Occupancy grid map algorithm with neural network using array of infrared sensors
Occupancy grid map is a map representation that shows the occupancy of spaces, whether there is any object in a particular area or it is a free space. This map representation is also commonly known as a grid map. However, the accuracy of the occupancy grid map is highly dependent on the accuracy of...
Saved in:
| Published in | Journal of physics. Conference series Vol. 1502; no. 1; pp. 12053 - 12061 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Bristol
IOP Publishing
01.03.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1742-6588 1742-6596 1742-6596 |
| DOI | 10.1088/1742-6596/1502/1/012053 |
Cover
| Abstract | Occupancy grid map is a map representation that shows the occupancy of spaces, whether there is any object in a particular area or it is a free space. This map representation is also commonly known as a grid map. However, the accuracy of the occupancy grid map is highly dependent on the accuracy of the sensors. In this paper, low cost and noisy sensors such as infrared sensors were used with the occupancy grid map algorithm integrated with a neural network. The neural network was used to interpret adjacent sensor measurements into cell's occupancy value in the grid map. From the simulation experiments, it is observed that, that neural network-integrated algorithm has a better map estimate throughout robot's navigation with mean of 28% more accurate compared to occupancy grid map algorithm without neural network. This finding is beneficial for implementation with simultaneous localization and mapping or commonly known as SLAM problem. This is because SLAM algorithm makes use of both estimations of environment's map and robot's state. Thus, a better map estimate throughout the robot's journey can improve a robot's state estimate as well. |
|---|---|
| AbstractList | Occupancy grid map is a map representation that shows the occupancy of spaces, whether there is any object in a particular area or it is a free space. This map representation is also commonly known as a grid map. However, the accuracy of the occupancy grid map is highly dependent on the accuracy of the sensors. In this paper, low cost and noisy sensors such as infrared sensors were used with the occupancy grid map algorithm integrated with a neural network. The neural network was used to interpret adjacent sensor measurements into cell’s occupancy value in the grid map. From the simulation experiments, it is observed that, that neural network-integrated algorithm has a better map estimate throughout robot’s navigation with mean of 28% more accurate compared to occupancy grid map algorithm without neural network. This finding is beneficial for implementation with simultaneous localization and mapping or commonly known as SLAM problem. This is because SLAM algorithm makes use of both estimations of environment’s map and robot’s state. Thus, a better map estimate throughout the robot’s journey can improve a robot’s state estimate as well. |
| Author | Othman, N A Buniyamin, N Yatim, N A Noh, Z M |
| Author_xml | – sequence: 1 givenname: N A surname: Yatim fullname: Yatim, N A organization: Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) Malaysia – sequence: 2 givenname: N surname: Buniyamin fullname: Buniyamin, N organization: Faculty of Electrical Engineering (FKE), Universiti Teknologi MARA (UiTM) Shah Alam , Malaysia – sequence: 3 givenname: Z M surname: Noh fullname: Noh, Z M organization: Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) Malaysia – sequence: 4 givenname: N A surname: Othman fullname: Othman, N A organization: Faculty of Electrical and Electronics Engineering (FTKEE), Universiti Malaysia Pahang (UMP) , Malaysia |
| BookMark | eNqNkF1LwzAUhoNMcJv-BgNez-WjadoLL2T4BYN5odfhLE1nZpfUpGX039tRmeCNOxfnBHKe5H3fCRo57wxC15TcUpJlcyoTNktFns6pIGxO54QyIvgZGh9vRsdzll2gSYxbQnhfcoxeV1q3NTjd4U2wBd5BjaHa-GCbjx3e9x070wao-tHsffjEbbRugyEE6LAvsXVlgGAKHI2LPsRLdF5CFc3Vz5yi98eHt8XzbLl6elncL2ea5ZzPKJMkk5CWqS5EkQOhGogm60TIFLgQXPRiU5YY4DQvKTWC5TTjpS41E2TN-BRlw7utq6HbQ1WpOtgdhE5Rog7JqINndfCvDskoqoZkevRmQOvgv1oTG7X1bXC9WsVEmss8kbnst-6GLR18jMGUStsGGutdE8BWJ_wi__Cn6-MDaX39K-0_6huEm5aW |
| CitedBy_id | crossref_primary_10_1631_FITEE_2000439 |
| Cites_doi | 10.1016/S1566-2535(01)00055-0 10.1177/0278364916687027 10.1109/TRO.2009.2024783 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.1088/1742-6596/1502/1/012053 |
| DatabaseName | Institute of Physics Open Access Journals (Activated by CARLI) IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One ProQuest Central Aerospace Database SciTech Collection (ProQuest) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journals (Activated by CARLI) url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| DocumentTitleAlternate | Occupancy grid map algorithm with neural network using array of infrared sensors |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10.1088/1742-6596/1502/1/012053 10_1088_1742_6596_1502_1_012053 JPCS_1502_1_012053 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX AEINN CITATION OVT PHGZM PHGZT PQGLB PUEGO 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI PRINS 02O 1WK AALHV ACARI ADTOC AERVB AGQPQ AHSEE ARNYC BBWZM C1A EJD FEDTE H13 HVGLF JCGBZ M48 Q02 S3P UNPAY |
| ID | FETCH-LOGICAL-c2933-127087a6f6cd5d9a01ca0c0b4576a35535658624ea319f11e529183fcfc250b23 |
| IEDL.DBID | IOP |
| ISSN | 1742-6588 1742-6596 |
| IngestDate | Sun Sep 07 11:11:11 EDT 2025 Fri Jul 25 02:33:44 EDT 2025 Wed Oct 01 03:55:47 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Wed Aug 21 03:34:38 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2933-127087a6f6cd5d9a01ca0c0b4576a35535658624ea319f11e529183fcfc250b23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/1502/1/012053 |
| PQID | 2569794797 |
| PQPubID | 4998668 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1088_1742_6596_1502_1_012053 proquest_journals_2569794797 crossref_citationtrail_10_1088_1742_6596_1502_1_012053 crossref_primary_10_1088_1742_6596_1502_1_012053 iop_journals_10_1088_1742_6596_1502_1_012053 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 20200301 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2020 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Lee (JPCS_1502_1_012053bib12) 2009; 25 Magnenat (JPCS_1502_1_012053bib8) 2010 Stachniss (JPCS_1502_1_012053bib1) 2017 Yatim (JPCS_1502_1_012053bib3) 2016; 8 Schröter (JPCS_1502_1_012053bib4) 2007 Thrun (JPCS_1502_1_012053bib10) 2005 Georgiou (JPCS_1502_1_012053bib2) 2017; 36 Moshiri (JPCS_1502_1_012053bib11) 2002; 3 Ristic (JPCS_1502_1_012053bib5) 2016 Einhorn (JPCS_1502_1_012053bib6) 2011 Hampton (JPCS_1502_1_012053bib7) 2017 Sileshi (JPCS_1502_1_012053bib9) 2016 |
| References_xml | – start-page: 271 year: 2017 ident: JPCS_1502_1_012053bib1 – year: 2005 ident: JPCS_1502_1_012053bib10 – year: 2007 ident: JPCS_1502_1_012053bib4 article-title: Memory-Efficient Gridmaps in Rao-Blackwellized Particle Filters for SLAM using Sonar Range Sensors – start-page: 1 year: 2017 ident: JPCS_1502_1_012053bib7 – start-page: 411 year: 2016 ident: JPCS_1502_1_012053bib9 article-title: Particle Filter SLAM on FPGA: A Case Study on Robot@ Factory Competition – volume: 3 start-page: 51 year: 2002 ident: JPCS_1502_1_012053bib11 article-title: Pseudo information measure: A new concept for extension of Bayesian fusion in robotic map building publication-title: Inf. Fusion doi: 10.1016/S1566-2535(01)00055-0 – start-page: 935 year: 2016 ident: JPCS_1502_1_012053bib5 article-title: A random finite set approach to occupancy-grid SLAM – start-page: 1843 year: 2011 ident: JPCS_1502_1_012053bib6 – start-page: 5395 year: 2010 ident: JPCS_1502_1_012053bib8 article-title: Affordable slam through the co-design of hardware and methodology – volume: 8 start-page: 61 year: 2016 ident: JPCS_1502_1_012053bib3 article-title: Indoor Mapping with Machine Learning Algorithm using Khepera III Mobile Robot publication-title: J. Telecommun. Electron. Comput. Eng. – volume: 36 start-page: 274 year: 2017 ident: JPCS_1502_1_012053bib2 article-title: Constructing informative Bayesian map priors: A multi-objective optimisation approach applied to indoor occupancy grid mapping publication-title: Int. J. Rob. Res. doi: 10.1177/0278364916687027 – volume: 25 start-page: 887 year: 2009 ident: JPCS_1502_1_012053bib12 article-title: Effective maximum likelihood grid map with conflict evaluation filter using sonar sensors publication-title: Robot. IEEE Trans. doi: 10.1109/TRO.2009.2024783 |
| SSID | ssj0033337 |
| Score | 2.2529604 |
| Snippet | Occupancy grid map is a map representation that shows the occupancy of spaces, whether there is any object in a particular area or it is a free space. This map... |
| SourceID | unpaywall proquest crossref iop |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12053 |
| SubjectTerms | Algorithms Infrared detectors Neural networks Occupancy Physics Representations Robots Sensor arrays Sensors |
| SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3JSsNA9KEV0Yu4Yt2Yg0dDk8k6BxEVRQSLiIK3MEumCm0S04r4976XxeWi5pBDyAzJW-bt7wEc6pDbMJDGUYq8VRxvUlvh-IHyVJS4UaLINXAzjK4eguvH8HEOhl0tDKVVdmdifVCbQpOPfICiWSDtxCI-KV8cmhpF0dVuhIZsRyuY47rF2DwscOqM1YOFs4vh7V13Nvt4xU2JJHdQ9iZdxheage0zEQ1QR-IDb0BlpaH_Q17NPxflD1V06TUv5fubHI-_SaXLVVhp1Ul22uB_DeayfB0W67ROPd2A26aJMB6gbFQ9GzaRJZPjEf7X7GnCyAfLqKEl7pA36eCM8uBHTFaVfGeFZUh_FaWosymau0U13YSHy4v78yunnaHgaBTkvkOB5SSWkY20CY2Qrqelq10VoJ0hUdfwUaGjGpFMIi9az8tCLpDLrbYalSPF_S3o5UWebQMTwlAMMdTIxIHhkeRKayN8G7vad23Wh6iDVKrbBuM052Kc1oHuJEkJxCmBOCUQp17agLgP7ufCsumx8feSI0RF2vLb9O_X9zqcfa35oqg-eJ94_O8X7Py-5S4sc7LM62y1PejNqtdsH9WXmTpoafIDUOHjXw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB71odVygX1qCwX5wHHTJk7ixkeEQAhpUQ9UYk-R7cTdijap0lYIfj0zTVK2SKjLXnKIPJYzGdvfeL4ZA5yakNswUImjNZ1WcXwoY6XjB9rTInJFpOlo4NeNuBoF13fhXQP6dS7MVvwenTMEzNwRoRR9RC687_Up2TP0m9Cml24L2qOb4dnvMu2RWq5vmtxI1Yyut3va2o-ak3y-BTU_rrK5enxQ0-lfu87lAQzr8ZZkk_veaql75ulVKcd3fNAn2K8QKDsrTeYzNNLsC3xYM0HN4isMy7rDuOaycTFJ2EzNmZqO82Ky_DNjdGzLqAYm9pCVDHJG1PkxU0WhHlluGZpsQax2tkAPOS8W32B0eXF7fuVU1y44Bvd-36FYdDRQwgqThIlUrmeUa1wdoGuiEJ74iAEprSRVOH2t56Uhl7gwWGMN4inN_e_QyvIs_QFMyoTCjqHBeR8kXCiujUmkbweu8V2bdkDUyo9NVZOcrsaYxuvYeBTFpK6Y1BWTumIvLtXVAXcjOC_LcuwW-Yl_N66m6GJ3825tBi8yiA8lLmADOeiAtzGNfx3B4X_IHMEeJw9_zXrrQmtZrNJjhEFLfVKZ_jO_x_Bz priority: 102 providerName: Unpaywall |
| Title | Occupancy grid map algorithm with neural network using array of infrared sensors |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/1502/1/012053 https://www.proquest.com/docview/2569794797 https://doi.org/10.1088/1742-6596/1502/1/012053 |
| UnpaywallVersion | publishedVersion |
| Volume | 1502 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: HH5 dateStart: 20040101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVIOP databaseName: Institute of Physics (IOP) Publishing Journals customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: IOP dateStart: 20040601 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journals (Activated by CARLI) customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5R0LS9DPZLdLDKD3skbWInjv0IiA5NolQT1dhTZDtxhyhJlbaa2F-_c50wmDSxiTxYUZSz7LN9_mx_dwb4aBJqk1jlgdZut4piooyVAYt1pLkIudBua-BsxE8n8efL5PK-L0w1b0x_H199oGCvwoYQJwaIoWnAE8kHCGboIBo4_8-EdWCLCcTHzonvfNxaY4ZP6p0inZAQLcfr7xk9mKE6WIoH4PP5qpyr2x9qNrs3Dw23wbQ18PST6_5qqfvm5x_BHZ9WxR142cBUcuglXsFGUb6GZ2u6qFm8gbEPToyGmUzrq5zcqDlRs2lVXy2_3xC3t0tcoEzMofQ0c-L49VOi6lrdksoS7Ne1o76TBS6jq3rxFibDk4vj06C5myEwCBBY4A6sRaq45SZPcqnCyKjQhDrG9YtCDMMQKDrfk0LhGLdRVCRUovWwxhoEXZqyd7BZVmWxC0TK3J1NJgaNQ5xTrqg2JpfMpqFhoS26wNv2yEwTuNzdnzHL1gfoQmROXZlTV-bUlUWZV1cXwjvBuY_d8bjIAbZJ1ozjxeO_77c947cMgkiJVi6VaReiu97yryV4_38l2IMX1O0ArFlx-7C5rFfFB4RJS92Djhh-6sHW0clo_KW3HhWYnrOv-G0yGh9--wUKiAIU |
| linkProvider | IOP Publishing |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LThRBsIIQgxejgnEVtQ96Y7IzPc8-EOMDsghsiIGEW9OP6ZVkmRlnlpD9Ob_NqnmAXMQLc5jDpLszqaqu9wPgg4m5iyNlPa3JW8XxpYwTXhjpQCeZn2SaXANH02RyGn0_i89W4PdQC0NplQNPbBm1LQ35yMcomgXSTirST9Uvj6ZGUXR1GKGh-tEKdqdtMdYXdhzky2s04Zqd_W-I74-c7-2efJ14_ZQBz6CoCz0KvWapSlxibGyF8gOjfOPrCDVxhdI4RJWHqihyhdTqgiCPucB74IwzqD5oanyAImAtCiOBxt_al93p8Y9BFoT4pF1JJvfwmGzIMEOzs_8mkjHqZHwcjKmMNQ7vyMdHF2V1R_VdvyoqtbxW8_lfUnDvGTzt1Vf2uaO357CSFy_gcZtGapoNOO6aFiPDZrP6wrJLVTE1nyEcFz8vGfl8GTXQxBOKLv2cUd79jKm6VktWOob0XlNKPGvQvC7rZhNOHwSaL2G1KIv8FTAhLMUsY4NMI7I8UVwbY0XoUt-EvstHkAyQkqZvaE5zNeayDaxnmSQQSwKxJBDLQHYgHoF_s7Hqenrcv2UbUSH7-93cv3xrwNntnlsKHkFwg8f__YPX_z7yPaxPTo4O5eH-9OANPOHkFWgz5bZgdVFf5W9RdVrodz19Mjh_6CvxBye4Hgw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RVAuvFEXCvjAkWwSJ3HiIwJW5VX2QKXeLNuJl4ptEmV3hcqvZyZOFoqECiKHKIeMZY_t8efxN2OA5zbjLkt1GRhD3iqOL22dDJLUxEYUkSgMuQY-Houjk_TdaXa6A7NtLEzTDqZ_ip8-UbBX4UCIK0LE0DwQmRQhghkexiHFf2ZJ2JZuF6716UookO_TfLTICT65D4wkwaIYeV5_LuzSKrWLNbkEQPc3dasvvunl8pe1aHYbFmMrPAXl63SzNlP7_bcEj__fzDtwa4Cr7KWXugs7VX0Prve0Ubu6D3OfpBgNNFt0ZyU71y3Ty0XTna2_nDPy8TJKmIkl1J5uzohnv2C66_QFaxzD8d0RBZ6tcDvddKsHcDJ78_nVUTDc0RBYBApJQAfXRa6FE7bMSqmj2OrIRibFfYxGLJMgYKQYlErjXHdxXGVcohVx1lkEX4YnD2GvburqAJiUJZ1RZhaNRFpyobmxtpSJyyObRK6agBj7RNkhgTndo7FU_UF6UShSmSKVKVKZipVX2QSirWDrc3hcLfIC-0UN83l19e-H4-j4KYNgUqK1y2U-gXg7Yv62Bo_-rQbP4Mb89Ux9eHv8_jHc5OQU6Ilyh7C37jbVE0ROa_O0nxY_AJ44Aks |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB71odVygX1qCwX5wHHTJk7ixkeEQAhpUQ9UYk-R7cTdijap0lYIfj0zTVK2SKjLXnKIPJYzGdvfeL4ZA5yakNswUImjNZ1WcXwoY6XjB9rTInJFpOlo4NeNuBoF13fhXQP6dS7MVvwenTMEzNwRoRR9RC687_Up2TP0m9Cml24L2qOb4dnvMu2RWq5vmtxI1Yyut3va2o-ak3y-BTU_rrK5enxQ0-lfu87lAQzr8ZZkk_veaql75ulVKcd3fNAn2K8QKDsrTeYzNNLsC3xYM0HN4isMy7rDuOaycTFJ2EzNmZqO82Ky_DNjdGzLqAYm9pCVDHJG1PkxU0WhHlluGZpsQax2tkAPOS8W32B0eXF7fuVU1y44Bvd-36FYdDRQwgqThIlUrmeUa1wdoGuiEJ74iAEprSRVOH2t56Uhl7gwWGMN4inN_e_QyvIs_QFMyoTCjqHBeR8kXCiujUmkbweu8V2bdkDUyo9NVZOcrsaYxuvYeBTFpK6Y1BWTumIvLtXVAXcjOC_LcuwW-Yl_N66m6GJ3825tBi8yiA8lLmADOeiAtzGNfx3B4X_IHMEeJw9_zXrrQmtZrNJjhEFLfVKZ_jO_x_Bz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Occupancy+grid+map+algorithm+with+neural+network+using+array+of+infrared+sensors&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Yatim%2C+N+A&rft.au=Buniyamin%2C+N&rft.au=Noh%2C+Z+M&rft.au=Othman%2C+N+A&rft.date=2020-03-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1502&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1502%2F1%2F012053&rft.externalDocID=JPCS_1502_1_012053 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |