Machine learning algorithms to detect DDoS attacks in SDN

Summary Summary Software‐Defined Networking (SDN) is an emerging network paradigm that has gained significant traction from many researchers to address the requirement of current data centers. Although central control is the major advantage of SDN, it is also a single point of failure if it is made...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 32; no. 16
Main Authors Santos, Reneilson, Souza, Danilo, Santo, Walter, Ribeiro, Admilson, Moreno, Edward
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 25.08.2020
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.5402

Cover

Abstract Summary Summary Software‐Defined Networking (SDN) is an emerging network paradigm that has gained significant traction from many researchers to address the requirement of current data centers. Although central control is the major advantage of SDN, it is also a single point of failure if it is made unreachable by a Distributed Denial of Service (DDoS) attack. Despite the large number of traditional detection solutions that exist currently, DDoS attacks continue to grow in frequency, volume, and severity. This paper brings an analysis of the problem and suggests the implementation of four machine learning algorithms (SVM, MLP, Decision Tree, and Random Forest) with the purpose of classifying DDoS attacks in an SDN simulated environment (Mininet 2.2.2). With this goal, the DDoS attacks were simulated using the Scapy tool with a list of valid IPs, acquiring, as a result, the best accuracy with the Random Forest algorithm and the best processing time with the Decision Tree algorithm. Moreover, it is shown the most important features to classify DDoS attacks and some drawbacks in the implementation of a classifier to detect the three kinds of DDoS attacks discussed in this paper (controller attack, flow‐table attack, and bandwidth attack).
AbstractList Summary Software‐Defined Networking (SDN) is an emerging network paradigm that has gained significant traction from many researchers to address the requirement of current data centers. Although central control is the major advantage of SDN, it is also a single point of failure if it is made unreachable by a Distributed Denial of Service (DDoS) attack. Despite the large number of traditional detection solutions that exist currently, DDoS attacks continue to grow in frequency, volume, and severity. This paper brings an analysis of the problem and suggests the implementation of four machine learning algorithms (SVM, MLP, Decision Tree, and Random Forest) with the purpose of classifying DDoS attacks in an SDN simulated environment (Mininet 2.2.2). With this goal, the DDoS attacks were simulated using the Scapy tool with a list of valid IPs, acquiring, as a result, the best accuracy with the Random Forest algorithm and the best processing time with the Decision Tree algorithm. Moreover, it is shown the most important features to classify DDoS attacks and some drawbacks in the implementation of a classifier to detect the three kinds of DDoS attacks discussed in this paper (controller attack, flow‐table attack, and bandwidth attack).
Summary Summary Software‐Defined Networking (SDN) is an emerging network paradigm that has gained significant traction from many researchers to address the requirement of current data centers. Although central control is the major advantage of SDN, it is also a single point of failure if it is made unreachable by a Distributed Denial of Service (DDoS) attack. Despite the large number of traditional detection solutions that exist currently, DDoS attacks continue to grow in frequency, volume, and severity. This paper brings an analysis of the problem and suggests the implementation of four machine learning algorithms (SVM, MLP, Decision Tree, and Random Forest) with the purpose of classifying DDoS attacks in an SDN simulated environment (Mininet 2.2.2). With this goal, the DDoS attacks were simulated using the Scapy tool with a list of valid IPs, acquiring, as a result, the best accuracy with the Random Forest algorithm and the best processing time with the Decision Tree algorithm. Moreover, it is shown the most important features to classify DDoS attacks and some drawbacks in the implementation of a classifier to detect the three kinds of DDoS attacks discussed in this paper (controller attack, flow‐table attack, and bandwidth attack).
Author Santo, Walter
Souza, Danilo
Santos, Reneilson
Moreno, Edward
Ribeiro, Admilson
Author_xml – sequence: 1
  givenname: Reneilson
  orcidid: 0000-0001-9328-9744
  surname: Santos
  fullname: Santos, Reneilson
  email: reneilson1@gmail.com
  organization: Federal University of Sergipe
– sequence: 2
  givenname: Danilo
  surname: Souza
  fullname: Souza, Danilo
  organization: Federal University of Sergipe
– sequence: 3
  givenname: Walter
  surname: Santo
  fullname: Santo, Walter
  organization: Federal University of Sergipe
– sequence: 4
  givenname: Admilson
  surname: Ribeiro
  fullname: Ribeiro, Admilson
  organization: Federal University of Sergipe
– sequence: 5
  givenname: Edward
  surname: Moreno
  fullname: Moreno, Edward
  organization: Federal University of Sergipe
BookMark eNp1kMtKAzEUhoNUsK2CjxBw42ZqkklmOktp6wXqBarrkGSSNnWa1CRF-vbOWHEhujpn8f0X_gHoOe80AOcYjTBC5Ept9YhRRI5AH7OcZKjIae_nJ8UJGMS4RghjlOM-qB6EWlmnYaNFcNYtoWiWPti02kSYPKx10irB6dQvoEhJqLcIrYOL6eMpODaiifrs-w7B683sZXKXzZ9u7yfX80yRqs1UopRU0BrLrlXBWFkZiQup5LhChilTYqIrSqTBZW2UzFmJRU3HWsmCGjbOh-Di4LsN_n2nY-JrvwuujeSEElbQPK86anSgVPAxBm24skkk610KwjYcI97Nw9t5eFekFVz-EmyD3Yiw_wvNDuiHbfT-X45Pnmdf_CdU6HPj
CitedBy_id crossref_primary_10_1002_cpe_5444
crossref_primary_10_3390_electronics13040807
crossref_primary_10_1080_07366981_2024_2360840
crossref_primary_10_1007_s10922_024_09862_4
crossref_primary_10_1016_j_iot_2024_101343
crossref_primary_10_3390_systems11060296
crossref_primary_10_1109_TCCN_2022_3186331
crossref_primary_10_32604_cmc_2023_038276
crossref_primary_10_1109_ACCESS_2024_3493384
crossref_primary_10_7717_peerj_cs_1674
crossref_primary_10_1016_j_phycom_2024_102318
crossref_primary_10_31854_2307_1303_2021_9_3_11_21
crossref_primary_10_52547_jist_15644_10_38_120
crossref_primary_10_58496_MJCS_2024_018
crossref_primary_10_1002_ett_4534
crossref_primary_10_3390_s22218287
crossref_primary_10_1007_s10586_024_04407_5
crossref_primary_10_1109_JSYST_2021_3110948
crossref_primary_10_1007_s10207_022_00641_3
crossref_primary_10_1016_j_compeleceng_2022_108019
crossref_primary_10_1007_s13369_023_08075_2
crossref_primary_10_1016_j_jisa_2021_103017
crossref_primary_10_1016_j_jpdc_2021_03_005
crossref_primary_10_1155_2024_6651584
crossref_primary_10_1109_ACCESS_2020_3022633
crossref_primary_10_3233_JIFS_212946
crossref_primary_10_1155_2021_6136670
crossref_primary_10_3390_jsan12040051
crossref_primary_10_32604_cmc_2023_045588
crossref_primary_10_1016_j_jnca_2021_103160
crossref_primary_10_1109_ACCESS_2024_3360868
crossref_primary_10_1109_ACCESS_2024_3375395
crossref_primary_10_2298_TSCI2406113A
crossref_primary_10_1109_ACCESS_2021_3126834
crossref_primary_10_3390_electronics12153253
crossref_primary_10_3390_s23146379
crossref_primary_10_3390_smartcities7040085
crossref_primary_10_1016_j_comnet_2025_111150
crossref_primary_10_1002_cpe_6197
crossref_primary_10_3390_s23136176
crossref_primary_10_1016_j_jnca_2021_103156
crossref_primary_10_1186_s42400_024_00219_7
crossref_primary_10_1016_j_comcom_2023_11_002
crossref_primary_10_1007_s11277_025_11748_w
crossref_primary_10_1109_ACCESS_2020_3033942
crossref_primary_10_3390_app13137872
crossref_primary_10_3390_s23094441
crossref_primary_10_1109_MITP_2023_3273295
crossref_primary_10_1038_s41598_024_66907_z
crossref_primary_10_1002_spy2_337
crossref_primary_10_1155_2022_1169035
crossref_primary_10_1007_s11042_023_15725_y
crossref_primary_10_3390_fi15120401
crossref_primary_10_1080_23742917_2023_2264435
crossref_primary_10_21017_rimci_1116
crossref_primary_10_1016_j_compeleceng_2024_109769
crossref_primary_10_1038_s41598_024_70983_6
crossref_primary_10_1016_j_eswa_2022_117500
crossref_primary_10_1016_j_procs_2021_07_032
crossref_primary_10_3390_electronics13214153
crossref_primary_10_1109_ACCESS_2021_3081629
crossref_primary_10_1007_s42452_024_06172_x
crossref_primary_10_1007_s10207_023_00728_5
crossref_primary_10_1002_cpe_7878
crossref_primary_10_3233_JHS_200647
crossref_primary_10_1002_cpe_6904
crossref_primary_10_1109_COMST_2022_3217613
Cites_doi 10.1109/JPROC.2014.2371999
10.1016/j.comnet.2016.05.019
10.1109/TNET.2014.2320577
10.1109/TIFS.2017.2758754
10.1109/NFV-SDN.2016.7919493
10.1007/978-3-642-29044-2
10.1109/ICCNC.2015.7069319
10.1007/978-1-4614-7597-2_2
10.1016/j.bjp.2013.10.014
10.1109/ANDESCON.2016.7836244
10.1109/COMST.2015.2487361
10.1016/j.comnet.2015.02.026
10.1145/1355734.1355746
10.1007/s13369-017-2414-5
10.1109/MCOM.2015.7081075
10.1109/WINCOM.2016.7777224
10.1002/0470099747
10.1109/ICoAC.2014.7229711
10.1109/SDN4FNS.2013.6702553
10.1145/2983637
10.1109/Trustcom.2015.389
10.1109/CIT.2017.61
10.1109/ICACT.2014.6778942
10.1109/MCOM.2013.6553676
10.1137/1.9781611972733.3
10.1109/SKIMA.2014.7083539
10.1109/TNSM.2017.2785660
10.1109/LCN.2010.5735752
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
– notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.5402
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_5402
CPE5402
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2932-ca7b4a4d1b540265579fb16bcb890f5cf712e942bf17dfcb3571ad48ecb64f583
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Fri Jul 25 05:01:46 EDT 2025
Thu Apr 24 23:11:03 EDT 2025
Wed Oct 01 00:59:23 EDT 2025
Wed Jan 22 16:33:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2932-ca7b4a4d1b540265579fb16bcb890f5cf712e942bf17dfcb3571ad48ecb64f583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9328-9744
PQID 2425643398
PQPubID 2045170
PageCount 14
ParticipantIDs proquest_journals_2425643398
crossref_citationtrail_10_1002_cpe_5402
crossref_primary_10_1002_cpe_5402
wiley_primary_10_1002_cpe_5402_CPE5402
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 25, 2020
PublicationDateYYYYMMDD 2020-08-25
PublicationDate_xml – month: 08
  year: 2020
  text: August 25, 2020
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 42
2015; 4
2012
2016; 109
2010
2015; 103
2015; 53
2008; 38
2007
1994
2011; 12
2003
2016; 18
2014; 62
2016; 12
2015; 23
2015; 81
2013; 51
2017
2016
2015
2014
2013
2018; 15
2018; 13
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
Michalski RS (e_1_2_9_39_1) 2013
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_33_1
Oppenheim AV (e_1_2_9_9_1) 2010
Basili VR (e_1_2_9_37_1) 1994
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Pedregosa F (e_1_2_9_38_1) 2011; 12
e_1_2_9_2_1
Dhanabal L (e_1_2_9_12_1) 2015; 4
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 51
  start-page: 36
  issue: 7
  year: 2013
  end-page: 43
  article-title: Are we ready for SDN? Implementation challenges for software‐defined networks
  publication-title: IEEE Commun Mag
– volume: 81
  start-page: 308
  year: 2015
  end-page: 319
  article-title: DDoS attack protection in the era of cloud computing and software‐defined networking
  publication-title: Computer Networks
– year: 2007
– volume: 18
  start-page: 602
  issue: 1
  year: 2016
  end-page: 622
  article-title: Software‐defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud computing environments: a survey, some research issues, and challenges
  publication-title: IEEE Commun Surv Tutor
– year: 2003
– volume: 23
  start-page: 1257
  issue: 4
  year: 2015
  end-page: 1270
  article-title: Robust network traffic classification
  publication-title: IEEE/ACM Trans Networking
– volume: 12
  issue: 5s
  year: 2016
  article-title: Performance modelling and analysis of software‐defined networking under bursty multimedia traffic
  publication-title: ACM Trans Multimed Comput Commun Appl
– volume: 53
  start-page: 52
  issue: 4
  year: 2015
  end-page: 59
  article-title: Distributed denial of service attacks in software‐defined networking with cloud computing
  publication-title: IEEE Commun Mag
– volume: 38
  start-page: 69
  issue: 2
  year: 2008
  end-page: 74
  article-title: OpenFlow: enabling innovation in campus networks
  publication-title: ACM SIGCOMM Comput Commun Rev
– year: 2016
– volume: 109
  start-page: 172
  year: 2016
  end-page: 182
  article-title: Suspicious traffic sampling for intrusion detection in software‐defined networks
  publication-title: Computer Networks
– year: 2014
– year: 1994
– year: 2010
– volume: 13
  start-page: 559
  issue: 3
  year: 2018
  end-page: 573
  article-title: SkyShield: a sketch‐based defense system against application layer DDoS attacks
  publication-title: IEEE Trans Inf Forensics Secur
– year: 2012
– volume: 4
  start-page: 446
  issue: 6
  year: 2015
  end-page: 452
  article-title: A study on NSL‐KDD dataset for intrusion detection system based on classification algorithms
  publication-title: Int J Adv Res Comput Commun Eng
– volume: 103
  start-page: 14
  issue: 1
  year: 2015
  end-page: 76
  article-title: Software‐defined networking: a comprehensive survey
  publication-title: Proc IEEE
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 42
  start-page: 425
  issue: 2
  year: 2017
  end-page: 441
  article-title: DDoS attack detection and mitigation using SDN: methods, practices, and solutions
  publication-title: Arab J Sci Eng
– volume: 62
  start-page: 122
  year: 2014
  end-page: 136
  article-title: Combining OpenFlow and sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments
  publication-title: Computer Networks
– year: 2017
– volume: 15
  start-page: 344
  issue: 1
  year: 2018
  end-page: 355
  article-title: An effective approach to controller placement in software defined wide area networks
  publication-title: IEEE Trans Netw Serv Manag
– start-page: 15
  year: 2014
  end-page: 37
– start-page: 528
  year: 1994
  end-page: 532
– year: 2015
– year: 2013
– ident: e_1_2_9_2_1
  doi: 10.1109/JPROC.2014.2371999
– ident: e_1_2_9_32_1
  doi: 10.1016/j.comnet.2016.05.019
– ident: e_1_2_9_15_1
  doi: 10.1109/TNET.2014.2320577
– ident: e_1_2_9_22_1
  doi: 10.1109/TIFS.2017.2758754
– ident: e_1_2_9_19_1
  doi: 10.1109/NFV-SDN.2016.7919493
– ident: e_1_2_9_36_1
  doi: 10.1007/978-3-642-29044-2
– ident: e_1_2_9_8_1
  doi: 10.1109/ICCNC.2015.7069319
– ident: e_1_2_9_35_1
  doi: 10.1007/978-1-4614-7597-2_2
– ident: e_1_2_9_28_1
– ident: e_1_2_9_26_1
  doi: 10.1016/j.bjp.2013.10.014
– ident: e_1_2_9_31_1
  doi: 10.1109/ANDESCON.2016.7836244
– ident: e_1_2_9_24_1
  doi: 10.1109/COMST.2015.2487361
– ident: e_1_2_9_3_1
  doi: 10.1016/j.comnet.2015.02.026
– ident: e_1_2_9_5_1
  doi: 10.1145/1355734.1355746
– ident: e_1_2_9_33_1
  doi: 10.1007/s13369-017-2414-5
– start-page: 528
  volume-title: Encyclopedia of Software Engineering, Volume 2
  year: 1994
  ident: e_1_2_9_37_1
– ident: e_1_2_9_16_1
– ident: e_1_2_9_23_1
  doi: 10.1109/MCOM.2015.7081075
– ident: e_1_2_9_11_1
  doi: 10.1109/WINCOM.2016.7777224
– volume-title: Machine Learning: An Artificial Intelligence Approach
  year: 2013
  ident: e_1_2_9_39_1
– ident: e_1_2_9_7_1
  doi: 10.1002/0470099747
– ident: e_1_2_9_14_1
  doi: 10.1109/ICoAC.2014.7229711
– ident: e_1_2_9_27_1
– ident: e_1_2_9_6_1
  doi: 10.1109/SDN4FNS.2013.6702553
– volume: 4
  start-page: 446
  issue: 6
  year: 2015
  ident: e_1_2_9_12_1
  article-title: A study on NSL‐KDD dataset for intrusion detection system based on classification algorithms
  publication-title: Int J Adv Res Comput Commun Eng
– volume-title: Sinais e Sistemas
  year: 2010
  ident: e_1_2_9_9_1
– ident: e_1_2_9_20_1
  doi: 10.1145/2983637
– ident: e_1_2_9_25_1
  doi: 10.1109/Trustcom.2015.389
– ident: e_1_2_9_10_1
  doi: 10.1109/CIT.2017.61
– ident: e_1_2_9_29_1
  doi: 10.1109/ICACT.2014.6778942
– ident: e_1_2_9_30_1
– ident: e_1_2_9_4_1
  doi: 10.1109/MCOM.2013.6553676
– ident: e_1_2_9_34_1
  doi: 10.1137/1.9781611972733.3
– ident: e_1_2_9_18_1
– ident: e_1_2_9_13_1
  doi: 10.1109/SKIMA.2014.7083539
– ident: e_1_2_9_21_1
  doi: 10.1109/TNSM.2017.2785660
– ident: e_1_2_9_17_1
  doi: 10.1109/LCN.2010.5735752
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_9_38_1
  article-title: Scikit‐learn: machine learning in python
  publication-title: J Mach Learn Res
SSID ssj0011031
Score 2.5872443
Snippet Summary Summary Software‐Defined Networking (SDN) is an emerging network paradigm that has gained significant traction from many researchers to address the...
Summary Software‐Defined Networking (SDN) is an emerging network paradigm that has gained significant traction from many researchers to address the requirement...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Classification
Computer simulation
Cybersecurity
Data centers
DDoS classification
decision tree
Decision trees
Denial of service attacks
Machine learning
Mininet
MLP
random forest
SDN environment
Security management
Software-defined networking
SVM
Title Machine learning algorithms to detect DDoS attacks in SDN
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.5402
https://www.proquest.com/docview/2425643398
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: ADMLS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJy_WJ1arrCB6Spt9Jdmj9EERWsRaKHgIu5tNLda0tOnFX-9uHq2KgnjKZRYmszsz3ySz3wBwLZFkXGDuICK1Q1Fk4iB2uaMN1EWmkvN51u3eH3i9Eb0fs3HRVWnvwuT8EJsPbtYzsnhtHVzIVXNLGqoWumHghg2_iHhZNfW4YY5CdnpBTpWKHdeA9pJ31sXNcuHXTLSFl59BapZlulXwXOqXN5e8NtapbKj3b9SN_3uBfbBXgE94l5-WA7Cjk0NQLQc7wMLPjwDvZy2WGhYzJSZQzCbz5TR9eVvBdA4jbX89wHZ7PoQiTe01fThN4LA9OAajbuep1XOKGQuOMokeO0r4kgoamS0zqniM-TyWyJNKBtyNmYp9hDWnWMbIj2IlCfORiGiglfRozAJyAirJPNGnAJrijVqyd-n6lpRfyUjqKCYq8IRCRJEauC3tHaqCgNzOwZiFOXUyDo1FQqtGDVxtJBc56cYPMvVyy8LC7VahrZ8MxCI8qIGbzPa_rg9bDx37PPur4DnYxbbWdk1kYXVQSZdrfWEASSovs6P3AfGp2qc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED3rxLa7PCKKnrk2atA2exFXWxy7iAzwIoUnTVVzbZbde_PUmfawPFMRTLxNIJpmZb9LJNwC7EkvGI8Id7EntUBwbP0hc7mgDdbHJ5AJeVLt3un77jp7fs_sJOKzfwpT8EOMLN2sZhb-2Bm4vpA8-WEPVQDcN3jD-d4r6Jk2xiOh6zB2Fbf-CkiyVOK6B7TXzrEsO6pFfY9EHwPwMU4s4czoHD_UMy_KS5-ZrLpvq7Rt54z-XMA-zFf5ER-WBWYAJnS7CXN3bAVWmvgS8U1RZalS1leihqN_Lhk_548sI5RmKtf37gFqt7AZFeW5f6qOnFN20ustwd3pye9x2qjYLjjKxnjgqCiSNaGx2zUzFZyzgicS-VDLkbsJUEmCiOSUywUGcKOmxAEcxDbWSPk1Y6K3AZJqlehWQyd-o5XuXbmB5-ZWMpY4TT4V-pLCnvAbs1woXquIgt60w-qJkTybCaETYaTRgZyw5KHk3fpDZqPdMVJY3EjaFMijL42ED9grl_zpeHF-d2O_aXwW3Ybp927kUl2fdi3WYITb1do2jYRswmQ9f9abBJ7ncKs7hO7Uy3sg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kgnjxLdbnCqKntNnNbpLFk5gWXy3FWuhBCNnNpoq1LTVe_PXu5lEfKIinXGZhMrsz800y-w3AkcCC8YhwCztCWRTHOg4Sm1tKQ12sKzmPZ93urbZ70aNXfdafg9PyLkzODzH74GY8I4vXxsHVJE7qH6yhcqJqGm_o-DtPGfdNP19wO-OOwmZ-QU6WSixbw_aSedYm9XLl11z0ATA_w9QszzSX4b7UMG8veaq9pqIm376RN_7zFVZgqcCf6Cw_MKswp0ZrsFzOdkCFq68Db2VdlgoVYyUGKBoOxtPH9OH5BaVjFCvz9wEFwbiLojQ1N_XR4wh1g_YG9JqNu_MLqxizYEmd64klI0_QiMZ617QqLmMeTwR2hRQ-txMmEw8TxSkRCfbiRAqHeTiKqa-kcGnCfGcTKqPxSG0B0vUbNXzvwvYML78UsVBx4kjfjSR2pFOFk9LgoSw4yM0ojGGYsyeTUFskNGpU4XAmOcl5N36Q2S33LCw87yU0JZRGWQ73q3CcGf_X9eF5p2Ge238VPICFTtAMby7b1zuwSEzlbes4w3ahkk5f1Z6GJ6nYz47hO4n43kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+to+detect+DDoS+attacks+in+SDN&rft.jtitle=Concurrency+and+computation&rft.au=Santos%2C+Reneilson&rft.au=Souza%2C+Danilo&rft.au=Santo%2C+Walter&rft.au=Ribeiro%2C+Admilson&rft.date=2020-08-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=32&rft.issue=16&rft_id=info:doi/10.1002%2Fcpe.5402&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_5402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon