Seismic control of tall buildings using vertically distributed multiple tuned mass dampers
Summary Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to many researchers due to its simplicity, optimizing its parameters and positions is very challenging. The sensitivity of TMD to structure'...
Saved in:
| Published in | The structural design of tall and special buildings Vol. 33; no. 14 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Wiley Subscription Services, Inc
10.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1541-7794 1541-7808 |
| DOI | 10.1002/tal.2123 |
Cover
| Abstract | Summary
Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to many researchers due to its simplicity, optimizing its parameters and positions is very challenging. The sensitivity of TMD to structure's frequency changes is among its weaknesses and if parameters of this system are not optimally tuned, the efficiency of this system decreases. To solve this problem, multiple tuned mass dampers (MTMDs) have been proposed. In this research, in order to study and compare single tuned mass damper (STMD) with MTMDs vertically distributed according to modal analysis, a 20‐story building is used. The structure is analyzed in OpenSees under seven ground motions with a peak ground acceleration (PGA) of 1.0 g. To optimize TMD parameters, particle swarm optimization (PSO) algorithm is used and the results are compared to those obtained from Den Hartog's approach. To be able to use PSO algorithm and optimize TMD design parameters, Matlab and OpenSees are linked together. In this paper, more than one vibration mode is used to tune and distribute dampers to overcome higher mode effects in high‐rise buildings. The results showed that depending on their different layouts and different optimization methods used, MTMDs reduce the average maximum responses of the structure by up to 12.1%. This is while STMD is able to reduce maximum responses of the structure by 4.3%. |
|---|---|
| AbstractList | Summary
Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to many researchers due to its simplicity, optimizing its parameters and positions is very challenging. The sensitivity of TMD to structure's frequency changes is among its weaknesses and if parameters of this system are not optimally tuned, the efficiency of this system decreases. To solve this problem, multiple tuned mass dampers (MTMDs) have been proposed. In this research, in order to study and compare single tuned mass damper (STMD) with MTMDs vertically distributed according to modal analysis, a 20‐story building is used. The structure is analyzed in OpenSees under seven ground motions with a peak ground acceleration (PGA) of 1.0 g. To optimize TMD parameters, particle swarm optimization (PSO) algorithm is used and the results are compared to those obtained from Den Hartog's approach. To be able to use PSO algorithm and optimize TMD design parameters, Matlab and OpenSees are linked together. In this paper, more than one vibration mode is used to tune and distribute dampers to overcome higher mode effects in high‐rise buildings. The results showed that depending on their different layouts and different optimization methods used, MTMDs reduce the average maximum responses of the structure by up to 12.1%. This is while STMD is able to reduce maximum responses of the structure by 4.3%. Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to many researchers due to its simplicity, optimizing its parameters and positions is very challenging. The sensitivity of TMD to structure's frequency changes is among its weaknesses and if parameters of this system are not optimally tuned, the efficiency of this system decreases. To solve this problem, multiple tuned mass dampers (MTMDs) have been proposed. In this research, in order to study and compare single tuned mass damper (STMD) with MTMDs vertically distributed according to modal analysis, a 20‐story building is used. The structure is analyzed in OpenSees under seven ground motions with a peak ground acceleration (PGA) of 1.0 g. To optimize TMD parameters, particle swarm optimization (PSO) algorithm is used and the results are compared to those obtained from Den Hartog's approach. To be able to use PSO algorithm and optimize TMD design parameters, Matlab and OpenSees are linked together. In this paper, more than one vibration mode is used to tune and distribute dampers to overcome higher mode effects in high‐rise buildings. The results showed that depending on their different layouts and different optimization methods used, MTMDs reduce the average maximum responses of the structure by up to 12.1%. This is while STMD is able to reduce maximum responses of the structure by 4.3%. Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to many researchers due to its simplicity, optimizing its parameters and positions is very challenging. The sensitivity of TMD to structure's frequency changes is among its weaknesses and if parameters of this system are not optimally tuned, the efficiency of this system decreases. To solve this problem, multiple tuned mass dampers (MTMDs) have been proposed. In this research, in order to study and compare single tuned mass damper (STMD) with MTMDs vertically distributed according to modal analysis, a 20‐story building is used. The structure is analyzed in OpenSees under seven ground motions with a peak ground acceleration (PGA) of 1.0 g. To optimize TMD parameters, particle swarm optimization (PSO) algorithm is used and the results are compared to those obtained from Den Hartog's approach. To be able to use PSO algorithm and optimize TMD design parameters, Matlab and OpenSees are linked together. In this paper, more than one vibration mode is used to tune and distribute dampers to overcome higher mode effects in high‐rise buildings. The results showed that depending on their different layouts and different optimization methods used, MTMDs reduce the average maximum responses of the structure by up to 12.1%. This is while STMD is able to reduce maximum responses of the structure by 4.3%. |
| Author | Zahrai, Seyed Mehdi Akhlagh Pasand, Ali |
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0002-1067-4581 surname: Akhlagh Pasand fullname: Akhlagh Pasand, Ali organization: University of Tehran – sequence: 2 givenname: Seyed Mehdi orcidid: 0000-0003-2759-2424 surname: Zahrai fullname: Zahrai, Seyed Mehdi email: mzahrai@ut.ac.ir organization: University of Ottawa |
| BookMark | eNp1kE1LAzEQhoNUsFbBnxDw4mXrJNmvHEvxCwoerBcvIbubSEr2wySr9N-btXoRPc0M87zvMO8pmnV9pxC6ILAkAPQ6SLukhLIjNCdZSpKihHL20xc8PUGn3u8ACIeMzdHLkzK-NTWu-y643uJe42hhcTUa25ju1ePRx4LflQumjps9bowPzlRjUA1uRxvMYBUOYzeN0nvcyHZQzp-hYy2tV-ffdYGeb2-26_tk83j3sF5tkppyxhKSK51J0EVFGialynOiZQq6ybnmugFKM1pXistCAYOUV1mVcQ2aMQokLYEt0OXBd3D926h8ELt-dF08KRhhkJMSeBmpqwNVu957p7QYnGml2wsCYkpOxLfFlFxEl7_Q2gQZzJSQNPYvQXIQfBir9v8ai-1q88V_AjnzgeM |
| CitedBy_id | crossref_primary_10_1002_tal_2211 crossref_primary_10_3389_fbuil_2025_1559530 |
| Cites_doi | 10.1016/j.istruc.2022.05.014 10.1007/s00158-017-1764-7 10.1002/stc.2163 10.1115/1.3085888 10.12989/imm.2013.6.4.339 10.1109/ACC.2000.878954 10.1016/j.oceaneng.2018.04.041 10.12989/sss.2011.8.3.239 10.1016/j.engstruct.2008.11.017 10.1061/(ASCE)0733-9399(2009)135:4(265) 10.1109/CED.2017.8308124 10.1016/j.proeng.2017.09.087 10.1061/(ASCE)0733-9445(1998)124:11(1272) 10.1016/j.ymssp.2010.01.009 10.1061/(ASCE)EM.1943-7889.0000211 10.1061/(ASCE)0733-9399(2004)130:4(366) 10.1002/tal.499 10.1016/j.proeng.2015.11.079 10.1007/s11803-012-0130-4 10.1142/S0219455421501200 10.1155/2014/198719 10.9712/KASS.2016.16.4.091 10.1016/j.engstruct.2018.06.002 10.1061/(ASCE)0733-9399(1995)121:4(555) 10.1002/eqe.4290130105 10.1016/S0141-0296(01)00092-X 10.1007/s11709-020-0671-y 10.1016/j.soildyn.2013.04.002 10.1016/j.engstruct.2016.06.006 10.12989/sss.2005.1.1.001 10.1016/j.engstruct.2011.05.024 10.1002/stc.297 10.1002/tal.702 10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z 10.1002/eqe.2379 10.1016/j.phpro.2014.07.044 10.1002/tal.1576 10.1002/eqe.4290100304 10.1007/978-3-319-46173-1 10.1016/j.istruc.2022.07.037 10.1109/ACC.2009.5160718 10.1002/eqe.811 10.12989/sss.2019.23.5.449 10.1007/s11803-015-0009-2 10.1061/(ASCE)0733-9399(2008)134:2(163) 10.1061/(ASCE)0733-9445(2001)127:9(1054) 10.1109/ICNN.1995.488968 10.1061/(ASCE)0733-9399(2004)130:4(524) 10.12989/sss.2013.12.2.137 10.1177/1369433216678863 10.12989/sem.2022.81.4.429 |
| ContentType | Journal Article |
| Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
| DOI | 10.1002/tal.2123 |
| DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1541-7808 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_tal_2123 TAL2123 |
| Genre | article |
| GroupedDBID | .3N .GA 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F21 G-S G.N GNP GODZA H.T H.X HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N QB0 QRW R.K ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XV2 ~IA ~IF ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION 1OB 7ST 8FD C1K FR3 KR7 SOI |
| ID | FETCH-LOGICAL-c2933-16ef5a0f7b1d3aae661fa40fd69f9fd02252cbe9a7e03049b5b59f0f332014803 |
| IEDL.DBID | DR2 |
| ISSN | 1541-7794 |
| IngestDate | Wed Aug 13 06:05:55 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Wed Oct 01 05:09:15 EDT 2025 Wed Jan 22 17:12:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2933-16ef5a0f7b1d3aae661fa40fd69f9fd02252cbe9a7e03049b5b59f0f332014803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1067-4581 0000-0003-2759-2424 |
| PQID | 3130618098 |
| PQPubID | 2034345 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_3130618098 crossref_primary_10_1002_tal_2123 crossref_citationtrail_10_1002_tal_2123 wiley_primary_10_1002_tal_2123_TAL2123 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 10 October 2024 |
| PublicationDateYYYYMMDD | 2024-10-10 |
| PublicationDate_xml | – month: 10 year: 2024 text: 10 October 2024 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | The structural design of tall and special buildings |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 160 2021; 21 2010; 17 1982; 10 2008; 37 2020; 14 2000; 1 2017; 199 2013; 6 2012; 11 2018; 171 2010; 24 2022; 81 2013; 12 2013; 51 2004; 130 2019; 23 1985 2009; 19 1995; 121 1998; 124 2012; 21 2014; 55 1989 1985; 13 2011; 137 2017; 20 2018; 28 2015; 14 2015; 125 1997; 26 2009 2016; 124 1997 2011; 33 1995 2009; 135 2022; 41 2014; 2014 2003 2022; 43 2009; 131 2016; 16 2011; 8 2014; 43 2018; 25 1911 2001; 127 2004; 11 2009; 31 2002; 24 2017 2005; 1 2016 2009; 4 2008; 134 2018; 57 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_18_1 Hartog J. P. (e_1_2_10_32_1) 1985 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_51_1 Shayeghi A. (e_1_2_10_41_1) 2009; 4 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 Soong T. T. (e_1_2_10_27_1) 1997 e_1_2_10_20_1 Applied Technology Council (e_1_2_10_61_1) 2009 Joghataie A. (e_1_2_10_29_1) 2004; 11 Connor J. J. (e_1_2_10_2_1) 2003 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Bergman L. (e_1_2_10_4_1) 1989 e_1_2_10_60_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – year: 1985 – volume: 16 start-page: 91 issue: 4 year: 2016 publication-title: J. Korean Assoc. Spatial Struct. – year: 2009 – volume: 137 start-page: 205 issue: 3 year: 2011 publication-title: J. Eng. Mech. – volume: 6 start-page: 339 issue: 4 year: 2013 publication-title: Intera. Multisc. Mech. – volume: 57 start-page: 509 issue: 2 year: 2018 publication-title: Struct. Multidisc. Optim. – volume: 10 start-page: 381 issue: 3 year: 1982 publication-title: Earthq. Eng. Struct. Dyn. – volume: 134 start-page: 163 issue: 2 year: 2008 publication-title: J. Eng. Mech. – volume: 8 start-page: 239 issue: 3 year: 2011 publication-title: Smart Struct. Syst. – volume: 11 start-page: 50 issue: 1 year: 2004 publication-title: Sci. Iranica – volume: 43 start-page: 909 issue: 6 year: 2014 publication-title: Earthq. Eng. Struct. Dyn. – volume: 25 issue: 7 year: 2018 publication-title: Struct. Control Health Monit. – volume: 24 start-page: 243 issue: 3 year: 2002 publication-title: Eng. Struct. – volume: 131 issue: 3 year: 2009 publication-title: J. Vib. Acoust. – volume: 130 start-page: 524 issue: 4 year: 2004 publication-title: J. Eng. Mech. – volume: 13 start-page: 33 issue: 1 year: 1985 publication-title: Earthq. Eng. Struct. Dyn. – volume: 14 start-page: 1372 year: 2020 publication-title: Front. Struct. Civ. Eng. – volume: 31 start-page: 715 issue: 3 year: 2009 publication-title: Eng. Struct. – volume: 127 start-page: 1054 issue: 9 year: 2001 publication-title: J. Struct. Eng. – volume: 4 start-page: 293 year: 2009 publication-title: Int. J. Electr. Comput. Eng. – volume: 160 start-page: 449 year: 2018 publication-title: Ocean Eng. – volume: 124 start-page: 1272 issue: 11 year: 1998 publication-title: J. Struct. Eng. – volume: 135 start-page: 265 issue: 4 year: 2009 publication-title: J. Eng. Mech. – volume: 81 start-page: 429 issue: 4 year: 2022 publication-title: Struct. Eng. Mech. Int'l J. – year: 1997 – volume: 26 start-page: 617 issue: 6 year: 1997 publication-title: Earthq. Eng. Struct. Dyn. – volume: 171 start-page: 516 year: 2018 publication-title: Eng. Struct. – volume: 43 start-page: 1084 year: 2022 publication-title: Structure – volume: 41 start-page: 1141 year: 2022 publication-title: Structure – volume: 12 start-page: 137 issue: 2 year: 2013 publication-title: Smart Struct. Syst. – volume: 17 start-page: 218 issue: 2 year: 2010 publication-title: Struct. Control Health Monit. – start-page: 1 year: 2017 – volume: 51 start-page: 14 year: 2013 publication-title: Soil Dyn. Earthq. Eng. – volume: 33 start-page: 2716 issue: 9 year: 2011 publication-title: Eng. Struct. – volume: 199 start-page: 1641 year: 2017 publication-title: Proc. Eng. – volume: 37 start-page: 1223 issue: 9 year: 2008 publication-title: Earthq. Eng. Struct. Dyn. – year: 2003 – volume: 55 start-page: 301 year: 2014 publication-title: Phys. Proc. – volume: 1 start-page: 1 issue: 1 year: 2005 publication-title: Smart Struct. Syst. – volume: 1 start-page: 519 year: 2000 – year: 2016 – start-page: 95 year: 1989 – volume: 19 start-page: 347 issue: 3 year: 2009 publication-title: Struct. Des. Tall Spec. – year: 1911 – volume: 28 issue: 3 year: 2018 publication-title: Struct. Design Tall Spec. Build. – volume: 23 start-page: 449 issue: 5 year: 2019 publication-title: Smart Struct. Syst. – volume: 125 start-page: 892 year: 2015 publication-title: Proc. Eng. – volume: 121 start-page: 555 issue: 4 year: 1995 publication-title: J. Eng. Mech. – volume: 21 start-page: 57 issue: 1 year: 2012 publication-title: Struct. Design Tall Spec. Build. – start-page: 3920 year: 2009 end-page: 3925 article-title: Control strategies for a distributed mass damper system – year: 1995 – volume: 14 start-page: 97 issue: 1 year: 2015 publication-title: Earthq. Eng. Eng. Vibr. – volume: 20 start-page: 1375 issue: 9 year: 2017 publication-title: Adv. Struct. Eng. – volume: 11 start-page: 403 issue: 3 year: 2012 publication-title: Earthq. Eng. Eng. Vibr. – volume: 124 start-page: 1 year: 2016 publication-title: Eng. Struct. – year: 2017 – volume: 24 start-page: 1739 issue: 6 year: 2010 publication-title: Mech. Syst. Signal Process – volume: 130 start-page: 366 issue: 4 year: 2004 publication-title: J. Eng. Mech. – volume: 2014 start-page: 1 year: 2014 publication-title: J. Eng. – volume: 21 issue: 09 year: 2021 publication-title: Int. J. Struct. Stab. Dyn. – ident: e_1_2_10_53_1 doi: 10.1016/j.istruc.2022.05.014 – ident: e_1_2_10_52_1 doi: 10.1007/s00158-017-1764-7 – ident: e_1_2_10_55_1 doi: 10.1002/stc.2163 – ident: e_1_2_10_7_1 doi: 10.1115/1.3085888 – ident: e_1_2_10_49_1 doi: 10.12989/imm.2013.6.4.339 – ident: e_1_2_10_5_1 doi: 10.1109/ACC.2000.878954 – ident: e_1_2_10_22_1 doi: 10.1016/j.oceaneng.2018.04.041 – ident: e_1_2_10_45_1 doi: 10.12989/sss.2011.8.3.239 – ident: e_1_2_10_40_1 doi: 10.1016/j.engstruct.2008.11.017 – ident: e_1_2_10_43_1 doi: 10.1061/(ASCE)0733-9399(2009)135:4(265) – ident: e_1_2_10_20_1 doi: 10.1109/CED.2017.8308124 – ident: e_1_2_10_19_1 doi: 10.1016/j.proeng.2017.09.087 – ident: e_1_2_10_38_1 doi: 10.1061/(ASCE)0733-9445(1998)124:11(1272) – ident: e_1_2_10_44_1 doi: 10.1016/j.ymssp.2010.01.009 – ident: e_1_2_10_10_1 doi: 10.1061/(ASCE)EM.1943-7889.0000211 – ident: e_1_2_10_59_1 doi: 10.1061/(ASCE)0733-9399(2004)130:4(366) – ident: e_1_2_10_8_1 doi: 10.1002/tal.499 – ident: e_1_2_10_15_1 doi: 10.1016/j.proeng.2015.11.079 – volume-title: Passive energy dissipation systems in structural engineering year: 1997 ident: e_1_2_10_27_1 – start-page: 95 volume-title: Proceedings of ICOSSAR’89, the 5th international conference on structural safety and reliability, part I year: 1989 ident: e_1_2_10_4_1 – ident: e_1_2_10_60_1 doi: 10.1007/s11803-012-0130-4 – ident: e_1_2_10_56_1 doi: 10.1142/S0219455421501200 – ident: e_1_2_10_50_1 – ident: e_1_2_10_14_1 doi: 10.1155/2014/198719 – ident: e_1_2_10_16_1 doi: 10.9712/KASS.2016.16.4.091 – ident: e_1_2_10_21_1 doi: 10.1016/j.engstruct.2018.06.002 – ident: e_1_2_10_30_1 doi: 10.1061/(ASCE)0733-9399(1995)121:4(555) – ident: e_1_2_10_34_1 doi: 10.1002/eqe.4290130105 – ident: e_1_2_10_26_1 doi: 10.1016/S0141-0296(01)00092-X – volume-title: Mechanical vibrations year: 1985 ident: e_1_2_10_32_1 – ident: e_1_2_10_58_1 doi: 10.1007/s11709-020-0671-y – ident: e_1_2_10_12_1 doi: 10.1016/j.soildyn.2013.04.002 – ident: e_1_2_10_17_1 doi: 10.1016/j.engstruct.2016.06.006 – volume-title: Quantification of building seismic performance factors year: 2009 ident: e_1_2_10_61_1 – ident: e_1_2_10_25_1 doi: 10.12989/sss.2005.1.1.001 – ident: e_1_2_10_47_1 doi: 10.1016/j.engstruct.2011.05.024 – ident: e_1_2_10_39_1 doi: 10.1002/stc.297 – volume: 11 start-page: 50 issue: 1 year: 2004 ident: e_1_2_10_29_1 publication-title: Sci. Iranica – ident: e_1_2_10_46_1 doi: 10.1002/tal.702 – ident: e_1_2_10_35_1 doi: 10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z – ident: e_1_2_10_13_1 doi: 10.1002/eqe.2379 – ident: e_1_2_10_28_1 doi: 10.1016/j.phpro.2014.07.044 – ident: e_1_2_10_23_1 doi: 10.1002/tal.1576 – ident: e_1_2_10_33_1 doi: 10.1002/eqe.4290100304 – ident: e_1_2_10_36_1 doi: 10.1007/978-3-319-46173-1 – ident: e_1_2_10_54_1 doi: 10.1016/j.istruc.2022.07.037 – ident: e_1_2_10_9_1 doi: 10.1109/ACC.2009.5160718 – volume-title: Structural motion control year: 2003 ident: e_1_2_10_2_1 – ident: e_1_2_10_24_1 doi: 10.1002/eqe.811 – ident: e_1_2_10_11_1 doi: 10.12989/sss.2019.23.5.449 – ident: e_1_2_10_51_1 doi: 10.1007/s11803-015-0009-2 – ident: e_1_2_10_42_1 doi: 10.1061/(ASCE)0733-9399(2008)134:2(163) – ident: e_1_2_10_6_1 doi: 10.1061/(ASCE)0733-9445(2001)127:9(1054) – ident: e_1_2_10_37_1 doi: 10.1109/ICNN.1995.488968 – ident: e_1_2_10_31_1 doi: 10.1061/(ASCE)0733-9399(2004)130:4(524) – ident: e_1_2_10_48_1 doi: 10.12989/sss.2013.12.2.137 – ident: e_1_2_10_3_1 – ident: e_1_2_10_18_1 doi: 10.1177/1369433216678863 – volume: 4 start-page: 293 year: 2009 ident: e_1_2_10_41_1 publication-title: Int. J. Electr. Comput. Eng. – ident: e_1_2_10_57_1 doi: 10.12989/sem.2022.81.4.429 |
| SSID | ssj0019053 |
| Score | 2.356867 |
| Snippet | Summary
Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to... Tuned mass damper (TMD) is a seismic vibration control device used to reduce wind and seismic vibrations of structures. Although TMD is attractive to many... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Control equipment Design optimization Design parameters Earthquake dampers Ground motion High rise buildings high‐rise building Modal analysis multiple tuned mass dampers Parameter sensitivity Particle swarm optimization seismic control structural optimization Tall buildings vertically distributed dampers Vibration control Vibration isolators Vibration mode Vibrations |
| Title | Seismic control of tall buildings using vertically distributed multiple tuned mass dampers |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftal.2123 https://www.proquest.com/docview/3130618098 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1541-7794 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1541-7808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019053 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7Skx58i9UqEURP22Yf2cexiKWIetAWih6WZJNIsW6luz3or3dmH7WKgnhaFpJ9TWa-L9nJN4SchsJzPd_WFtMeTFAMCyyZaGOBcwmFmK0LUZ-bW78_9K5GfFRlVeJemFIfYrHghp5RxGt0cCGzzqdoKHJTjLsQfm3XL2ZTdwvlKIC5QoASbmYDgYy8WneWOZ2641ck-qSXyyS1QJneBnmsn69MLnluz3PZTt6_STf-7wU2yXpFPmm3HC1bZEWn22RtSZJwhzzc63H2Mk5olcNOp4bCJSZUVvWzM4qp8k-0qOMMBp68UYXiu1g3SytaJyjSfJ7iKXBzqgRw81m2S4a9y8FF36rqL1gJkADXsn1tuGAmkLZyhdAA5UZ4zCg_MpFRgP7cSaSORKDxB2skueSRYcZ1HVynZO4eaaTTVO8TGijfEybkOpDACXAfu-Yhis_rUEHQ4U1yXtsiTipxcqyRMYlLWWUnxgoq-LWa5GTR8rUU5PihTas2Z1y5ZBa7gNY-qpWFTXJW2OXX_vGge43Hg782PCSrDpAdxDSbtUgjn831EZCVXB4Xw_IDG2nmcw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60HtSDb7FaNYLoaXXfDzwVUaq2HrSCiLAkm0TE2kq3Peivd2YfbRUF8bQsJPuaTL4vs5NvAPZD7jqubynDVC4uULQZGCJR2kDn4pIwW2WiPq1rv3HnXt5791NwUu6FyfUhRgE38oxsviYHp4D08Vg1lMgpTbzTMOP6uEwhRnQz0o5CoMskKPF2FlLIyC2VZ037uOz5FYvGBHOSpmY4c74Ij-UT5uklL0fDgThKPr6JN_7zFZZgoeCfrJ4PmGWYUt0VmJ9QJVyFh1v1nL4-J6xIY2c9zfASHSaKEtopo2z5J5aVckYbd96ZJP1dKp2lJCtzFNlg2KVTpOdMcqTn_XQN7s7P2qcNoyjBYCTIAxzD8pX2uKkDYUmHc4VorrlraulHOtISCYBnJ0JFPFD0jzUSnvAibWrHsSlUaTrrUOn2umoDWCB9l-vQU4FAWkBb2ZUXkv68CiXOO14VDktjxEmhT05lMjpxrqxsx1REhb5WFfZGLd9yTY4f2tRKe8aFV6axg4Dtk2BZWIWDzDC_9o_b9SYdN__acBdmG-1WM25eXF9twZyN3IcgzjJrUBn0h2obuctA7GRj9BOQAeqU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ZSxxBEIcL3YDEB40aySYaWxB9mnWungOfxM3ijXjAIoGhe7o6iJtV9ngwf71Vc-yqJBB8Gga656qprt_0VH8FsJWoMAgjDx0XQ_pAsW7s6BytQ86lDMdsLKA-Z-fR4U143JXdGdir18KUfIjJhBt7RjFes4Pjo7G7U2ooi1MeeGfhQyjThPP52pcTdhQFugJBSafzSEKmYU2edf3duufrWDQVmC9lahFnOovws77CMr3kvjUe6Vb-5w288Z238AkWKv0p9ssXZglmsL8M8y-ohCtwe4V3w993uajS2MWDFXSIntBVCe2h4Gz5X6Io5Uw27j0Jw_xdLp2FRtQ5imI07vMuyXNhFMnzwfAz3HR-XB8cOlUJBicnHRA4XoRWKtfG2jOBUkjR3KrQtSZKbWoNCQDp5xpTFSP_Y0211DK1rg0Cn6cq3WAVGv2HPn4BEZsoVDaRGGuSBbyUHWXC_HlMDI07sgk7tTGyvOKTc5mMXlaSlf2Mi6jw02rC5qTlY8nk-EubtdqeWeWVwyyggB0xsCxpwnZhmH_2z673T3n79X8bbsDcRbuTnR6dn3yDjz5JH45wnrsGjdFgjOskXUb6e_GKPgNVcuoY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+control+of+tall+buildings+using+vertically+distributed+multiple+tuned+mass+dampers&rft.jtitle=The+structural+design+of+tall+and+special+buildings&rft.au=Akhlagh+Pasand%2C+Ali&rft.au=Zahrai%2C+Seyed+Mehdi&rft.date=2024-10-10&rft.issn=1541-7794&rft.eissn=1541-7808&rft.volume=33&rft.issue=14&rft_id=info:doi/10.1002%2Ftal.2123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tal_2123 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-7794&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-7794&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-7794&client=summon |