A novel method for EEG based automated eyes state classification using recurrence plots and machine learning approach

Summary Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear analysis, recurrence plots (RPs) and recurrence quantification analysis (RQA) are of greater significance that help in understanding the chaot...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 34; no. 13
Main Authors Khosla, Ashima, Khandnor, Padmavati, Chand, Trilok
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 10.06.2022
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.6912

Cover

Abstract Summary Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear analysis, recurrence plots (RPs) and recurrence quantification analysis (RQA) are of greater significance that help in understanding the chaotic and recurrence behavior of the dynamically occurring complex physiological signals. In our study, a novel method is proposed combining the RPs with the machine learning based algorithms for automated classification of EEG signals into eyes‐open and eyes‐close states. A huge dataset of 109 subjects has been acquired from the PhysioNet database. Each of the six RQA‐based measures (recurrence rate, determinism, entropy, laminarity, trapping time, and longest vertical line) has been extracted from 64 EEG channels. Feature selection has been performed using genetic algorithm. The selected features have been averaged and combined to form a six‐dimensional input vector which shows statistically significant differences (p<0.01) between the two states. It is fed to different machine learning based algorithms such as logistic‐regression, support vector machine, random forest, k‐nearest neighbor, Gaussian naïve Bayes, and adaptive boosting. Logistic regression achieves the highest performance results in terms of accuracy, F1 score, precision, recall, and specificity of 97.27%, 97.17%, 98.26%, 96.36%, and 98.18%, respectively, with the least testing time of the model as 2.52 ms. Therefore, our method might be of greater significance in the development of the practical applications.
AbstractList Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear analysis, recurrence plots (RPs) and recurrence quantification analysis (RQA) are of greater significance that help in understanding the chaotic and recurrence behavior of the dynamically occurring complex physiological signals. In our study, a novel method is proposed combining the RPs with the machine learning based algorithms for automated classification of EEG signals into eyes‐open and eyes‐close states. A huge dataset of 109 subjects has been acquired from the PhysioNet database. Each of the six RQA‐based measures (recurrence rate, determinism, entropy, laminarity, trapping time, and longest vertical line) has been extracted from 64 EEG channels. Feature selection has been performed using genetic algorithm. The selected features have been averaged and combined to form a six‐dimensional input vector which shows statistically significant differences between the two states. It is fed to different machine learning based algorithms such as logistic‐regression, support vector machine, random forest, k‐nearest neighbor, Gaussian naïve Bayes, and adaptive boosting. Logistic regression achieves the highest performance results in terms of accuracy, F1 score, precision, recall, and specificity of 97.27%, 97.17%, 98.26%, 96.36%, and 98.18%, respectively, with the least testing time of the model as 2.52 ms. Therefore, our method might be of greater significance in the development of the practical applications.
Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear analysis, recurrence plots (RPs) and recurrence quantification analysis (RQA) are of greater significance that help in understanding the chaotic and recurrence behavior of the dynamically occurring complex physiological signals. In our study, a novel method is proposed combining the RPs with the machine learning based algorithms for automated classification of EEG signals into eyes‐open and eyes‐close states. A huge dataset of 109 subjects has been acquired from the PhysioNet database. Each of the six RQA‐based measures (recurrence rate, determinism, entropy, laminarity, trapping time, and longest vertical line) has been extracted from 64 EEG channels. Feature selection has been performed using genetic algorithm. The selected features have been averaged and combined to form a six‐dimensional input vector which shows statistically significant differences (p<0.01) between the two states. It is fed to different machine learning based algorithms such as logistic‐regression, support vector machine, random forest, k‐nearest neighbor, Gaussian naïve Bayes, and adaptive boosting. Logistic regression achieves the highest performance results in terms of accuracy, F1 score, precision, recall, and specificity of 97.27%, 97.17%, 98.26%, 96.36%, and 98.18%, respectively, with the least testing time of the model as 2.52 ms. Therefore, our method might be of greater significance in the development of the practical applications.
Summary Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear analysis, recurrence plots (RPs) and recurrence quantification analysis (RQA) are of greater significance that help in understanding the chaotic and recurrence behavior of the dynamically occurring complex physiological signals. In our study, a novel method is proposed combining the RPs with the machine learning based algorithms for automated classification of EEG signals into eyes‐open and eyes‐close states. A huge dataset of 109 subjects has been acquired from the PhysioNet database. Each of the six RQA‐based measures (recurrence rate, determinism, entropy, laminarity, trapping time, and longest vertical line) has been extracted from 64 EEG channels. Feature selection has been performed using genetic algorithm. The selected features have been averaged and combined to form a six‐dimensional input vector which shows statistically significant differences (p<0.01) between the two states. It is fed to different machine learning based algorithms such as logistic‐regression, support vector machine, random forest, k‐nearest neighbor, Gaussian naïve Bayes, and adaptive boosting. Logistic regression achieves the highest performance results in terms of accuracy, F1 score, precision, recall, and specificity of 97.27%, 97.17%, 98.26%, 96.36%, and 98.18%, respectively, with the least testing time of the model as 2.52 ms. Therefore, our method might be of greater significance in the development of the practical applications.
Author Khosla, Ashima
Khandnor, Padmavati
Chand, Trilok
Author_xml – sequence: 1
  givenname: Ashima
  orcidid: 0000-0002-1000-6807
  surname: Khosla
  fullname: Khosla, Ashima
  email: ashimakhosla.phdcse@pec.edu.in
  organization: Punjab Engineering College (Deemed to be University)
– sequence: 2
  givenname: Padmavati
  surname: Khandnor
  fullname: Khandnor, Padmavati
  organization: Punjab Engineering College (Deemed to be University)
– sequence: 3
  givenname: Trilok
  surname: Chand
  fullname: Chand, Trilok
  organization: Punjab Engineering College (Deemed to be University)
BookMark eNp1kF9LwzAUxYNMcJuCHyHgiy-d-dN2y-MYdQoDfdDnkqa3LqNNapIq-_Zmm_gg-nQPl98593ImaGSsAYSuKZlRQtid6mGWC8rO0JhmnCUk5-noR7P8Ak283xFCKeF0jIYlNvYDWtxB2NoaN9bholjjSnqosRyC7WSICvbgsQ9RY9VK73WjlQzaGjx4bd6wAzU4B0YB7lsbPJamxp1UW20AtyCdOVCy752Ny0t03sjWw9X3nKLX--Jl9ZBsntaPq-UmUUzEfxsGFaQEFotUNJUCUteKV_MKMgAh2DyvGVUZy-ViIUBwIShIIWVTc6C05hWfoptTbjz7PoAP5c4OzsSTJcvzdM4yTtNI3Z4o5az3Dpqyd7qTbl9SUh5KLWOp5aHUiM5-oUqHYw_BSd3-ZUhOhk_dwv7f4HL1XBz5L999i-M
CitedBy_id crossref_primary_10_1063_5_0200029
crossref_primary_10_1063_5_0196382
crossref_primary_10_1016_j_chaos_2023_113453
crossref_primary_10_3390_e26050432
crossref_primary_10_3390_bioengineering10010042
Cites_doi 10.1016/j.bbe.2020.02.002
10.1016/j.cmpb.2005.06.011
10.1109/JSEN.2019.2931727
10.1006/jcss.1997.1504
10.1016/j.eswa.2016.12.010
10.1109/IECBES.2010.5742273
10.1016/j.cmpb.2012.10.008
10.1109/JSEN.2021.3080135
10.1142/S0219519412500911
10.1016/j.bbe.2020.11.001
10.1023/A:1010933404324
10.4103/digm.digm_41_17
10.1016/j.jneumeth.2017.12.010
10.1109/TBME.2004.827072
10.1007/s10916-008-9231-z
10.1016/S0375-9601(00)00815-X
10.1007/978-3-319-07155-8
10.1109/JBHI.2016.2532354
10.1016/j.neucom.2019.12.076
10.1186/1753-4631-3-2
10.3390/s16020241
10.1109/WICOM.2010.5600726
10.1016/j.physa.2019.02.017
10.1300/J184v03n02_01
10.1016/j.measurement.2016.02.059
10.1007/s00521-016-2646-4
10.1186/s40537-020-00349-y
10.1016/S0375-9601(00)00304-2
10.1109/ICCTICT.2016.7514632
10.3390/s19010006
10.1109/TBME.2017.2650259
10.1016/j.bbe.2021.12.005
10.1016/j.physrep.2006.11.001
10.1145/3144457.3144477
10.1016/j.eswa.2019.01.080
10.1007/978-3-030-06161-6_17
10.21506/j.ponte.2016.7.26
10.1016/j.artmed.2019.101711
10.1016/j.compbiomed.2020.103858
10.1111/psyp.13327
10.1007/s11042-019-7258-4
10.1201/9781003121152-1
10.1177/15500594211054990
10.1016/j.patrec.2017.03.017
10.1152/jappl.1994.76.2.965
10.1007/BF00994018
10.1023/A:1009715923555
10.1109/ICDSP.2017.8096122
10.1007/s11517-007-0268-9
10.1109/JSEN.2020.3027181
10.1007/978-3-540-87442-3_55
10.1161/01.CIR.101.23.e215
10.1142/S0219519412400155
10.3390/e19030099
10.1109/TBME.2005.862533
10.1007/978-981-10-9059-2_1
10.1109/SMC.2016.7844325
10.1109/TBME.2018.2881051
10.1007/s12046-017-0633-9
10.3390/app7040385
10.18201/ijisae.75836
10.1111/psyp.12765
10.1109/JBHI.2013.2255132
10.1007/978-3-540-89506-0_15
10.1109/5326.740670
10.1109/ICMLA.2015.89
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.6912
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_6912
CPE6912
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2932-f2ebe40e8849fbce0ddc3b7be5ee99276d21c526a889e93991ea9aafd3e11d3b3
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Fri Jul 25 06:48:12 EDT 2025
Wed Oct 01 00:59:52 EDT 2025
Thu Apr 24 23:00:18 EDT 2025
Wed Jan 22 16:25:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2932-f2ebe40e8849fbce0ddc3b7be5ee99276d21c526a889e93991ea9aafd3e11d3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1000-6807
PQID 2664725314
PQPubID 2045170
PageCount 19
ParticipantIDs proquest_journals_2664725314
crossref_primary_10_1002_cpe_6912
crossref_citationtrail_10_1002_cpe_6912
wiley_primary_10_1002_cpe_6912_CPE6912
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 June 2022
PublicationDateYYYYMMDD 2022-06-10
PublicationDate_xml – month: 06
  year: 2022
  text: 10 June 2022
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 42
2021; 21
2019; 56
2008; 9
2019; 523
2019; 19
2019; 125
2020; 122
2001; 45
2012; 12
1995; 20
2017; 72
2020; 7
2014; 5
2013; 17
2018; 4
1997; 55
2016; 86
2021; 41
1994; 76
2010; 34
2017; 64
2018; 29
2006; 53
2015; 3
2013; 109
1995; 16
2011
2020; 40
1999; 29
2018; 302
2009
2000; 270
2016; 53
2020; 79
2005; 80
1999; 3
2022; 42
2020; 386
2014; 2014
2020; 102
2018; 66
2016; 16
2017; 94
2004; 51
2007; 438
2021
2021; 18
2016; 21
2017; 19
2015
1998; 2
2009; 4
2020; 21
2000; 101
2009; 3
2007; 45
2001; 279
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
Sammut C (e_1_2_9_77_1) 2011
e_1_2_9_22_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Wang T (e_1_2_9_32_1) 2014; 2014
e_1_2_9_60_1
e_1_2_9_2_1
Kandel ER (e_1_2_9_3_1) 2009
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_47_1
Eckmann J‐P (e_1_2_9_45_1) 1995; 16
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_55_1
Alomari M (e_1_2_9_28_1) 2014; 5
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
Khosla A (e_1_2_9_11_1) 2021
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
Fan R (e_1_2_9_63_1) 2008; 9
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 7
  start-page: 385
  issue: 4
  year: 2017
  article-title: Tunable‐Q wavelet transform based multi‐scale entropy measure for automated classification of epileptic EEG signals
  publication-title: Appl Sci
– year: 2011
– volume: 64
  start-page: 2003
  issue: 9
  year: 2017
  end-page: 2015
  article-title: A multivariate approach for patient‐specific EEG seizure detection using empirical wavelet transform
  publication-title: IEEE Trans Biomed Eng
– volume: 29
  start-page: 60
  issue: 1
  year: 1999
  end-page: 72
  article-title: A log‐linearized Gaussian mixture network and its application to EEG pattern classification
  publication-title: IEEE Trans Syst Man Cybern C Appl Rev
– volume: 122
  year: 2020
  article-title: Identification of global and local states during seizures using quantitative functional connectivity and recurrence plot analysis
  publication-title: Comput Biol Med
– volume: 4
  year: 2009
– volume: 53
  start-page: 1784
  issue: 12
  year: 2016
  end-page: 1798
  article-title: Dissociating parafoveal preview benefit and parafovea‐on‐fovea effects during reading: a combined eye tracking and EEG study
  publication-title: Psychophysiology
– start-page: 1
  year: 2021
  end-page: 34
– volume: 53
  start-page: 246
  issue: 2
  year: 2006
  end-page: 253
  article-title: A model‐based objective evaluation of eye movement correction in EEG recordings
  publication-title: IEEE Trans Biomed Eng
– volume: 3
  start-page: 2
  year: 2009
  article-title: Everything you wanted to ask about EEG but were afraid to get the right answer
  publication-title: J Nonlinear Biomed Phys
– volume: 45
  start-page: 1243
  issue: 12
  year: 2007
  end-page: 1249
  article-title: Analysis of eyes open, eye closed EEG signals using second‐order difference plot
  publication-title: Med Biol Eng Comput
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  end-page: e220
  article-title: Physiobank, physioToolkit, and physioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 2014
  year: 2014
  article-title: EEG eye state identification using incremental attribute learning with time‐series classification
  publication-title: Math Probl Eng
– volume: 40
  start-page: 649
  issue: 2
  year: 2020
  end-page: 690
  article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals
  publication-title: Biocybern Biomed Eng
– volume: 17
  start-page: 572
  issue: 3
  year: 2013
  end-page: 578
  article-title: A new framework based on recurrence quantification analysis for epileptic seizure detection
  publication-title: IEEE J Biomed Health Inform
– volume: 18
  year: 2021
  article-title: Region‐wise brain response classification of ASD children using EEG and BiLSTM RNN
  publication-title: Clin EEG Neurosci
– volume: 4
  start-page: 84
  issue: 2
  year: 2018
  article-title: Eye state classification from electroencephalography recordings using machine learning algorithms
  publication-title: Dig Med
– volume: 12
  issue: 04
  year: 2012
  article-title: Nonlinear analysis of physiological signals: a review
  publication-title: J Mech Med Biol
– volume: 76
  start-page: 965
  issue: 2
  year: 1994
  end-page: 973
  article-title: Dynamical assessment of physiological systems and states using recurrence plot strategies
  publication-title: J Appl Physiol
– volume: 438
  start-page: 237
  issue: 5‐6
  year: 2007
  end-page: 329
  article-title: Recurrence plots for the analysis of complex systems
  publication-title: Phys Rep
– volume: 34
  start-page: 195
  issue: 2
  year: 2010
  end-page: 212
  article-title: EEG signal analysis: a survey
  publication-title: J Med Syst
– volume: 21
  start-page: 3579
  issue: 3
  year: 2020
  end-page: 3591
  article-title: A novel multivariate‐multi‐scale approach for computing EEG spectral and temporal complexity for human emotion recognition
  publication-title: IEEE Sens J
– volume: 94
  start-page: 180
  year: 2017
  end-page: 188
  article-title: Automated detection of focal EEG signals using features extracted from flexible analytic wavelet transform
  publication-title: Pattern Recogn Lett
– volume: 12
  issue: 05
  year: 2012
  article-title: Online removal of eye blink artifact from scalp EEG using canonical correlation analysis based method
  publication-title: J Mech Med Biol
– volume: 42
  start-page: 108
  issue: 1
  year: 2022
  end-page: 142
  article-title: Automated diagnosis of depression from EEG signals using traditional and deep learning approaches: a comparative analysis
  publication-title: Biocybern Biomed Eng
– volume: 19
  start-page: 10600
  issue: 22
  year: 2019
  end-page: 10608
  article-title: Novel approaches for the removal of motion artifact from EEG recordings
  publication-title: IEEE Sens J
– volume: 51
  start-page: 1034
  issue: 6
  year: 2004
  end-page: 1043
  article-title: Bci2000: a general‐purpose brain‐computer interface (BCI) system
  publication-title: IEEE Trans Biomed Eng
– volume: 523
  start-page: 507
  year: 2019
  end-page: 515
  article-title: Dynamical analysis of epileptic characteristics based on recurrence quantification of SEEG recordings
  publication-title: Phys A Stat Mech Appl
– volume: 279
  start-page: 94
  issue: 1‐2
  year: 2001
  end-page: 101
  article-title: Recurrence quantification in epileptic EEGS
  publication-title: Phys Lett A
– volume: 19
  start-page: 6
  issue: 1
  year: 2019
  article-title: EEG‐based identity authentication framework using face rapid serial visual presentation with optimized channels
  publication-title: Sensors
– volume: 3
  start-page: 1
  issue: 2
  year: 1999
  end-page: 9
  article-title: The history of EEG Hans Berger: psychophysiologist. A historical vignette
  publication-title: J Neurother
– start-page: 307
  year: 2009
  end-page: 333
– volume: 125
  start-page: 259
  year: 2019
  end-page: 267
  article-title: EEG‐based user identification system using 1D‐convolutional long short‐term memory neural networks
  publication-title: Expert Syst Appl
– volume: 102
  year: 2020
  article-title: Automatic detection of epileptic seizure based on approximate entropy, recurrence quantification analysis and convolutional neural networks
  publication-title: Artif Intell Med
– year: 2015
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 9
  start-page: 1871
  year: 2008
  end-page: 1874
  article-title: Liblinear: a library for large linear classification
  publication-title: J Mach Learn Res
– volume: 19
  start-page: 99
  issue: 3
  year: 2017
  article-title: Tunable‐Q wavelet transform based multivariate sub‐band fuzzy entropy with application to focal EEG signal analysis
  publication-title: Entropy
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  end-page: 167
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min Knowl Disc
– volume: 72
  start-page: 42
  year: 2017
  end-page: 48
  article-title: Random eye state change detection in real‐time using EEG signals
  publication-title: Expert Syst Appl
– volume: 56
  issue: 5
  year: 2019
  article-title: Using principal components analysis to examine resting state EEG in relation to task performance
  publication-title: Psychophysiology
– volume: 79
  start-page: 10655
  issue: 15
  year: 2020
  end-page: 10675
  article-title: Eeg‐based biometric identification with convolutional neural network
  publication-title: Multimed Tools Appl
– volume: 86
  start-page: 148
  year: 2016
  end-page: 158
  article-title: Detection of motor imagery EEG signals employing Naı̈ve Bayes based learning process
  publication-title: Measurement
– volume: 270
  start-page: 75
  issue: 1‐2
  year: 2000
  end-page: 87
  article-title: On the structures and quantification of recurrence plots
  publication-title: Phys Lett A
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  article-title: A decision‐theoretic generalization of on‐line learning and an application to boosting
  publication-title: J Comput Syst Sci
– volume: 5
  start-page: 193
  issue: 4
  year: 2014
  end-page: 198
  article-title: EEG mouse: a machine learning‐based brain computer interface
  publication-title: Int J Adv Comput Sci Appl
– volume: 16
  start-page: 441
  year: 1995
  end-page: 446
  article-title: Recurrence plots of dynamical systems
  publication-title: World Sci Ser Nonlinear Sci Ser A
– volume: 3
  start-page: 127
  issue: 4
  year: 2015
  end-page: 130
  article-title: The classification of eye state by using KNN and MLP classification models according to the EEG signals
  publication-title: Int J Intell Syst Appl Eng
– volume: 29
  start-page: 47
  issue: 8
  year: 2018
  end-page: 57
  article-title: A novel approach for automated detection of focal EEG signals using empirical wavelet transform
  publication-title: Neural Comput Appl
– volume: 66
  start-page: 1915
  issue: 7
  year: 2018
  end-page: 1926
  article-title: A multi‐channel approach for cortical stimulation artifact suppression in depth EEG signals using time‐frequency and spatial filtering
  publication-title: IEEE Trans Biomed Eng
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  end-page: 47
  article-title: Boosting methods for multi‐class imbalanced data classification: an experimental review
  publication-title: J Big Data
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Mach Learn
– volume: 80
  start-page: 37
  issue: 1
  year: 2005
  end-page: 45
  article-title: Non‐linear analysis of EEG signals at various sleep stages
  publication-title: Comput Methods Prog Biomed
– volume: 109
  start-page: 339
  issue: 3
  year: 2013
  end-page: 345
  article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal
  publication-title: Comput Methods Prog Biomed
– volume: 21
  start-page: 17017
  issue: 15
  year: 2021
  end-page: 17024
  article-title: PDCNNet: an automatic framework for the detection of Parkinson's disease using EEG signals
  publication-title: IEEE Sens J
– volume: 42
  start-page: 641
  issue: 5
  year: 2017
  end-page: 653
  article-title: Improving EEG signal peak detection using feature weight learning of a neural network with random weights for eye event‐related applications
  publication-title: Sādhanā
– year: 2021
  article-title: EEG based automatic multi‐class classification of epileptic seizure types using recurrence plots
  publication-title: Exp Syst
– volume: 386
  start-page: 281
  year: 2020
  end-page: 292
  article-title: Reading into the mind's eye: boosting automatic visual recognition with EEG signals
  publication-title: Neurocomputing
– volume: 41
  start-page: 83
  issue: 1
  year: 2021
  end-page: 96
  article-title: Optimal EEG channels selection for alcoholism screening using EMD domain statistical features and harmony search algorithm
  publication-title: Biocybern Biomed Eng
– volume: 21
  start-page: 715
  issue: 3
  year: 2016
  end-page: 724
  article-title: Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG‐based system
  publication-title: IEEE J Biomed Health Inform
– volume: 302
  start-page: 14
  year: 2018
  end-page: 23
  article-title: Random forest feature selection, fusion and ensemble strategy: combining multiple morphological MRI measures to discriminate among healthy elderly, MCI, CMCI and Alzheimer's disease patients: from the Alzheimer's disease neuroimaging initiative (ADNI) database
  publication-title: J Neurosci Methods
– volume: 16
  start-page: 241
  issue: 2
  year: 2016
  article-title: Hybrid EEG–eye tracker: automatic identification and removal of eye movement and blink artifacts from electroencephalographic signal
  publication-title: Sensors
– ident: e_1_2_9_4_1
  doi: 10.1016/j.bbe.2020.02.002
– ident: e_1_2_9_51_1
  doi: 10.1016/j.cmpb.2005.06.011
– ident: e_1_2_9_20_1
  doi: 10.1109/JSEN.2019.2931727
– ident: e_1_2_9_62_1
  doi: 10.1006/jcss.1997.1504
– ident: e_1_2_9_37_1
  doi: 10.1016/j.eswa.2016.12.010
– ident: e_1_2_9_26_1
  doi: 10.1109/IECBES.2010.5742273
– ident: e_1_2_9_57_1
  doi: 10.1016/j.cmpb.2012.10.008
– ident: e_1_2_9_65_1
– ident: e_1_2_9_12_1
  doi: 10.1109/JSEN.2021.3080135
– ident: e_1_2_9_19_1
  doi: 10.1142/S0219519412500911
– ident: e_1_2_9_10_1
  doi: 10.1016/j.bbe.2020.11.001
– ident: e_1_2_9_59_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_9_39_1
  doi: 10.4103/digm.digm_41_17
– year: 2021
  ident: e_1_2_9_11_1
  article-title: EEG based automatic multi‐class classification of epileptic seizure types using recurrence plots
  publication-title: Exp Syst
– ident: e_1_2_9_78_1
  doi: 10.1016/j.jneumeth.2017.12.010
– ident: e_1_2_9_64_1
  doi: 10.1109/TBME.2004.827072
– volume: 16
  start-page: 441
  year: 1995
  ident: e_1_2_9_45_1
  article-title: Recurrence plots of dynamical systems
  publication-title: World Sci Ser Nonlinear Sci Ser A
– ident: e_1_2_9_42_1
  doi: 10.1007/s10916-008-9231-z
– ident: e_1_2_9_49_1
  doi: 10.1016/S0375-9601(00)00815-X
– ident: e_1_2_9_48_1
  doi: 10.1007/978-3-319-07155-8
– volume-title: Encyclopedia of Machine Learning
  year: 2011
  ident: e_1_2_9_77_1
– ident: e_1_2_9_66_1
– ident: e_1_2_9_24_1
  doi: 10.1109/JBHI.2016.2532354
– ident: e_1_2_9_17_1
  doi: 10.1016/j.neucom.2019.12.076
– ident: e_1_2_9_44_1
  doi: 10.1186/1753-4631-3-2
– ident: e_1_2_9_21_1
  doi: 10.3390/s16020241
– ident: e_1_2_9_30_1
  doi: 10.1109/WICOM.2010.5600726
– ident: e_1_2_9_50_1
  doi: 10.1016/j.physa.2019.02.017
– ident: e_1_2_9_2_1
  doi: 10.1300/J184v03n02_01
– ident: e_1_2_9_61_1
  doi: 10.1016/j.measurement.2016.02.059
– ident: e_1_2_9_46_1
  doi: 10.1007/s00521-016-2646-4
– ident: e_1_2_9_76_1
  doi: 10.1186/s40537-020-00349-y
– volume: 5
  start-page: 193
  issue: 4
  year: 2014
  ident: e_1_2_9_28_1
  article-title: EEG mouse: a machine learning‐based brain computer interface
  publication-title: Int J Adv Comput Sci Appl
– ident: e_1_2_9_68_1
  doi: 10.1016/S0375-9601(00)00304-2
– ident: e_1_2_9_18_1
  doi: 10.1109/ICCTICT.2016.7514632
– ident: e_1_2_9_56_1
  doi: 10.3390/s19010006
– ident: e_1_2_9_31_1
– ident: e_1_2_9_5_1
  doi: 10.1109/TBME.2017.2650259
– ident: e_1_2_9_13_1
  doi: 10.1016/j.bbe.2021.12.005
– ident: e_1_2_9_69_1
  doi: 10.1016/j.physrep.2006.11.001
– ident: e_1_2_9_74_1
  doi: 10.1145/3144457.3144477
– ident: e_1_2_9_25_1
  doi: 10.1016/j.eswa.2019.01.080
– ident: e_1_2_9_40_1
  doi: 10.1007/978-3-030-06161-6_17
– ident: e_1_2_9_70_1
– ident: e_1_2_9_38_1
  doi: 10.21506/j.ponte.2016.7.26
– ident: e_1_2_9_54_1
  doi: 10.1016/j.artmed.2019.101711
– ident: e_1_2_9_72_1
  doi: 10.1016/j.compbiomed.2020.103858
– ident: e_1_2_9_41_1
  doi: 10.1111/psyp.13327
– ident: e_1_2_9_15_1
  doi: 10.1007/s11042-019-7258-4
– ident: e_1_2_9_53_1
  doi: 10.1201/9781003121152-1
– ident: e_1_2_9_52_1
  doi: 10.1177/15500594211054990
– ident: e_1_2_9_60_1
  doi: 10.1016/j.patrec.2017.03.017
– ident: e_1_2_9_47_1
  doi: 10.1152/jappl.1994.76.2.965
– ident: e_1_2_9_58_1
  doi: 10.1007/BF00994018
– ident: e_1_2_9_75_1
  doi: 10.1023/A:1009715923555
– ident: e_1_2_9_7_1
  doi: 10.1109/ICDSP.2017.8096122
– ident: e_1_2_9_23_1
  doi: 10.1007/s11517-007-0268-9
– ident: e_1_2_9_14_1
  doi: 10.1109/JSEN.2020.3027181
– ident: e_1_2_9_73_1
  doi: 10.1007/978-3-540-87442-3_55
– ident: e_1_2_9_55_1
  doi: 10.1161/01.CIR.101.23.e215
– ident: e_1_2_9_67_1
  doi: 10.1142/S0219519412400155
– ident: e_1_2_9_8_1
  doi: 10.3390/e19030099
– ident: e_1_2_9_22_1
  doi: 10.1109/TBME.2005.862533
– ident: e_1_2_9_36_1
  doi: 10.1007/978-981-10-9059-2_1
– ident: e_1_2_9_35_1
  doi: 10.1109/SMC.2016.7844325
– ident: e_1_2_9_9_1
  doi: 10.1109/TBME.2018.2881051
– volume-title: Principles of Neural Science
  year: 2009
  ident: e_1_2_9_3_1
– ident: e_1_2_9_27_1
  doi: 10.1007/s12046-017-0633-9
– ident: e_1_2_9_6_1
  doi: 10.3390/app7040385
– ident: e_1_2_9_34_1
  doi: 10.18201/ijisae.75836
– ident: e_1_2_9_16_1
  doi: 10.1111/psyp.12765
– ident: e_1_2_9_71_1
  doi: 10.1109/JBHI.2013.2255132
– ident: e_1_2_9_43_1
  doi: 10.1007/978-3-540-89506-0_15
– volume: 2014
  year: 2014
  ident: e_1_2_9_32_1
  article-title: EEG eye state identification using incremental attribute learning with time‐series classification
  publication-title: Math Probl Eng
– ident: e_1_2_9_29_1
  doi: 10.1109/5326.740670
– volume: 9
  start-page: 1871
  year: 2008
  ident: e_1_2_9_63_1
  article-title: Liblinear: a library for large linear classification
  publication-title: J Mach Learn Res
– ident: e_1_2_9_33_1
  doi: 10.1109/ICMLA.2015.89
SSID ssj0011031
Score 2.33882
Snippet Summary Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear...
Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear analysis,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Automation
electroencephalogram
Electroencephalography
eyes state classification
Feature extraction
genetic algorithm
Genetic algorithms
Machine learning
machine learning algorithms
Nonlinear analysis
recurrence plots
recurrence quantification analysis
Signal classification
Support vector machines
Testing time
Title A novel method for EEG based automated eyes state classification using recurrence plots and machine learning approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6912
https://www.proquest.com/docview/2664725314
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: ADMLS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iyYtvcXWVEURPXZu0TdujSHURFBEFwUPJY7oH1-6y2xX015uk7fpAQTy1h4S0mUzmS5j5PkIOA655SmXimWAee6Ggykt0IbxUFEJJyVUibYHz1TXv34eXD9FDk1Vpa2Fqfoj5hZv1DLdfWwcXcnryQRqqxtgzw9jtlwbcnaZu58xR1KoX1FSpzPMNaG95Z3120nb8Gok-4OVnkOqizPkKeWy_r04ueerNKtlTb9-oG__3A6tkuQGfcFqvljWygOU6WWmFHaDx8w0yO4Vy9IJDqPWlwQBbyLILsCFPg5hVI4NzzRu-4hRcSRIoi8Jt2pGzNNh0-gFM7GW-KyeE8XBUTUGUGp5d-iZCo1cxgJbWfJPcn2d3Z32v0WfwlAEJzCuYWQGhj0kSpoVU6GutAhlLjBDTlMVcM6oixkWSpJgaJERRpEIUOkBKdSCDLbJYjkrcJsCZ5NIcByOMMWRhLH1zcgqYL4SBoFRihxy3tspVQ15uNTSGeU27zHIzm7mdzQ45mLcc14QdP7TptubOG5ed5gaphDEzW1LYIUfObr_2z89uMvvc-WvDXbLEbNmE1Tzyu2Sxmsxwz4CZSu67ZfsOltTzVA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5F7QEulPIQgUIHCcHJqb3erG31VFVJA6QVQq3UA5K1j3EPDU7UOEj013fWj4QikBAn-7CrtXd2dr5dzXwfwLtYOZVFJg04mCeB1JENUlfoINOFtsYomxpf4Hx6piYX8tPl8LIHh10tTMMPsb5w855R79fewf2F9MGGNdQuaMDj8P67LRUfUzwi-rrmjoq8fkFDliqCkGF7xzwbioOu5_1YtAGYv8LUOs6Md-Bb94VNesn1YFWZgb39jbzxP3_hMTxq8SceNQtmF3pUPoGdTtsBW1d_CqsjLOc_aIaNxDQytsXR6AR91HOoV9WcoS6_0U9aYl2VhNYDcZ95VBsbfUb9Fd74-_y6ohAXs3m1RF06_F5ncBK2khVX2DGbP4OL8ej8eBK0Eg2BZZwggkLwIpAhpanMCmMpdM7GJjE0JMoykSgnIjsUSqdpRhmDoYh0pnXhYooiF5v4OWyV85JeACphlOET4ZASkkImJuTDUyxCrRmFRob68KEzVm5b_nIvozHLG-ZlkfNs5n42-_B23XLRcHb8oc1eZ--89dplzmBFJoJ3JdmH97Xh_to_P_4y8s-X_9pwHx5Mzk-n-fTj2edX8FD4KgovgRTuwVZ1s6LXjG0q86Zew3fPqvd1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CCqGXpumDbpvHFEp78saW5YfoKSS7TV8hlAZyKBg9xjlk612y3kLy6zvyY5OGBEpO9kFCtkaj-SRmvg_gXZy6VEUmDziYZ4HUkQ1yV-pA6VJbY1KbG1_g_P0oPTyRX06T0xX42NfCtPwQyws37xnNfu0dnGau3L1mDbUzGvI4vP8-konKfT7fwY8ld1Tk9QtaslQRhAzbe-bZUOz2Pf-NRdcA8yZMbeLMeB1-9V_YppecDxe1GdqrW-SND_yFp_Ckw5-41y6YDVih6hms99oO2Ln6c1jsYTX9QxNsJaaRsS2ORp_QRz2HelFPGeryG13SHJuqJLQeiPvMo8bY6DPqz_DC3-c3FYU4m0zrOerK4e8mg5Owk6w4w57Z_AWcjEc_9w-DTqIhsIwTRFAKXgQypDyXqjSWQudsbDJDCZFSIkudiGwiUp3nihSDoYi00rp0MUWRi038ElaraUWvAFNhUsMnwoQykkJmJuTDUyxCrRmFRoYG8KE3VmE7_nIvozEpWuZlUfBsFn42B_B22XLWcnbc0Wazt3fRee28YLAiM8G7khzA-8Zw9_Yv9o9H_vn6fxvuwNrxwbj49vno6xt4LHwRhVdACjdhtb5Y0BZDm9psN0v4L4Q99vk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+EEG+based+automated+eyes+state+classification+using+recurrence+plots+and+machine+learning+approach&rft.jtitle=Concurrency+and+computation&rft.au=Khosla%2C+Ashima&rft.au=Khandnor%2C+Padmavati&rft.au=Chand%2C+Trilok&rft.date=2022-06-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=13&rft_id=info:doi/10.1002%2Fcpe.6912&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_6912
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon