A novel method for EEG based automated eyes state classification using recurrence plots and machine learning approach
Summary Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear analysis, recurrence plots (RPs) and recurrence quantification analysis (RQA) are of greater significance that help in understanding the chaot...
Saved in:
| Published in | Concurrency and computation Vol. 34; no. 13 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
10.06.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0626 1532-0634 |
| DOI | 10.1002/cpe.6912 |
Cover
| Abstract | Summary
Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear analysis, recurrence plots (RPs) and recurrence quantification analysis (RQA) are of greater significance that help in understanding the chaotic and recurrence behavior of the dynamically occurring complex physiological signals. In our study, a novel method is proposed combining the RPs with the machine learning based algorithms for automated classification of EEG signals into eyes‐open and eyes‐close states. A huge dataset of 109 subjects has been acquired from the PhysioNet database. Each of the six RQA‐based measures (recurrence rate, determinism, entropy, laminarity, trapping time, and longest vertical line) has been extracted from 64 EEG channels. Feature selection has been performed using genetic algorithm. The selected features have been averaged and combined to form a six‐dimensional input vector which shows statistically significant differences (p<0.01) between the two states. It is fed to different machine learning based algorithms such as logistic‐regression, support vector machine, random forest, k‐nearest neighbor, Gaussian naïve Bayes, and adaptive boosting. Logistic regression achieves the highest performance results in terms of accuracy, F1 score, precision, recall, and specificity of 97.27%, 97.17%, 98.26%, 96.36%, and 98.18%, respectively, with the least testing time of the model as 2.52 ms. Therefore, our method might be of greater significance in the development of the practical applications. |
|---|---|
| AbstractList | Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear analysis, recurrence plots (RPs) and recurrence quantification analysis (RQA) are of greater significance that help in understanding the chaotic and recurrence behavior of the dynamically occurring complex physiological signals. In our study, a novel method is proposed combining the RPs with the machine learning based algorithms for automated classification of EEG signals into eyes‐open and eyes‐close states. A huge dataset of 109 subjects has been acquired from the PhysioNet database. Each of the six RQA‐based measures (recurrence rate, determinism, entropy, laminarity, trapping time, and longest vertical line) has been extracted from 64 EEG channels. Feature selection has been performed using genetic algorithm. The selected features have been averaged and combined to form a six‐dimensional input vector which shows statistically significant differences between the two states. It is fed to different machine learning based algorithms such as logistic‐regression, support vector machine, random forest, k‐nearest neighbor, Gaussian naïve Bayes, and adaptive boosting. Logistic regression achieves the highest performance results in terms of accuracy, F1 score, precision, recall, and specificity of 97.27%, 97.17%, 98.26%, 96.36%, and 98.18%, respectively, with the least testing time of the model as 2.52 ms. Therefore, our method might be of greater significance in the development of the practical applications. Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear analysis, recurrence plots (RPs) and recurrence quantification analysis (RQA) are of greater significance that help in understanding the chaotic and recurrence behavior of the dynamically occurring complex physiological signals. In our study, a novel method is proposed combining the RPs with the machine learning based algorithms for automated classification of EEG signals into eyes‐open and eyes‐close states. A huge dataset of 109 subjects has been acquired from the PhysioNet database. Each of the six RQA‐based measures (recurrence rate, determinism, entropy, laminarity, trapping time, and longest vertical line) has been extracted from 64 EEG channels. Feature selection has been performed using genetic algorithm. The selected features have been averaged and combined to form a six‐dimensional input vector which shows statistically significant differences (p<0.01) between the two states. It is fed to different machine learning based algorithms such as logistic‐regression, support vector machine, random forest, k‐nearest neighbor, Gaussian naïve Bayes, and adaptive boosting. Logistic regression achieves the highest performance results in terms of accuracy, F1 score, precision, recall, and specificity of 97.27%, 97.17%, 98.26%, 96.36%, and 98.18%, respectively, with the least testing time of the model as 2.52 ms. Therefore, our method might be of greater significance in the development of the practical applications. Summary Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear analysis, recurrence plots (RPs) and recurrence quantification analysis (RQA) are of greater significance that help in understanding the chaotic and recurrence behavior of the dynamically occurring complex physiological signals. In our study, a novel method is proposed combining the RPs with the machine learning based algorithms for automated classification of EEG signals into eyes‐open and eyes‐close states. A huge dataset of 109 subjects has been acquired from the PhysioNet database. Each of the six RQA‐based measures (recurrence rate, determinism, entropy, laminarity, trapping time, and longest vertical line) has been extracted from 64 EEG channels. Feature selection has been performed using genetic algorithm. The selected features have been averaged and combined to form a six‐dimensional input vector which shows statistically significant differences (p<0.01) between the two states. It is fed to different machine learning based algorithms such as logistic‐regression, support vector machine, random forest, k‐nearest neighbor, Gaussian naïve Bayes, and adaptive boosting. Logistic regression achieves the highest performance results in terms of accuracy, F1 score, precision, recall, and specificity of 97.27%, 97.17%, 98.26%, 96.36%, and 98.18%, respectively, with the least testing time of the model as 2.52 ms. Therefore, our method might be of greater significance in the development of the practical applications. |
| Author | Khosla, Ashima Khandnor, Padmavati Chand, Trilok |
| Author_xml | – sequence: 1 givenname: Ashima orcidid: 0000-0002-1000-6807 surname: Khosla fullname: Khosla, Ashima email: ashimakhosla.phdcse@pec.edu.in organization: Punjab Engineering College (Deemed to be University) – sequence: 2 givenname: Padmavati surname: Khandnor fullname: Khandnor, Padmavati organization: Punjab Engineering College (Deemed to be University) – sequence: 3 givenname: Trilok surname: Chand fullname: Chand, Trilok organization: Punjab Engineering College (Deemed to be University) |
| BookMark | eNp1kF9LwzAUxYNMcJuCHyHgiy-d-dN2y-MYdQoDfdDnkqa3LqNNapIq-_Zmm_gg-nQPl98593ImaGSsAYSuKZlRQtid6mGWC8rO0JhmnCUk5-noR7P8Ak283xFCKeF0jIYlNvYDWtxB2NoaN9bholjjSnqosRyC7WSICvbgsQ9RY9VK73WjlQzaGjx4bd6wAzU4B0YB7lsbPJamxp1UW20AtyCdOVCy752Ny0t03sjWw9X3nKLX--Jl9ZBsntaPq-UmUUzEfxsGFaQEFotUNJUCUteKV_MKMgAh2DyvGVUZy-ViIUBwIShIIWVTc6C05hWfoptTbjz7PoAP5c4OzsSTJcvzdM4yTtNI3Z4o5az3Dpqyd7qTbl9SUh5KLWOp5aHUiM5-oUqHYw_BSd3-ZUhOhk_dwv7f4HL1XBz5L999i-M |
| CitedBy_id | crossref_primary_10_1063_5_0200029 crossref_primary_10_1063_5_0196382 crossref_primary_10_1016_j_chaos_2023_113453 crossref_primary_10_3390_e26050432 crossref_primary_10_3390_bioengineering10010042 |
| Cites_doi | 10.1016/j.bbe.2020.02.002 10.1016/j.cmpb.2005.06.011 10.1109/JSEN.2019.2931727 10.1006/jcss.1997.1504 10.1016/j.eswa.2016.12.010 10.1109/IECBES.2010.5742273 10.1016/j.cmpb.2012.10.008 10.1109/JSEN.2021.3080135 10.1142/S0219519412500911 10.1016/j.bbe.2020.11.001 10.1023/A:1010933404324 10.4103/digm.digm_41_17 10.1016/j.jneumeth.2017.12.010 10.1109/TBME.2004.827072 10.1007/s10916-008-9231-z 10.1016/S0375-9601(00)00815-X 10.1007/978-3-319-07155-8 10.1109/JBHI.2016.2532354 10.1016/j.neucom.2019.12.076 10.1186/1753-4631-3-2 10.3390/s16020241 10.1109/WICOM.2010.5600726 10.1016/j.physa.2019.02.017 10.1300/J184v03n02_01 10.1016/j.measurement.2016.02.059 10.1007/s00521-016-2646-4 10.1186/s40537-020-00349-y 10.1016/S0375-9601(00)00304-2 10.1109/ICCTICT.2016.7514632 10.3390/s19010006 10.1109/TBME.2017.2650259 10.1016/j.bbe.2021.12.005 10.1016/j.physrep.2006.11.001 10.1145/3144457.3144477 10.1016/j.eswa.2019.01.080 10.1007/978-3-030-06161-6_17 10.21506/j.ponte.2016.7.26 10.1016/j.artmed.2019.101711 10.1016/j.compbiomed.2020.103858 10.1111/psyp.13327 10.1007/s11042-019-7258-4 10.1201/9781003121152-1 10.1177/15500594211054990 10.1016/j.patrec.2017.03.017 10.1152/jappl.1994.76.2.965 10.1007/BF00994018 10.1023/A:1009715923555 10.1109/ICDSP.2017.8096122 10.1007/s11517-007-0268-9 10.1109/JSEN.2020.3027181 10.1007/978-3-540-87442-3_55 10.1161/01.CIR.101.23.e215 10.1142/S0219519412400155 10.3390/e19030099 10.1109/TBME.2005.862533 10.1007/978-981-10-9059-2_1 10.1109/SMC.2016.7844325 10.1109/TBME.2018.2881051 10.1007/s12046-017-0633-9 10.3390/app7040385 10.18201/ijisae.75836 10.1111/psyp.12765 10.1109/JBHI.2013.2255132 10.1007/978-3-540-89506-0_15 10.1109/5326.740670 10.1109/ICMLA.2015.89 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.6912 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_6912 CPE6912 |
| Genre | article |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2932-f2ebe40e8849fbce0ddc3b7be5ee99276d21c526a889e93991ea9aafd3e11d3b3 |
| IEDL.DBID | DR2 |
| ISSN | 1532-0626 |
| IngestDate | Fri Jul 25 06:48:12 EDT 2025 Wed Oct 01 00:59:52 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 Wed Jan 22 16:25:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2932-f2ebe40e8849fbce0ddc3b7be5ee99276d21c526a889e93991ea9aafd3e11d3b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1000-6807 |
| PQID | 2664725314 |
| PQPubID | 2045170 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2664725314 crossref_primary_10_1002_cpe_6912 crossref_citationtrail_10_1002_cpe_6912 wiley_primary_10_1002_cpe_6912_CPE6912 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 10 June 2022 |
| PublicationDateYYYYMMDD | 2022-06-10 |
| PublicationDate_xml | – month: 06 year: 2022 text: 10 June 2022 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 7 2017; 42 2021; 21 2019; 56 2008; 9 2019; 523 2019; 19 2019; 125 2020; 122 2001; 45 2012; 12 1995; 20 2017; 72 2020; 7 2014; 5 2013; 17 2018; 4 1997; 55 2016; 86 2021; 41 1994; 76 2010; 34 2017; 64 2018; 29 2006; 53 2015; 3 2013; 109 1995; 16 2011 2020; 40 1999; 29 2018; 302 2009 2000; 270 2016; 53 2020; 79 2005; 80 1999; 3 2022; 42 2020; 386 2014; 2014 2020; 102 2018; 66 2016; 16 2017; 94 2004; 51 2007; 438 2021 2021; 18 2016; 21 2017; 19 2015 1998; 2 2009; 4 2020; 21 2000; 101 2009; 3 2007; 45 2001; 279 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 Sammut C (e_1_2_9_77_1) 2011 e_1_2_9_22_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Wang T (e_1_2_9_32_1) 2014; 2014 e_1_2_9_60_1 e_1_2_9_2_1 Kandel ER (e_1_2_9_3_1) 2009 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_47_1 Eckmann J‐P (e_1_2_9_45_1) 1995; 16 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_55_1 Alomari M (e_1_2_9_28_1) 2014; 5 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 Khosla A (e_1_2_9_11_1) 2021 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 Fan R (e_1_2_9_63_1) 2008; 9 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 7 start-page: 385 issue: 4 year: 2017 article-title: Tunable‐Q wavelet transform based multi‐scale entropy measure for automated classification of epileptic EEG signals publication-title: Appl Sci – year: 2011 – volume: 64 start-page: 2003 issue: 9 year: 2017 end-page: 2015 article-title: A multivariate approach for patient‐specific EEG seizure detection using empirical wavelet transform publication-title: IEEE Trans Biomed Eng – volume: 29 start-page: 60 issue: 1 year: 1999 end-page: 72 article-title: A log‐linearized Gaussian mixture network and its application to EEG pattern classification publication-title: IEEE Trans Syst Man Cybern C Appl Rev – volume: 122 year: 2020 article-title: Identification of global and local states during seizures using quantitative functional connectivity and recurrence plot analysis publication-title: Comput Biol Med – volume: 4 year: 2009 – volume: 53 start-page: 1784 issue: 12 year: 2016 end-page: 1798 article-title: Dissociating parafoveal preview benefit and parafovea‐on‐fovea effects during reading: a combined eye tracking and EEG study publication-title: Psychophysiology – start-page: 1 year: 2021 end-page: 34 – volume: 53 start-page: 246 issue: 2 year: 2006 end-page: 253 article-title: A model‐based objective evaluation of eye movement correction in EEG recordings publication-title: IEEE Trans Biomed Eng – volume: 3 start-page: 2 year: 2009 article-title: Everything you wanted to ask about EEG but were afraid to get the right answer publication-title: J Nonlinear Biomed Phys – volume: 45 start-page: 1243 issue: 12 year: 2007 end-page: 1249 article-title: Analysis of eyes open, eye closed EEG signals using second‐order difference plot publication-title: Med Biol Eng Comput – volume: 101 start-page: e215 issue: 23 year: 2000 end-page: e220 article-title: Physiobank, physioToolkit, and physioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 2014 year: 2014 article-title: EEG eye state identification using incremental attribute learning with time‐series classification publication-title: Math Probl Eng – volume: 40 start-page: 649 issue: 2 year: 2020 end-page: 690 article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals publication-title: Biocybern Biomed Eng – volume: 17 start-page: 572 issue: 3 year: 2013 end-page: 578 article-title: A new framework based on recurrence quantification analysis for epileptic seizure detection publication-title: IEEE J Biomed Health Inform – volume: 18 year: 2021 article-title: Region‐wise brain response classification of ASD children using EEG and BiLSTM RNN publication-title: Clin EEG Neurosci – volume: 4 start-page: 84 issue: 2 year: 2018 article-title: Eye state classification from electroencephalography recordings using machine learning algorithms publication-title: Dig Med – volume: 12 issue: 04 year: 2012 article-title: Nonlinear analysis of physiological signals: a review publication-title: J Mech Med Biol – volume: 76 start-page: 965 issue: 2 year: 1994 end-page: 973 article-title: Dynamical assessment of physiological systems and states using recurrence plot strategies publication-title: J Appl Physiol – volume: 438 start-page: 237 issue: 5‐6 year: 2007 end-page: 329 article-title: Recurrence plots for the analysis of complex systems publication-title: Phys Rep – volume: 34 start-page: 195 issue: 2 year: 2010 end-page: 212 article-title: EEG signal analysis: a survey publication-title: J Med Syst – volume: 21 start-page: 3579 issue: 3 year: 2020 end-page: 3591 article-title: A novel multivariate‐multi‐scale approach for computing EEG spectral and temporal complexity for human emotion recognition publication-title: IEEE Sens J – volume: 94 start-page: 180 year: 2017 end-page: 188 article-title: Automated detection of focal EEG signals using features extracted from flexible analytic wavelet transform publication-title: Pattern Recogn Lett – volume: 12 issue: 05 year: 2012 article-title: Online removal of eye blink artifact from scalp EEG using canonical correlation analysis based method publication-title: J Mech Med Biol – volume: 42 start-page: 108 issue: 1 year: 2022 end-page: 142 article-title: Automated diagnosis of depression from EEG signals using traditional and deep learning approaches: a comparative analysis publication-title: Biocybern Biomed Eng – volume: 19 start-page: 10600 issue: 22 year: 2019 end-page: 10608 article-title: Novel approaches for the removal of motion artifact from EEG recordings publication-title: IEEE Sens J – volume: 51 start-page: 1034 issue: 6 year: 2004 end-page: 1043 article-title: Bci2000: a general‐purpose brain‐computer interface (BCI) system publication-title: IEEE Trans Biomed Eng – volume: 523 start-page: 507 year: 2019 end-page: 515 article-title: Dynamical analysis of epileptic characteristics based on recurrence quantification of SEEG recordings publication-title: Phys A Stat Mech Appl – volume: 279 start-page: 94 issue: 1‐2 year: 2001 end-page: 101 article-title: Recurrence quantification in epileptic EEGS publication-title: Phys Lett A – volume: 19 start-page: 6 issue: 1 year: 2019 article-title: EEG‐based identity authentication framework using face rapid serial visual presentation with optimized channels publication-title: Sensors – volume: 3 start-page: 1 issue: 2 year: 1999 end-page: 9 article-title: The history of EEG Hans Berger: psychophysiologist. A historical vignette publication-title: J Neurother – start-page: 307 year: 2009 end-page: 333 – volume: 125 start-page: 259 year: 2019 end-page: 267 article-title: EEG‐based user identification system using 1D‐convolutional long short‐term memory neural networks publication-title: Expert Syst Appl – volume: 102 year: 2020 article-title: Automatic detection of epileptic seizure based on approximate entropy, recurrence quantification analysis and convolutional neural networks publication-title: Artif Intell Med – year: 2015 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach Learn – volume: 9 start-page: 1871 year: 2008 end-page: 1874 article-title: Liblinear: a library for large linear classification publication-title: J Mach Learn Res – volume: 19 start-page: 99 issue: 3 year: 2017 article-title: Tunable‐Q wavelet transform based multivariate sub‐band fuzzy entropy with application to focal EEG signal analysis publication-title: Entropy – volume: 2 start-page: 121 issue: 2 year: 1998 end-page: 167 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min Knowl Disc – volume: 72 start-page: 42 year: 2017 end-page: 48 article-title: Random eye state change detection in real‐time using EEG signals publication-title: Expert Syst Appl – volume: 56 issue: 5 year: 2019 article-title: Using principal components analysis to examine resting state EEG in relation to task performance publication-title: Psychophysiology – volume: 79 start-page: 10655 issue: 15 year: 2020 end-page: 10675 article-title: Eeg‐based biometric identification with convolutional neural network publication-title: Multimed Tools Appl – volume: 86 start-page: 148 year: 2016 end-page: 158 article-title: Detection of motor imagery EEG signals employing Naı̈ve Bayes based learning process publication-title: Measurement – volume: 270 start-page: 75 issue: 1‐2 year: 2000 end-page: 87 article-title: On the structures and quantification of recurrence plots publication-title: Phys Lett A – volume: 55 start-page: 119 year: 1997 end-page: 139 article-title: A decision‐theoretic generalization of on‐line learning and an application to boosting publication-title: J Comput Syst Sci – volume: 5 start-page: 193 issue: 4 year: 2014 end-page: 198 article-title: EEG mouse: a machine learning‐based brain computer interface publication-title: Int J Adv Comput Sci Appl – volume: 16 start-page: 441 year: 1995 end-page: 446 article-title: Recurrence plots of dynamical systems publication-title: World Sci Ser Nonlinear Sci Ser A – volume: 3 start-page: 127 issue: 4 year: 2015 end-page: 130 article-title: The classification of eye state by using KNN and MLP classification models according to the EEG signals publication-title: Int J Intell Syst Appl Eng – volume: 29 start-page: 47 issue: 8 year: 2018 end-page: 57 article-title: A novel approach for automated detection of focal EEG signals using empirical wavelet transform publication-title: Neural Comput Appl – volume: 66 start-page: 1915 issue: 7 year: 2018 end-page: 1926 article-title: A multi‐channel approach for cortical stimulation artifact suppression in depth EEG signals using time‐frequency and spatial filtering publication-title: IEEE Trans Biomed Eng – volume: 7 start-page: 1 issue: 1 year: 2020 end-page: 47 article-title: Boosting methods for multi‐class imbalanced data classification: an experimental review publication-title: J Big Data – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 article-title: Support‐vector networks publication-title: Mach Learn – volume: 80 start-page: 37 issue: 1 year: 2005 end-page: 45 article-title: Non‐linear analysis of EEG signals at various sleep stages publication-title: Comput Methods Prog Biomed – volume: 109 start-page: 339 issue: 3 year: 2013 end-page: 345 article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal publication-title: Comput Methods Prog Biomed – volume: 21 start-page: 17017 issue: 15 year: 2021 end-page: 17024 article-title: PDCNNet: an automatic framework for the detection of Parkinson's disease using EEG signals publication-title: IEEE Sens J – volume: 42 start-page: 641 issue: 5 year: 2017 end-page: 653 article-title: Improving EEG signal peak detection using feature weight learning of a neural network with random weights for eye event‐related applications publication-title: Sādhanā – year: 2021 article-title: EEG based automatic multi‐class classification of epileptic seizure types using recurrence plots publication-title: Exp Syst – volume: 386 start-page: 281 year: 2020 end-page: 292 article-title: Reading into the mind's eye: boosting automatic visual recognition with EEG signals publication-title: Neurocomputing – volume: 41 start-page: 83 issue: 1 year: 2021 end-page: 96 article-title: Optimal EEG channels selection for alcoholism screening using EMD domain statistical features and harmony search algorithm publication-title: Biocybern Biomed Eng – volume: 21 start-page: 715 issue: 3 year: 2016 end-page: 724 article-title: Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG‐based system publication-title: IEEE J Biomed Health Inform – volume: 302 start-page: 14 year: 2018 end-page: 23 article-title: Random forest feature selection, fusion and ensemble strategy: combining multiple morphological MRI measures to discriminate among healthy elderly, MCI, CMCI and Alzheimer's disease patients: from the Alzheimer's disease neuroimaging initiative (ADNI) database publication-title: J Neurosci Methods – volume: 16 start-page: 241 issue: 2 year: 2016 article-title: Hybrid EEG–eye tracker: automatic identification and removal of eye movement and blink artifacts from electroencephalographic signal publication-title: Sensors – ident: e_1_2_9_4_1 doi: 10.1016/j.bbe.2020.02.002 – ident: e_1_2_9_51_1 doi: 10.1016/j.cmpb.2005.06.011 – ident: e_1_2_9_20_1 doi: 10.1109/JSEN.2019.2931727 – ident: e_1_2_9_62_1 doi: 10.1006/jcss.1997.1504 – ident: e_1_2_9_37_1 doi: 10.1016/j.eswa.2016.12.010 – ident: e_1_2_9_26_1 doi: 10.1109/IECBES.2010.5742273 – ident: e_1_2_9_57_1 doi: 10.1016/j.cmpb.2012.10.008 – ident: e_1_2_9_65_1 – ident: e_1_2_9_12_1 doi: 10.1109/JSEN.2021.3080135 – ident: e_1_2_9_19_1 doi: 10.1142/S0219519412500911 – ident: e_1_2_9_10_1 doi: 10.1016/j.bbe.2020.11.001 – ident: e_1_2_9_59_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_9_39_1 doi: 10.4103/digm.digm_41_17 – year: 2021 ident: e_1_2_9_11_1 article-title: EEG based automatic multi‐class classification of epileptic seizure types using recurrence plots publication-title: Exp Syst – ident: e_1_2_9_78_1 doi: 10.1016/j.jneumeth.2017.12.010 – ident: e_1_2_9_64_1 doi: 10.1109/TBME.2004.827072 – volume: 16 start-page: 441 year: 1995 ident: e_1_2_9_45_1 article-title: Recurrence plots of dynamical systems publication-title: World Sci Ser Nonlinear Sci Ser A – ident: e_1_2_9_42_1 doi: 10.1007/s10916-008-9231-z – ident: e_1_2_9_49_1 doi: 10.1016/S0375-9601(00)00815-X – ident: e_1_2_9_48_1 doi: 10.1007/978-3-319-07155-8 – volume-title: Encyclopedia of Machine Learning year: 2011 ident: e_1_2_9_77_1 – ident: e_1_2_9_66_1 – ident: e_1_2_9_24_1 doi: 10.1109/JBHI.2016.2532354 – ident: e_1_2_9_17_1 doi: 10.1016/j.neucom.2019.12.076 – ident: e_1_2_9_44_1 doi: 10.1186/1753-4631-3-2 – ident: e_1_2_9_21_1 doi: 10.3390/s16020241 – ident: e_1_2_9_30_1 doi: 10.1109/WICOM.2010.5600726 – ident: e_1_2_9_50_1 doi: 10.1016/j.physa.2019.02.017 – ident: e_1_2_9_2_1 doi: 10.1300/J184v03n02_01 – ident: e_1_2_9_61_1 doi: 10.1016/j.measurement.2016.02.059 – ident: e_1_2_9_46_1 doi: 10.1007/s00521-016-2646-4 – ident: e_1_2_9_76_1 doi: 10.1186/s40537-020-00349-y – volume: 5 start-page: 193 issue: 4 year: 2014 ident: e_1_2_9_28_1 article-title: EEG mouse: a machine learning‐based brain computer interface publication-title: Int J Adv Comput Sci Appl – ident: e_1_2_9_68_1 doi: 10.1016/S0375-9601(00)00304-2 – ident: e_1_2_9_18_1 doi: 10.1109/ICCTICT.2016.7514632 – ident: e_1_2_9_56_1 doi: 10.3390/s19010006 – ident: e_1_2_9_31_1 – ident: e_1_2_9_5_1 doi: 10.1109/TBME.2017.2650259 – ident: e_1_2_9_13_1 doi: 10.1016/j.bbe.2021.12.005 – ident: e_1_2_9_69_1 doi: 10.1016/j.physrep.2006.11.001 – ident: e_1_2_9_74_1 doi: 10.1145/3144457.3144477 – ident: e_1_2_9_25_1 doi: 10.1016/j.eswa.2019.01.080 – ident: e_1_2_9_40_1 doi: 10.1007/978-3-030-06161-6_17 – ident: e_1_2_9_70_1 – ident: e_1_2_9_38_1 doi: 10.21506/j.ponte.2016.7.26 – ident: e_1_2_9_54_1 doi: 10.1016/j.artmed.2019.101711 – ident: e_1_2_9_72_1 doi: 10.1016/j.compbiomed.2020.103858 – ident: e_1_2_9_41_1 doi: 10.1111/psyp.13327 – ident: e_1_2_9_15_1 doi: 10.1007/s11042-019-7258-4 – ident: e_1_2_9_53_1 doi: 10.1201/9781003121152-1 – ident: e_1_2_9_52_1 doi: 10.1177/15500594211054990 – ident: e_1_2_9_60_1 doi: 10.1016/j.patrec.2017.03.017 – ident: e_1_2_9_47_1 doi: 10.1152/jappl.1994.76.2.965 – ident: e_1_2_9_58_1 doi: 10.1007/BF00994018 – ident: e_1_2_9_75_1 doi: 10.1023/A:1009715923555 – ident: e_1_2_9_7_1 doi: 10.1109/ICDSP.2017.8096122 – ident: e_1_2_9_23_1 doi: 10.1007/s11517-007-0268-9 – ident: e_1_2_9_14_1 doi: 10.1109/JSEN.2020.3027181 – ident: e_1_2_9_73_1 doi: 10.1007/978-3-540-87442-3_55 – ident: e_1_2_9_55_1 doi: 10.1161/01.CIR.101.23.e215 – ident: e_1_2_9_67_1 doi: 10.1142/S0219519412400155 – ident: e_1_2_9_8_1 doi: 10.3390/e19030099 – ident: e_1_2_9_22_1 doi: 10.1109/TBME.2005.862533 – ident: e_1_2_9_36_1 doi: 10.1007/978-981-10-9059-2_1 – ident: e_1_2_9_35_1 doi: 10.1109/SMC.2016.7844325 – ident: e_1_2_9_9_1 doi: 10.1109/TBME.2018.2881051 – volume-title: Principles of Neural Science year: 2009 ident: e_1_2_9_3_1 – ident: e_1_2_9_27_1 doi: 10.1007/s12046-017-0633-9 – ident: e_1_2_9_6_1 doi: 10.3390/app7040385 – ident: e_1_2_9_34_1 doi: 10.18201/ijisae.75836 – ident: e_1_2_9_16_1 doi: 10.1111/psyp.12765 – ident: e_1_2_9_71_1 doi: 10.1109/JBHI.2013.2255132 – ident: e_1_2_9_43_1 doi: 10.1007/978-3-540-89506-0_15 – volume: 2014 year: 2014 ident: e_1_2_9_32_1 article-title: EEG eye state identification using incremental attribute learning with time‐series classification publication-title: Math Probl Eng – ident: e_1_2_9_29_1 doi: 10.1109/5326.740670 – volume: 9 start-page: 1871 year: 2008 ident: e_1_2_9_63_1 article-title: Liblinear: a library for large linear classification publication-title: J Mach Learn Res – ident: e_1_2_9_33_1 doi: 10.1109/ICMLA.2015.89 |
| SSID | ssj0011031 |
| Score | 2.33882 |
| Snippet | Summary
Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear... Automated eyes‐state classification from the EEG signals using nonlinear analysis tools is a new area of research. Based upon the theory of nonlinear analysis,... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Automation electroencephalogram Electroencephalography eyes state classification Feature extraction genetic algorithm Genetic algorithms Machine learning machine learning algorithms Nonlinear analysis recurrence plots recurrence quantification analysis Signal classification Support vector machines Testing time |
| Title | A novel method for EEG based automated eyes state classification using recurrence plots and machine learning approach |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6912 https://www.proquest.com/docview/2664725314 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-0634 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: ADMLS dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iyYtvcXWVEURPXZu0TdujSHURFBEFwUPJY7oH1-6y2xX015uk7fpAQTy1h4S0mUzmS5j5PkIOA655SmXimWAee6Ggykt0IbxUFEJJyVUibYHz1TXv34eXD9FDk1Vpa2Fqfoj5hZv1DLdfWwcXcnryQRqqxtgzw9jtlwbcnaZu58xR1KoX1FSpzPMNaG95Z3120nb8Gok-4OVnkOqizPkKeWy_r04ueerNKtlTb9-oG__3A6tkuQGfcFqvljWygOU6WWmFHaDx8w0yO4Vy9IJDqPWlwQBbyLILsCFPg5hVI4NzzRu-4hRcSRIoi8Jt2pGzNNh0-gFM7GW-KyeE8XBUTUGUGp5d-iZCo1cxgJbWfJPcn2d3Z32v0WfwlAEJzCuYWQGhj0kSpoVU6GutAhlLjBDTlMVcM6oixkWSpJgaJERRpEIUOkBKdSCDLbJYjkrcJsCZ5NIcByOMMWRhLH1zcgqYL4SBoFRihxy3tspVQ15uNTSGeU27zHIzm7mdzQ45mLcc14QdP7TptubOG5ed5gaphDEzW1LYIUfObr_2z89uMvvc-WvDXbLEbNmE1Tzyu2Sxmsxwz4CZSu67ZfsOltTzVA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5F7QEulPIQgUIHCcHJqb3erG31VFVJA6QVQq3UA5K1j3EPDU7UOEj013fWj4QikBAn-7CrtXd2dr5dzXwfwLtYOZVFJg04mCeB1JENUlfoINOFtsYomxpf4Hx6piYX8tPl8LIHh10tTMMPsb5w855R79fewf2F9MGGNdQuaMDj8P67LRUfUzwi-rrmjoq8fkFDliqCkGF7xzwbioOu5_1YtAGYv8LUOs6Md-Bb94VNesn1YFWZgb39jbzxP3_hMTxq8SceNQtmF3pUPoGdTtsBW1d_CqsjLOc_aIaNxDQytsXR6AR91HOoV9WcoS6_0U9aYl2VhNYDcZ95VBsbfUb9Fd74-_y6ohAXs3m1RF06_F5ncBK2khVX2DGbP4OL8ej8eBK0Eg2BZZwggkLwIpAhpanMCmMpdM7GJjE0JMoykSgnIjsUSqdpRhmDoYh0pnXhYooiF5v4OWyV85JeACphlOET4ZASkkImJuTDUyxCrRmFRob68KEzVm5b_nIvozHLG-ZlkfNs5n42-_B23XLRcHb8oc1eZ--89dplzmBFJoJ3JdmH97Xh_to_P_4y8s-X_9pwHx5Mzk-n-fTj2edX8FD4KgovgRTuwVZ1s6LXjG0q86Zew3fPqvd1 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CCqGXpumDbpvHFEp78saW5YfoKSS7TV8hlAZyKBg9xjlk612y3kLy6zvyY5OGBEpO9kFCtkaj-SRmvg_gXZy6VEUmDziYZ4HUkQ1yV-pA6VJbY1KbG1_g_P0oPTyRX06T0xX42NfCtPwQyws37xnNfu0dnGau3L1mDbUzGvI4vP8-konKfT7fwY8ld1Tk9QtaslQRhAzbe-bZUOz2Pf-NRdcA8yZMbeLMeB1-9V_YppecDxe1GdqrW-SND_yFp_Ckw5-41y6YDVih6hms99oO2Ln6c1jsYTX9QxNsJaaRsS2ORp_QRz2HelFPGeryG13SHJuqJLQeiPvMo8bY6DPqz_DC3-c3FYU4m0zrOerK4e8mg5Owk6w4w57Z_AWcjEc_9w-DTqIhsIwTRFAKXgQypDyXqjSWQudsbDJDCZFSIkudiGwiUp3nihSDoYi00rp0MUWRi038ElaraUWvAFNhUsMnwoQykkJmJuTDUyxCrRmFRoYG8KE3VmE7_nIvozEpWuZlUfBsFn42B_B22XLWcnbc0Wazt3fRee28YLAiM8G7khzA-8Zw9_Yv9o9H_vn6fxvuwNrxwbj49vno6xt4LHwRhVdACjdhtb5Y0BZDm9psN0v4L4Q99vk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+EEG+based+automated+eyes+state+classification+using+recurrence+plots+and+machine+learning+approach&rft.jtitle=Concurrency+and+computation&rft.au=Khosla%2C+Ashima&rft.au=Khandnor%2C+Padmavati&rft.au=Chand%2C+Trilok&rft.date=2022-06-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=13&rft_id=info:doi/10.1002%2Fcpe.6912&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_6912 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |