Occupancy grid map algorithm with neural network using array of infrared sensors

Occupancy grid map is a map representation that shows the occupancy of spaces, whether there is any object in a particular area or it is a free space. This map representation is also commonly known as a grid map. However, the accuracy of the occupancy grid map is highly dependent on the accuracy of...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 1502; no. 1; pp. 12053 - 12061
Main Authors Yatim, N A, Buniyamin, N, Noh, Z M, Othman, N A
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.03.2020
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
1742-6596
DOI10.1088/1742-6596/1502/1/012053

Cover

Abstract Occupancy grid map is a map representation that shows the occupancy of spaces, whether there is any object in a particular area or it is a free space. This map representation is also commonly known as a grid map. However, the accuracy of the occupancy grid map is highly dependent on the accuracy of the sensors. In this paper, low cost and noisy sensors such as infrared sensors were used with the occupancy grid map algorithm integrated with a neural network. The neural network was used to interpret adjacent sensor measurements into cell's occupancy value in the grid map. From the simulation experiments, it is observed that, that neural network-integrated algorithm has a better map estimate throughout robot's navigation with mean of 28% more accurate compared to occupancy grid map algorithm without neural network. This finding is beneficial for implementation with simultaneous localization and mapping or commonly known as SLAM problem. This is because SLAM algorithm makes use of both estimations of environment's map and robot's state. Thus, a better map estimate throughout the robot's journey can improve a robot's state estimate as well.
AbstractList Occupancy grid map is a map representation that shows the occupancy of spaces, whether there is any object in a particular area or it is a free space. This map representation is also commonly known as a grid map. However, the accuracy of the occupancy grid map is highly dependent on the accuracy of the sensors. In this paper, low cost and noisy sensors such as infrared sensors were used with the occupancy grid map algorithm integrated with a neural network. The neural network was used to interpret adjacent sensor measurements into cell’s occupancy value in the grid map. From the simulation experiments, it is observed that, that neural network-integrated algorithm has a better map estimate throughout robot’s navigation with mean of 28% more accurate compared to occupancy grid map algorithm without neural network. This finding is beneficial for implementation with simultaneous localization and mapping or commonly known as SLAM problem. This is because SLAM algorithm makes use of both estimations of environment’s map and robot’s state. Thus, a better map estimate throughout the robot’s journey can improve a robot’s state estimate as well.
Author Othman, N A
Buniyamin, N
Yatim, N A
Noh, Z M
Author_xml – sequence: 1
  givenname: N A
  surname: Yatim
  fullname: Yatim, N A
  organization: Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) Malaysia
– sequence: 2
  givenname: N
  surname: Buniyamin
  fullname: Buniyamin, N
  organization: Faculty of Electrical Engineering (FKE), Universiti Teknologi MARA (UiTM) Shah Alam , Malaysia
– sequence: 3
  givenname: Z M
  surname: Noh
  fullname: Noh, Z M
  organization: Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) Malaysia
– sequence: 4
  givenname: N A
  surname: Othman
  fullname: Othman, N A
  organization: Faculty of Electrical and Electronics Engineering (FTKEE), Universiti Malaysia Pahang (UMP) , Malaysia
BookMark eNqNkF1LwzAUhoNMcJv-BgNez-WjadoLL2T4BYN5odfhLE1nZpfUpGX039tRmeCNOxfnBHKe5H3fCRo57wxC15TcUpJlcyoTNktFns6pIGxO54QyIvgZGh9vRsdzll2gSYxbQnhfcoxeV1q3NTjd4U2wBd5BjaHa-GCbjx3e9x070wao-tHsffjEbbRugyEE6LAvsXVlgGAKHI2LPsRLdF5CFc3Vz5yi98eHt8XzbLl6elncL2ea5ZzPKJMkk5CWqS5EkQOhGogm60TIFLgQXPRiU5YY4DQvKTWC5TTjpS41E2TN-BRlw7utq6HbQ1WpOtgdhE5Rog7JqINndfCvDskoqoZkevRmQOvgv1oTG7X1bXC9WsVEmss8kbnst-6GLR18jMGUStsGGutdE8BWJ_wi__Cn6-MDaX39K-0_6huEm5aW
CitedBy_id crossref_primary_10_1631_FITEE_2000439
Cites_doi 10.1016/S1566-2535(01)00055-0
10.1177/0278364916687027
10.1109/TRO.2009.2024783
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.1088/1742-6596/1502/1/012053
DatabaseName Institute of Physics Open Access Journals (Activated by CARLI)
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One
ProQuest Central
Aerospace Database
SciTech Collection (ProQuest)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journals (Activated by CARLI)
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Occupancy grid map algorithm with neural network using array of infrared sensors
EISSN 1742-6596
ExternalDocumentID 10.1088/1742-6596/1502/1/012053
10_1088_1742_6596_1502_1_012053
JPCS_1502_1_012053
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
CITATION
OVT
PHGZM
PHGZT
PQGLB
PUEGO
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
02O
1WK
AALHV
ACARI
ADTOC
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
C1A
EJD
FEDTE
H13
HVGLF
JCGBZ
M48
Q02
S3P
UNPAY
ID FETCH-LOGICAL-c2933-127087a6f6cd5d9a01ca0c0b4576a35535658624ea319f11e529183fcfc250b23
IEDL.DBID IOP
ISSN 1742-6588
1742-6596
IngestDate Sun Sep 07 11:11:11 EDT 2025
Fri Jul 25 02:33:44 EDT 2025
Wed Oct 01 03:55:47 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Wed Aug 21 03:34:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2933-127087a6f6cd5d9a01ca0c0b4576a35535658624ea319f11e529183fcfc250b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/1502/1/012053
PQID 2569794797
PQPubID 4998668
PageCount 9
ParticipantIDs unpaywall_primary_10_1088_1742_6596_1502_1_012053
proquest_journals_2569794797
crossref_citationtrail_10_1088_1742_6596_1502_1_012053
crossref_primary_10_1088_1742_6596_1502_1_012053
iop_journals_10_1088_1742_6596_1502_1_012053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 20200301
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Lee (JPCS_1502_1_012053bib12) 2009; 25
Magnenat (JPCS_1502_1_012053bib8) 2010
Stachniss (JPCS_1502_1_012053bib1) 2017
Yatim (JPCS_1502_1_012053bib3) 2016; 8
Schröter (JPCS_1502_1_012053bib4) 2007
Thrun (JPCS_1502_1_012053bib10) 2005
Georgiou (JPCS_1502_1_012053bib2) 2017; 36
Moshiri (JPCS_1502_1_012053bib11) 2002; 3
Ristic (JPCS_1502_1_012053bib5) 2016
Einhorn (JPCS_1502_1_012053bib6) 2011
Hampton (JPCS_1502_1_012053bib7) 2017
Sileshi (JPCS_1502_1_012053bib9) 2016
References_xml – start-page: 271
  year: 2017
  ident: JPCS_1502_1_012053bib1
– year: 2005
  ident: JPCS_1502_1_012053bib10
– year: 2007
  ident: JPCS_1502_1_012053bib4
  article-title: Memory-Efficient Gridmaps in Rao-Blackwellized Particle Filters for SLAM using Sonar Range Sensors
– start-page: 1
  year: 2017
  ident: JPCS_1502_1_012053bib7
– start-page: 411
  year: 2016
  ident: JPCS_1502_1_012053bib9
  article-title: Particle Filter SLAM on FPGA: A Case Study on Robot@ Factory Competition
– volume: 3
  start-page: 51
  year: 2002
  ident: JPCS_1502_1_012053bib11
  article-title: Pseudo information measure: A new concept for extension of Bayesian fusion in robotic map building
  publication-title: Inf. Fusion
  doi: 10.1016/S1566-2535(01)00055-0
– start-page: 935
  year: 2016
  ident: JPCS_1502_1_012053bib5
  article-title: A random finite set approach to occupancy-grid SLAM
– start-page: 1843
  year: 2011
  ident: JPCS_1502_1_012053bib6
– start-page: 5395
  year: 2010
  ident: JPCS_1502_1_012053bib8
  article-title: Affordable slam through the co-design of hardware and methodology
– volume: 8
  start-page: 61
  year: 2016
  ident: JPCS_1502_1_012053bib3
  article-title: Indoor Mapping with Machine Learning Algorithm using Khepera III Mobile Robot
  publication-title: J. Telecommun. Electron. Comput. Eng.
– volume: 36
  start-page: 274
  year: 2017
  ident: JPCS_1502_1_012053bib2
  article-title: Constructing informative Bayesian map priors: A multi-objective optimisation approach applied to indoor occupancy grid mapping
  publication-title: Int. J. Rob. Res.
  doi: 10.1177/0278364916687027
– volume: 25
  start-page: 887
  year: 2009
  ident: JPCS_1502_1_012053bib12
  article-title: Effective maximum likelihood grid map with conflict evaluation filter using sonar sensors
  publication-title: Robot. IEEE Trans.
  doi: 10.1109/TRO.2009.2024783
SSID ssj0033337
Score 2.2529604
Snippet Occupancy grid map is a map representation that shows the occupancy of spaces, whether there is any object in a particular area or it is a free space. This map...
SourceID unpaywall
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12053
SubjectTerms Algorithms
Infrared detectors
Neural networks
Occupancy
Physics
Representations
Robots
Sensor arrays
Sensors
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3JSsNA9KEV0Yu4Yt2Yg0dDk8k6BxEVRQSLiIK3MEumCm0S04r4976XxeWi5pBDyAzJW-bt7wEc6pDbMJDGUYq8VRxvUlvh-IHyVJS4UaLINXAzjK4eguvH8HEOhl0tDKVVdmdifVCbQpOPfICiWSDtxCI-KV8cmhpF0dVuhIZsRyuY47rF2DwscOqM1YOFs4vh7V13Nvt4xU2JJHdQ9iZdxheage0zEQ1QR-IDb0BlpaH_Q17NPxflD1V06TUv5fubHI-_SaXLVVhp1Ul22uB_DeayfB0W67ROPd2A26aJMB6gbFQ9GzaRJZPjEf7X7GnCyAfLqKEl7pA36eCM8uBHTFaVfGeFZUh_FaWosymau0U13YSHy4v78yunnaHgaBTkvkOB5SSWkY20CY2Qrqelq10VoJ0hUdfwUaGjGpFMIi9az8tCLpDLrbYalSPF_S3o5UWebQMTwlAMMdTIxIHhkeRKayN8G7vad23Wh6iDVKrbBuM052Kc1oHuJEkJxCmBOCUQp17agLgP7ufCsumx8feSI0RF2vLb9O_X9zqcfa35oqg-eJ94_O8X7Py-5S4sc7LM62y1PejNqtdsH9WXmTpoafIDUOHjXw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB71odVygX1qCwX5wHHTJk7ixkeEQAhpUQ9UYk-R7cTdijap0lYIfj0zTVK2SKjLXnKIPJYzGdvfeL4ZA5yakNswUImjNZ1WcXwoY6XjB9rTInJFpOlo4NeNuBoF13fhXQP6dS7MVvwenTMEzNwRoRR9RC687_Up2TP0m9Cml24L2qOb4dnvMu2RWq5vmtxI1Yyut3va2o-ak3y-BTU_rrK5enxQ0-lfu87lAQzr8ZZkk_veaql75ulVKcd3fNAn2K8QKDsrTeYzNNLsC3xYM0HN4isMy7rDuOaycTFJ2EzNmZqO82Ky_DNjdGzLqAYm9pCVDHJG1PkxU0WhHlluGZpsQax2tkAPOS8W32B0eXF7fuVU1y44Bvd-36FYdDRQwgqThIlUrmeUa1wdoGuiEJ74iAEprSRVOH2t56Uhl7gwWGMN4inN_e_QyvIs_QFMyoTCjqHBeR8kXCiujUmkbweu8V2bdkDUyo9NVZOcrsaYxuvYeBTFpK6Y1BWTumIvLtXVAXcjOC_LcuwW-Yl_N66m6GJ3825tBi8yiA8lLmADOeiAtzGNfx3B4X_IHMEeJw9_zXrrQmtZrNJjhEFLfVKZ_jO_x_Bz
  priority: 102
  providerName: Unpaywall
Title Occupancy grid map algorithm with neural network using array of infrared sensors
URI https://iopscience.iop.org/article/10.1088/1742-6596/1502/1/012053
https://www.proquest.com/docview/2569794797
https://doi.org/10.1088/1742-6596/1502/1/012053
UnpaywallVersion publishedVersion
Volume 1502
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: HH5
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVIOP
  databaseName: Institute of Physics (IOP) Publishing Journals
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: IOP
  dateStart: 20040601
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journals (Activated by CARLI)
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5R0LS9DPZLdLDKD3skbWInjv0IiA5NolQT1dhTZDtxhyhJlbaa2F-_c50wmDSxiTxYUZSz7LN9_mx_dwb4aBJqk1jlgdZut4piooyVAYt1pLkIudBua-BsxE8n8efL5PK-L0w1b0x_H199oGCvwoYQJwaIoWnAE8kHCGboIBo4_8-EdWCLCcTHzonvfNxaY4ZP6p0inZAQLcfr7xk9mKE6WIoH4PP5qpyr2x9qNrs3Dw23wbQ18PST6_5qqfvm5x_BHZ9WxR142cBUcuglXsFGUb6GZ2u6qFm8gbEPToyGmUzrq5zcqDlRs2lVXy2_3xC3t0tcoEzMofQ0c-L49VOi6lrdksoS7Ne1o76TBS6jq3rxFibDk4vj06C5myEwCBBY4A6sRaq45SZPcqnCyKjQhDrG9YtCDMMQKDrfk0LhGLdRVCRUovWwxhoEXZqyd7BZVmWxC0TK3J1NJgaNQ5xTrqg2JpfMpqFhoS26wNv2yEwTuNzdnzHL1gfoQmROXZlTV-bUlUWZV1cXwjvBuY_d8bjIAbZJ1ozjxeO_77c947cMgkiJVi6VaReiu97yryV4_38l2IMX1O0ArFlx-7C5rFfFB4RJS92Djhh-6sHW0clo_KW3HhWYnrOv-G0yGh9--wUKiAIU
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LThRBsIIQgxejgnEVtQ96Y7IzPc8-EOMDsghsiIGEW9OP6ZVkmRlnlpD9Ob_NqnmAXMQLc5jDpLszqaqu9wPgg4m5iyNlPa3JW8XxpYwTXhjpQCeZn2SaXANH02RyGn0_i89W4PdQC0NplQNPbBm1LQ35yMcomgXSTirST9Uvj6ZGUXR1GKGh-tEKdqdtMdYXdhzky2s04Zqd_W-I74-c7-2efJ14_ZQBz6CoCz0KvWapSlxibGyF8gOjfOPrCDVxhdI4RJWHqihyhdTqgiCPucB74IwzqD5oanyAImAtCiOBxt_al93p8Y9BFoT4pF1JJvfwmGzIMEOzs_8mkjHqZHwcjKmMNQ7vyMdHF2V1R_VdvyoqtbxW8_lfUnDvGTzt1Vf2uaO357CSFy_gcZtGapoNOO6aFiPDZrP6wrJLVTE1nyEcFz8vGfl8GTXQxBOKLv2cUd79jKm6VktWOob0XlNKPGvQvC7rZhNOHwSaL2G1KIv8FTAhLMUsY4NMI7I8UVwbY0XoUt-EvstHkAyQkqZvaE5zNeayDaxnmSQQSwKxJBDLQHYgHoF_s7Hqenrcv2UbUSH7-93cv3xrwNntnlsKHkFwg8f__YPX_z7yPaxPTo4O5eH-9OANPOHkFWgz5bZgdVFf5W9RdVrodz19Mjh_6CvxBye4Hgw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RVAuvFEXCvjAkWwSJ3HiIwJW5VX2QKXeLNuJl4ptEmV3hcqvZyZOFoqECiKHKIeMZY_t8efxN2OA5zbjLkt1GRhD3iqOL22dDJLUxEYUkSgMuQY-Houjk_TdaXa6A7NtLEzTDqZ_ip8-UbBX4UCIK0LE0DwQmRQhghkexiHFf2ZJ2JZuF6716UookO_TfLTICT65D4wkwaIYeV5_LuzSKrWLNbkEQPc3dasvvunl8pe1aHYbFmMrPAXl63SzNlP7_bcEj__fzDtwa4Cr7KWXugs7VX0Prve0Ubu6D3OfpBgNNFt0ZyU71y3Ty0XTna2_nDPy8TJKmIkl1J5uzohnv2C66_QFaxzD8d0RBZ6tcDvddKsHcDJ78_nVUTDc0RBYBApJQAfXRa6FE7bMSqmj2OrIRibFfYxGLJMgYKQYlErjXHdxXGVcohVx1lkEX4YnD2GvburqAJiUJZ1RZhaNRFpyobmxtpSJyyObRK6agBj7RNkhgTndo7FU_UF6UShSmSKVKVKZipVX2QSirWDrc3hcLfIC-0UN83l19e-H4-j4KYNgUqK1y2U-gXg7Yv62Bo_-rQbP4Mb89Ux9eHv8_jHc5OQU6Ilyh7C37jbVE0ROa_O0nxY_AJ44Aks
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB71odVygX1qCwX5wHHTJk7ixkeEQAhpUQ9UYk-R7cTdijap0lYIfj0zTVK2SKjLXnKIPJYzGdvfeL4ZA5yakNswUImjNZ1WcXwoY6XjB9rTInJFpOlo4NeNuBoF13fhXQP6dS7MVvwenTMEzNwRoRR9RC687_Up2TP0m9Cml24L2qOb4dnvMu2RWq5vmtxI1Yyut3va2o-ak3y-BTU_rrK5enxQ0-lfu87lAQzr8ZZkk_veaql75ulVKcd3fNAn2K8QKDsrTeYzNNLsC3xYM0HN4isMy7rDuOaycTFJ2EzNmZqO82Ky_DNjdGzLqAYm9pCVDHJG1PkxU0WhHlluGZpsQax2tkAPOS8W32B0eXF7fuVU1y44Bvd-36FYdDRQwgqThIlUrmeUa1wdoGuiEJ74iAEprSRVOH2t56Uhl7gwWGMN4inN_e_QyvIs_QFMyoTCjqHBeR8kXCiujUmkbweu8V2bdkDUyo9NVZOcrsaYxuvYeBTFpK6Y1BWTumIvLtXVAXcjOC_LcuwW-Yl_N66m6GJ3825tBi8yiA8lLmADOeiAtzGNfx3B4X_IHMEeJw9_zXrrQmtZrNJjhEFLfVKZ_jO_x_Bz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Occupancy+grid+map+algorithm+with+neural+network+using+array+of+infrared+sensors&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Yatim%2C+N+A&rft.au=Buniyamin%2C+N&rft.au=Noh%2C+Z+M&rft.au=Othman%2C+N+A&rft.date=2020-03-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1502&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1502%2F1%2F012053&rft.externalDocID=JPCS_1502_1_012053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon