)
10.12989/sss.2013.12.2.137
10.1177/1369433216678863
10.12989/sem.2022.81.4.429
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/tal.2123
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1541-7808
EndPage n/a
ExternalDocumentID 10_1002_tal_2123
TAL2123
Genre article
GroupedDBID .3N
.GA
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F21
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XV2
~IA
~IF
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
1OB
7ST
8FD
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c2933-16ef5a0f7b1d3aae661fa40fd69f9fd02252cbe9a7e03049b5b59f0f332014803
IEDL.DBID DR2
ISSN 1541-7794
IngestDate Wed Aug 13 06:05:55 EDT 2025
Thu Apr 24 23:10:56 EDT 2025
Wed Oct 01 05:09:15 EDT 2025
Wed Jan 22 17:12:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2933-16ef5a0f7b1d3aae661fa40fd69f9fd02252cbe9a7e03049b5b59f0f332014803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1067-4581
0000-0003-2759-2424
PQID 3130618098
PQPubID 2034345
PageCount 22
ParticipantIDs proquest_journals_3130618098
crossref_primary_10_1002_tal_2123
crossref_citationtrail_10_1002_tal_2123
wiley_primary_10_1002_tal_2123_TAL2123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 October 2024
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 10 October 2024
  day: 10
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The structural design of tall and special buildings
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 160
2021; 21
2010; 17
1982; 10
2008; 37
2020; 14
2000; 1
2017; 199
2013; 6
2012; 11
2018; 171
2010; 24
2022; 81
2013; 12
2013; 51
2004; 130
2019; 23
1985
2009; 19
1995; 121
1998; 124
2012; 21
2014; 55
1989
1985; 13
2011; 137
2017; 20
2018; 28
2015; 14
2015; 125
1997; 26
2009
2016; 124
1997
2011; 33
1995
2009; 135
2022; 41
2014; 2014
2003
2022; 43
2009; 131
2016; 16
2011; 8
2014; 43
2018; 25
1911
2001; 127
2004; 11
2009; 31
2002; 24
2017
2005; 1
2016
2009; 4
2008; 134
2018; 57
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_18_1
Hartog J. P. (e_1_2_10_32_1) 1985
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_51_1
Shayeghi A. (e_1_2_10_41_1) 2009; 4
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
Soong T. T. (e_1_2_10_27_1) 1997
e_1_2_10_20_1
Applied Technology Council (e_1_2_10_61_1) 2009
Joghataie A. (e_1_2_10_29_1) 2004; 11
Connor J. J. (e_1_2_10_2_1) 2003
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Bergman L. (e_1_2_10_4_1) 1989
e_1_2_10_60_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – year: 1985
– volume: 16
  start-page: 91
  issue: 4
  year: 2016
  publication-title: J. Korean Assoc. Spatial Struct.
– year: 2009
– volume: 137
  start-page: 205
  issue: 3
  year: 2011
  publication-title: J. Eng. Mech.
– volume: 6
  start-page: 339
  issue: 4
  year: 2013
  publication-title: Intera. Multisc. Mech.
– volume: 57
  start-page: 509
  issue: 2
  year: 2018
  publication-title: Struct. Multidisc. Optim.
– volume: 10
  start-page: 381
  issue: 3
  year: 1982
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 134
  start-page: 163
  issue: 2
  year: 2008
  publication-title: J. Eng. Mech.
– volume: 8
  start-page: 239
  issue: 3
  year: 2011
  publication-title: Smart Struct. Syst.
– volume: 11
  start-page: 50
  issue: 1
  year: 2004
  publication-title: Sci. Iranica
– volume: 43
  start-page: 909
  issue: 6
  year: 2014
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 25
  issue: 7
  year: 2018
  publication-title: Struct. Control Health Monit.
– volume: 24
  start-page: 243
  issue: 3
  year: 2002
  publication-title: Eng. Struct.
– volume: 131
  issue: 3
  year: 2009
  publication-title: J. Vib. Acoust.
– volume: 130
  start-page: 524
  issue: 4
  year: 2004
  publication-title: J. Eng. Mech.
– volume: 13
  start-page: 33
  issue: 1
  year: 1985
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 14
  start-page: 1372
  year: 2020
  publication-title: Front. Struct. Civ. Eng.
– volume: 31
  start-page: 715
  issue: 3
  year: 2009
  publication-title: Eng. Struct.
– volume: 127
  start-page: 1054
  issue: 9
  year: 2001
  publication-title: J. Struct. Eng.
– volume: 4
  start-page: 293
  year: 2009
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 160
  start-page: 449
  year: 2018
  publication-title: Ocean Eng.
– volume: 124
  start-page: 1272
  issue: 11
  year: 1998
  publication-title: J. Struct. Eng.
– volume: 135
  start-page: 265
  issue: 4
  year: 2009
  publication-title: J. Eng. Mech.
– volume: 81
  start-page: 429
  issue: 4
  year: 2022
  publication-title: Struct. Eng. Mech. Int'l J.
– year: 1997
– volume: 26
  start-page: 617
  issue: 6
  year: 1997
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 171
  start-page: 516
  year: 2018
  publication-title: Eng. Struct.
– volume: 43
  start-page: 1084
  year: 2022
  publication-title: Structure
– volume: 41
  start-page: 1141
  year: 2022
  publication-title: Structure
– volume: 12
  start-page: 137
  issue: 2
  year: 2013
  publication-title: Smart Struct. Syst.
– volume: 17
  start-page: 218
  issue: 2
  year: 2010
  publication-title: Struct. Control Health Monit.
– start-page: 1
  year: 2017
– volume: 51
  start-page: 14
  year: 2013
  publication-title: Soil Dyn. Earthq. Eng.
– volume: 33
  start-page: 2716
  issue: 9
  year: 2011
  publication-title: Eng. Struct.
– volume: 199
  start-page: 1641
  year: 2017
  publication-title: Proc. Eng.
– volume: 37
  start-page: 1223
  issue: 9
  year: 2008
  publication-title: Earthq. Eng. Struct. Dyn.
– year: 2003
– volume: 55
  start-page: 301
  year: 2014
  publication-title: Phys. Proc.
– volume: 1
  start-page: 1
  issue: 1
  year: 2005
  publication-title: Smart Struct. Syst.
– volume: 1
  start-page: 519
  year: 2000
– year: 2016
– start-page: 95
  year: 1989
– volume: 19
  start-page: 347
  issue: 3
  year: 2009
  publication-title: Struct. Des. Tall Spec.
– year: 1911
– volume: 28
  issue: 3
  year: 2018
  publication-title: Struct. Design Tall Spec. Build.
– volume: 23
  start-page: 449
  issue: 5
  year: 2019
  publication-title: Smart Struct. Syst.
– volume: 125
  start-page: 892
  year: 2015
  publication-title: Proc. Eng.
– volume: 121
  start-page: 555
  issue: 4
  year: 1995
  publication-title: J. Eng. Mech.
– volume: 21
  start-page: 57
  issue: 1
  year: 2012
  publication-title: Struct. Design Tall Spec. Build.
– start-page: 3920
  year: 2009
  end-page: 3925
  article-title: Control strategies for a distributed mass damper system
– year: 1995
– volume: 14
  start-page: 97
  issue: 1
  year: 2015
  publication-title: Earthq. Eng. Eng. Vibr.
– volume: 20
  start-page: 1375
  issue: 9
  year: 2017
  publication-title: Adv. Struct. Eng.
– volume: 11
  start-page: 403
  issue: 3
  year: 2012
  publication-title: Earthq. Eng. Eng. Vibr.
– volume: 124
  start-page: 1
  year: 2016
  publication-title: Eng. Struct.
– year: 2017
– volume: 24
  start-page: 1739
  issue: 6
  year: 2010
  publication-title: Mech. Syst. Signal Process
– volume: 130
  start-page: 366
  issue: 4
  year: 2004
  publication-title: J. Eng. Mech.
– volume: 2014
  start-page: 1
  year: 2014
  publication-title: J. Eng.
– volume: 21
  issue: 09
  year: 2021
  publication-title: Int. J. Struct. Stab. Dyn.
– ident: e_1_2_10_53_1
  doi: 10.1016/j.istruc.2022.05.014
– ident: e_1_2_10_52_1
  doi: 10.1007/s00158-017-1764-7
– ident: e_1_2_10_55_1
  doi: 10.1002/stc.2163
– ident: e_1_2_10_7_1
  doi: 10.1115/1.3085888
– ident: e_1_2_10_49_1
  doi: 10.12989/imm.2013.6.4.339
– ident: e_1_2_10_5_1
  doi: 10.1109/ACC.2000.878954
– ident: e_1_2_10_22_1
  doi: 10.1016/j.oceaneng.2018.04.041
– ident: e_1_2_10_45_1
  doi: 10.12989/sss.2011.8.3.239
– ident: e_1_2_10_40_1
  doi: 10.1016/j.engstruct.2008.11.017
– ident: e_1_2_10_43_1
  doi: 10.1061/(ASCE)0733-9399(2009)135:4(265)
– ident: e_1_2_10_20_1
  doi: 10.1109/CED.2017.8308124
– ident: e_1_2_10_19_1
  doi: 10.1016/j.proeng.2017.09.087
– ident: e_1_2_10_38_1
  doi: 10.1061/(ASCE)0733-9445(1998)124:11(1272)
– ident: e_1_2_10_44_1
  doi: 10.1016/j.ymssp.2010.01.009
– ident: e_1_2_10_10_1
  doi: 10.1061/(ASCE)EM.1943-7889.0000211
– ident: e_1_2_10_59_1
  doi: 10.1061/(ASCE)0733-9399(2004)130:4(366)
– ident: e_1_2_10_8_1
  doi: 10.1002/tal.499
– ident: e_1_2_10_15_1
  doi: 10.1016/j.proeng.2015.11.079
– volume-title: Passive energy dissipation systems in structural engineering
  year: 1997
  ident: e_1_2_10_27_1
– start-page: 95
  volume-title: Proceedings of ICOSSAR’89, the 5th international conference on structural safety and reliability, part I
  year: 1989
  ident: e_1_2_10_4_1
– ident: e_1_2_10_60_1
  doi: 10.1007/s11803-012-0130-4
– ident: e_1_2_10_56_1
  doi: 10.1142/S0219455421501200
– ident: e_1_2_10_50_1
– ident: e_1_2_10_14_1
  doi: 10.1155/2014/198719
– ident: e_1_2_10_16_1
  doi: 10.9712/KASS.2016.16.4.091
– ident: e_1_2_10_21_1
  doi: 10.1016/j.engstruct.2018.06.002
– ident: e_1_2_10_30_1
  doi: 10.1061/(ASCE)0733-9399(1995)121:4(555)
– ident: e_1_2_10_34_1
  doi: 10.1002/eqe.4290130105
– ident: e_1_2_10_26_1
  doi: 10.1016/S0141-0296(01)00092-X
– volume-title: Mechanical vibrations
  year: 1985
  ident: e_1_2_10_32_1
– ident: e_1_2_10_58_1
  doi: 10.1007/s11709-020-0671-y
– ident: e_1_2_10_12_1
  doi: 10.1016/j.soildyn.2013.04.002
– ident: e_1_2_10_17_1
  doi: 10.1016/j.engstruct.2016.06.006
– volume-title: Quantification of building seismic performance factors
  year: 2009
  ident: e_1_2_10_61_1
– ident: e_1_2_10_25_1
  doi: 10.12989/sss.2005.1.1.001
– ident: e_1_2_10_47_1
  doi: 10.1016/j.engstruct.2011.05.024
– ident: e_1_2_10_39_1
  doi: 10.1002/stc.297
– volume: 11
  start-page: 50
  issue: 1
  year: 2004
  ident: e_1_2_10_29_1
  publication-title: Sci. Iranica
– ident: e_1_2_10_46_1
  doi: 10.1002/tal.702
– ident: e_1_2_10_35_1
  doi: 10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z
– ident: e_1_2_10_13_1
  doi: 10.1002/eqe.2379
– ident: e_1_2_10_28_1
  doi: 10.1016/j.phpro.2014.07.044
– ident: e_1_2_10_23_1
  doi: 10.1002/tal.1576
– ident: e_1_2_10_33_1
  doi: 10.1002/eqe.4290100304
– ident: e_1_2_10_36_1
  doi: 10.1007/978-3-319-46173-1
– ident: e_1_2_10_54_1
  doi: 10.1016/j.istruc.2022.07.037
– ident: e_1_2_10_9_1
  doi: 10.1109/ACC.2009.5160718
– volume-title: Structural motion control
  year: 2003
  ident: e_1_2_10_2_1
– ident: e_1_2_10_24_1
  doi: 10.1002/eqe.811
– ident: e_1_2_10_11_1
  doi: 10.12989/sss.2019.23.5.449
– ident: e_1_2_10_51_1
  doi: 10.1007/s11803-015-0009-2
– ident: e_1_2_10_42_1
  doi: 10.1061/(ASCE)0733-9399(2008)134:2(163)
– ident: e_1_2_10_6_1
  doi: 10.1061/(ASCE)0733-9445(2001)127:9(1054)
– ident: e_1_2_10_37_1
  doi: 10.1109/ICNN.1995.488968
– ident: e_1_2_10_31_1
  doi: 10.1061/(ASCE)0733-9399(2004)130:4(524)
– ident: e_1_2_10_48_1
  doi: 10.12989/sss.2013.12.2.137
– ident: e_1_2_10_3_1
– ident: e_1_2_10_18_1
  doi: 10.1177/1369433216678863
– volume: 4
  start-page: 293
  year: 2009
  ident: e_1_2_10_41_1
  publication-title: Int. J. Electr. Comput. Eng.
– ident: e_1_2_10_57_1
  doi: 10.12989/sem.2022.81.4.429
SSID ssj0019053
Score 2.356867
Snippet Summary Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to...
Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to many...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Control equipment
Design optimization
Design parameters
Earthquake dampers
Ground motion
High rise buildings
high‐rise building
Modal analysis
multiple tuned mass dampers
Parameter sensitivity
Particle swarm optimization
seismic control
structural optimization
Tall buildings
vertically distributed dampers
Vibration control
Vibration isolators
Vibration mode
Vibrations
Title Seismic control of tall buildings using vertically distributed multiple tuned mass dampers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftal.2123
https://www.proquest.com/docview/3130618098
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1541-7794
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1541-7808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019053
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7Skx58i9UqEURP22Yf2cexiKWIetAWih6WZJNIsW6luz3or3dmH7WKgnhaFpJ9TWa-L9nJN4SchsJzPd_WFtMeTFAMCyyZaGOBcwmFmK0LUZ-bW78_9K5GfFRlVeJemFIfYrHghp5RxGt0cCGzzqdoKHJTjLsQfm3XL2ZTdwvlKIC5QoASbmYDgYy8WneWOZ2641ck-qSXyyS1QJneBnmsn69MLnluz3PZTt6_STf-7wU2yXpFPmm3HC1bZEWn22RtSZJwhzzc63H2Mk5olcNOp4bCJSZUVvWzM4qp8k-0qOMMBp68UYXiu1g3SytaJyjSfJ7iKXBzqgRw81m2S4a9y8FF36rqL1gJkADXsn1tuGAmkLZyhdAA5UZ4zCg_MpFRgP7cSaSORKDxB2skueSRYcZ1HVynZO4eaaTTVO8TGijfEybkOpDACXAfu-Yhis_rUEHQ4U1yXtsiTipxcqyRMYlLWWUnxgoq-LWa5GTR8rUU5PihTas2Z1y5ZBa7gNY-qpWFTXJW2OXX_vGge43Hg782PCSrDpAdxDSbtUgjn831EZCVXB4Xw_IDG2nmcw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60HtSDb7FaNYLoaXXfDzwVUaq2HrSCiLAkm0TE2kq3Peivd2YfbRUF8bQsJPuaTL4vs5NvAPZD7jqubynDVC4uULQZGCJR2kDn4pIwW2WiPq1rv3HnXt5791NwUu6FyfUhRgE38oxsviYHp4D08Vg1lMgpTbzTMOP6uEwhRnQz0o5CoMskKPF2FlLIyC2VZ037uOz5FYvGBHOSpmY4c74Ij-UT5uklL0fDgThKPr6JN_7zFZZgoeCfrJ4PmGWYUt0VmJ9QJVyFh1v1nL4-J6xIY2c9zfASHSaKEtopo2z5J5aVckYbd96ZJP1dKp2lJCtzFNlg2KVTpOdMcqTn_XQN7s7P2qcNoyjBYCTIAxzD8pX2uKkDYUmHc4VorrlraulHOtISCYBnJ0JFPFD0jzUSnvAibWrHsSlUaTrrUOn2umoDWCB9l-vQU4FAWkBb2ZUXkv68CiXOO14VDktjxEmhT05lMjpxrqxsx1REhb5WFfZGLd9yTY4f2tRKe8aFV6axg4Dtk2BZWIWDzDC_9o_b9SYdN__acBdmG-1WM25eXF9twZyN3IcgzjJrUBn0h2obuctA7GRj9BOQAeqU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ZSxxBEIcL3YDEB40aySYaWxB9mnWungOfxM3ijXjAIoGhe7o6iJtV9ngwf71Vc-yqJBB8Gga656qprt_0VH8FsJWoMAgjDx0XQ_pAsW7s6BytQ86lDMdsLKA-Z-fR4U143JXdGdir18KUfIjJhBt7RjFes4Pjo7G7U2ooi1MeeGfhQyjThPP52pcTdhQFugJBSafzSEKmYU2edf3duufrWDQVmC9lahFnOovws77CMr3kvjUe6Vb-5w288Z238AkWKv0p9ssXZglmsL8M8y-ohCtwe4V3w993uajS2MWDFXSIntBVCe2h4Gz5X6Io5Uw27j0Jw_xdLp2FRtQ5imI07vMuyXNhFMnzwfAz3HR-XB8cOlUJBicnHRA4XoRWKtfG2jOBUkjR3KrQtSZKbWoNCQDp5xpTFSP_Y0211DK1rg0Cn6cq3WAVGv2HPn4BEZsoVDaRGGuSBbyUHWXC_HlMDI07sgk7tTGyvOKTc5mMXlaSlf2Mi6jw02rC5qTlY8nk-EubtdqeWeWVwyyggB0xsCxpwnZhmH_2z673T3n79X8bbsDcRbuTnR6dn3yDjz5JH45wnrsGjdFgjOskXUb6e_GKPgNVcuoY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+control+of+tall+buildings+using+vertically+distributed+multiple+tuned+mass+dampers&rft.jtitle=The+structural+design+of+tall+and+special+buildings&rft.au=Akhlagh+Pasand%2C+Ali&rft.au=Zahrai%2C+Seyed+Mehdi&rft.date=2024-10-10&rft.issn=1541-7794&rft.eissn=1541-7808&rft.volume=33&rft.issue=14&rft_id=info:doi/10.1002%2Ftal.2123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tal_2123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-7794&client=summon