Machine learning algorithms to detect DDoS attacks in SDN
Summary Summary Software‐Defined Networking (SDN) is an emerging network paradigm that has gained significant traction from many researchers to address the requirement of current data centers. Although central control is the major advantage of SDN, it is also a single point of failure if it is made...
Saved in:
| Published in | Concurrency and computation Vol. 32; no. 16 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
25.08.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0626 1532-0634 |
| DOI | 10.1002/cpe.5402 |
Cover
| Abstract | Summary
Summary Software‐Defined Networking (SDN) is an emerging network paradigm that has gained significant traction from many researchers to address the requirement of current data centers. Although central control is the major advantage of SDN, it is also a single point of failure if it is made unreachable by a Distributed Denial of Service (DDoS) attack. Despite the large number of traditional detection solutions that exist currently, DDoS attacks continue to grow in frequency, volume, and severity. This paper brings an analysis of the problem and suggests the implementation of four machine learning algorithms (SVM, MLP, Decision Tree, and Random Forest) with the purpose of classifying DDoS attacks in an SDN simulated environment (Mininet 2.2.2). With this goal, the DDoS attacks were simulated using the Scapy tool with a list of valid IPs, acquiring, as a result, the best accuracy with the Random Forest algorithm and the best processing time with the Decision Tree algorithm. Moreover, it is shown the most important features to classify DDoS attacks and some drawbacks in the implementation of a classifier to detect the three kinds of DDoS attacks discussed in this paper (controller attack, flow‐table attack, and bandwidth attack). |
|---|---|
| AbstractList | Summary Software‐Defined Networking (SDN) is an emerging network paradigm that has gained significant traction from many researchers to address the requirement of current data centers. Although central control is the major advantage of SDN, it is also a single point of failure if it is made unreachable by a Distributed Denial of Service (DDoS) attack. Despite the large number of traditional detection solutions that exist currently, DDoS attacks continue to grow in frequency, volume, and severity. This paper brings an analysis of the problem and suggests the implementation of four machine learning algorithms (SVM, MLP, Decision Tree, and Random Forest) with the purpose of classifying DDoS attacks in an SDN simulated environment (Mininet 2.2.2). With this goal, the DDoS attacks were simulated using the Scapy tool with a list of valid IPs, acquiring, as a result, the best accuracy with the Random Forest algorithm and the best processing time with the Decision Tree algorithm. Moreover, it is shown the most important features to classify DDoS attacks and some drawbacks in the implementation of a classifier to detect the three kinds of DDoS attacks discussed in this paper (controller attack, flow‐table attack, and bandwidth attack). Summary Summary Software‐Defined Networking (SDN) is an emerging network paradigm that has gained significant traction from many researchers to address the requirement of current data centers. Although central control is the major advantage of SDN, it is also a single point of failure if it is made unreachable by a Distributed Denial of Service (DDoS) attack. Despite the large number of traditional detection solutions that exist currently, DDoS attacks continue to grow in frequency, volume, and severity. This paper brings an analysis of the problem and suggests the implementation of four machine learning algorithms (SVM, MLP, Decision Tree, and Random Forest) with the purpose of classifying DDoS attacks in an SDN simulated environment (Mininet 2.2.2). With this goal, the DDoS attacks were simulated using the Scapy tool with a list of valid IPs, acquiring, as a result, the best accuracy with the Random Forest algorithm and the best processing time with the Decision Tree algorithm. Moreover, it is shown the most important features to classify DDoS attacks and some drawbacks in the implementation of a classifier to detect the three kinds of DDoS attacks discussed in this paper (controller attack, flow‐table attack, and bandwidth attack). |
| Author | Santo, Walter Souza, Danilo Santos, Reneilson Moreno, Edward Ribeiro, Admilson |
| Author_xml | – sequence: 1 givenname: Reneilson orcidid: 0000-0001-9328-9744 surname: Santos fullname: Santos, Reneilson email: reneilson1@gmail.com organization: Federal University of Sergipe – sequence: 2 givenname: Danilo surname: Souza fullname: Souza, Danilo organization: Federal University of Sergipe – sequence: 3 givenname: Walter surname: Santo fullname: Santo, Walter organization: Federal University of Sergipe – sequence: 4 givenname: Admilson surname: Ribeiro fullname: Ribeiro, Admilson organization: Federal University of Sergipe – sequence: 5 givenname: Edward surname: Moreno fullname: Moreno, Edward organization: Federal University of Sergipe |
| BookMark | eNp1kMtKAzEUhoNUsK2CjxBw42ZqkklmOktp6wXqBarrkGSSNnWa1CRF-vbOWHEhujpn8f0X_gHoOe80AOcYjTBC5Ept9YhRRI5AH7OcZKjIae_nJ8UJGMS4RghjlOM-qB6EWlmnYaNFcNYtoWiWPti02kSYPKx10irB6dQvoEhJqLcIrYOL6eMpODaiifrs-w7B683sZXKXzZ9u7yfX80yRqs1UopRU0BrLrlXBWFkZiQup5LhChilTYqIrSqTBZW2UzFmJRU3HWsmCGjbOh-Di4LsN_n2nY-JrvwuujeSEElbQPK86anSgVPAxBm24skkk610KwjYcI97Nw9t5eFekFVz-EmyD3Yiw_wvNDuiHbfT-X45Pnmdf_CdU6HPj |
| CitedBy_id | crossref_primary_10_1002_cpe_5444 crossref_primary_10_3390_electronics13040807 crossref_primary_10_1080_07366981_2024_2360840 crossref_primary_10_1007_s10922_024_09862_4 crossref_primary_10_1016_j_iot_2024_101343 crossref_primary_10_3390_systems11060296 crossref_primary_10_1109_TCCN_2022_3186331 crossref_primary_10_32604_cmc_2023_038276 crossref_primary_10_1109_ACCESS_2024_3493384 crossref_primary_10_7717_peerj_cs_1674 crossref_primary_10_1016_j_phycom_2024_102318 crossref_primary_10_31854_2307_1303_2021_9_3_11_21 crossref_primary_10_52547_jist_15644_10_38_120 crossref_primary_10_58496_MJCS_2024_018 crossref_primary_10_1002_ett_4534 crossref_primary_10_3390_s22218287 crossref_primary_10_1007_s10586_024_04407_5 crossref_primary_10_1109_JSYST_2021_3110948 crossref_primary_10_1007_s10207_022_00641_3 crossref_primary_10_1016_j_compeleceng_2022_108019 crossref_primary_10_1007_s13369_023_08075_2 crossref_primary_10_1016_j_jisa_2021_103017 crossref_primary_10_1016_j_jpdc_2021_03_005 crossref_primary_10_1155_2024_6651584 crossref_primary_10_1109_ACCESS_2020_3022633 crossref_primary_10_3233_JIFS_212946 crossref_primary_10_1155_2021_6136670 crossref_primary_10_3390_jsan12040051 crossref_primary_10_32604_cmc_2023_045588 crossref_primary_10_1016_j_jnca_2021_103160 crossref_primary_10_1109_ACCESS_2024_3360868 crossref_primary_10_1109_ACCESS_2024_3375395 crossref_primary_10_2298_TSCI2406113A crossref_primary_10_1109_ACCESS_2021_3126834 crossref_primary_10_3390_electronics12153253 crossref_primary_10_3390_s23146379 crossref_primary_10_3390_smartcities7040085 crossref_primary_10_1016_j_comnet_2025_111150 crossref_primary_10_1002_cpe_6197 crossref_primary_10_3390_s23136176 crossref_primary_10_1016_j_jnca_2021_103156 crossref_primary_10_1186_s42400_024_00219_7 crossref_primary_10_1016_j_comcom_2023_11_002 crossref_primary_10_1007_s11277_025_11748_w crossref_primary_10_1109_ACCESS_2020_3033942 crossref_primary_10_3390_app13137872 crossref_primary_10_3390_s23094441 crossref_primary_10_1109_MITP_2023_3273295 crossref_primary_10_1038_s41598_024_66907_z crossref_primary_10_1002_spy2_337 crossref_primary_10_1155_2022_1169035 crossref_primary_10_1007_s11042_023_15725_y crossref_primary_10_3390_fi15120401 crossref_primary_10_1080_23742917_2023_2264435 crossref_primary_10_21017_rimci_1116 crossref_primary_10_1016_j_compeleceng_2024_109769 crossref_primary_10_1038_s41598_024_70983_6 crossref_primary_10_1016_j_eswa_2022_117500 crossref_primary_10_1016_j_procs_2021_07_032 crossref_primary_10_3390_electronics13214153 crossref_primary_10_1109_ACCESS_2021_3081629 crossref_primary_10_1007_s42452_024_06172_x crossref_primary_10_1007_s10207_023_00728_5 crossref_primary_10_1002_cpe_7878 crossref_primary_10_3233_JHS_200647 crossref_primary_10_1002_cpe_6904 crossref_primary_10_1109_COMST_2022_3217613 |
| Cites_doi | 10.1109/JPROC.2014.2371999 10.1016/j.comnet.2016.05.019 10.1109/TNET.2014.2320577 10.1109/TIFS.2017.2758754 10.1109/NFV-SDN.2016.7919493 10.1007/978-3-642-29044-2 10.1109/ICCNC.2015.7069319 10.1007/978-1-4614-7597-2_2 10.1016/j.bjp.2013.10.014 10.1109/ANDESCON.2016.7836244 10.1109/COMST.2015.2487361 10.1016/j.comnet.2015.02.026 10.1145/1355734.1355746 10.1007/s13369-017-2414-5 10.1109/MCOM.2015.7081075 10.1109/WINCOM.2016.7777224 10.1002/0470099747 10.1109/ICoAC.2014.7229711 10.1109/SDN4FNS.2013.6702553 10.1145/2983637 10.1109/Trustcom.2015.389 10.1109/CIT.2017.61 10.1109/ICACT.2014.6778942 10.1109/MCOM.2013.6553676 10.1137/1.9781611972733.3 10.1109/SKIMA.2014.7083539 10.1109/TNSM.2017.2785660 10.1109/LCN.2010.5735752 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons, Ltd. 2020 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. – notice: 2020 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.5402 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_5402 CPE5402 |
| Genre | article |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2932-ca7b4a4d1b540265579fb16bcb890f5cf712e942bf17dfcb3571ad48ecb64f583 |
| IEDL.DBID | DR2 |
| ISSN | 1532-0626 |
| IngestDate | Fri Jul 25 05:01:46 EDT 2025 Thu Apr 24 23:11:03 EDT 2025 Wed Oct 01 00:59:23 EDT 2025 Wed Jan 22 16:33:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2932-ca7b4a4d1b540265579fb16bcb890f5cf712e942bf17dfcb3571ad48ecb64f583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9328-9744 |
| PQID | 2425643398 |
| PQPubID | 2045170 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2425643398 crossref_citationtrail_10_1002_cpe_5402 crossref_primary_10_1002_cpe_5402 wiley_primary_10_1002_cpe_5402_CPE5402 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | August 25, 2020 |
| PublicationDateYYYYMMDD | 2020-08-25 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 25, 2020 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 42 2015; 4 2012 2016; 109 2010 2015; 103 2015; 53 2008; 38 2007 1994 2011; 12 2003 2016; 18 2014; 62 2016; 12 2015; 23 2015; 81 2013; 51 2017 2016 2015 2014 2013 2018; 15 2018; 13 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 Michalski RS (e_1_2_9_39_1) 2013 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_33_1 Oppenheim AV (e_1_2_9_9_1) 2010 Basili VR (e_1_2_9_37_1) 1994 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 Pedregosa F (e_1_2_9_38_1) 2011; 12 e_1_2_9_2_1 Dhanabal L (e_1_2_9_12_1) 2015; 4 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 51 start-page: 36 issue: 7 year: 2013 end-page: 43 article-title: Are we ready for SDN? Implementation challenges for software‐defined networks publication-title: IEEE Commun Mag – volume: 81 start-page: 308 year: 2015 end-page: 319 article-title: DDoS attack protection in the era of cloud computing and software‐defined networking publication-title: Computer Networks – year: 2007 – volume: 18 start-page: 602 issue: 1 year: 2016 end-page: 622 article-title: Software‐defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud computing environments: a survey, some research issues, and challenges publication-title: IEEE Commun Surv Tutor – year: 2003 – volume: 23 start-page: 1257 issue: 4 year: 2015 end-page: 1270 article-title: Robust network traffic classification publication-title: IEEE/ACM Trans Networking – volume: 12 issue: 5s year: 2016 article-title: Performance modelling and analysis of software‐defined networking under bursty multimedia traffic publication-title: ACM Trans Multimed Comput Commun Appl – volume: 53 start-page: 52 issue: 4 year: 2015 end-page: 59 article-title: Distributed denial of service attacks in software‐defined networking with cloud computing publication-title: IEEE Commun Mag – volume: 38 start-page: 69 issue: 2 year: 2008 end-page: 74 article-title: OpenFlow: enabling innovation in campus networks publication-title: ACM SIGCOMM Comput Commun Rev – year: 2016 – volume: 109 start-page: 172 year: 2016 end-page: 182 article-title: Suspicious traffic sampling for intrusion detection in software‐defined networks publication-title: Computer Networks – year: 2014 – year: 1994 – year: 2010 – volume: 13 start-page: 559 issue: 3 year: 2018 end-page: 573 article-title: SkyShield: a sketch‐based defense system against application layer DDoS attacks publication-title: IEEE Trans Inf Forensics Secur – year: 2012 – volume: 4 start-page: 446 issue: 6 year: 2015 end-page: 452 article-title: A study on NSL‐KDD dataset for intrusion detection system based on classification algorithms publication-title: Int J Adv Res Comput Commun Eng – volume: 103 start-page: 14 issue: 1 year: 2015 end-page: 76 article-title: Software‐defined networking: a comprehensive survey publication-title: Proc IEEE – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: machine learning in python publication-title: J Mach Learn Res – volume: 42 start-page: 425 issue: 2 year: 2017 end-page: 441 article-title: DDoS attack detection and mitigation using SDN: methods, practices, and solutions publication-title: Arab J Sci Eng – volume: 62 start-page: 122 year: 2014 end-page: 136 article-title: Combining OpenFlow and sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments publication-title: Computer Networks – year: 2017 – volume: 15 start-page: 344 issue: 1 year: 2018 end-page: 355 article-title: An effective approach to controller placement in software defined wide area networks publication-title: IEEE Trans Netw Serv Manag – start-page: 15 year: 2014 end-page: 37 – start-page: 528 year: 1994 end-page: 532 – year: 2015 – year: 2013 – ident: e_1_2_9_2_1 doi: 10.1109/JPROC.2014.2371999 – ident: e_1_2_9_32_1 doi: 10.1016/j.comnet.2016.05.019 – ident: e_1_2_9_15_1 doi: 10.1109/TNET.2014.2320577 – ident: e_1_2_9_22_1 doi: 10.1109/TIFS.2017.2758754 – ident: e_1_2_9_19_1 doi: 10.1109/NFV-SDN.2016.7919493 – ident: e_1_2_9_36_1 doi: 10.1007/978-3-642-29044-2 – ident: e_1_2_9_8_1 doi: 10.1109/ICCNC.2015.7069319 – ident: e_1_2_9_35_1 doi: 10.1007/978-1-4614-7597-2_2 – ident: e_1_2_9_28_1 – ident: e_1_2_9_26_1 doi: 10.1016/j.bjp.2013.10.014 – ident: e_1_2_9_31_1 doi: 10.1109/ANDESCON.2016.7836244 – ident: e_1_2_9_24_1 doi: 10.1109/COMST.2015.2487361 – ident: e_1_2_9_3_1 doi: 10.1016/j.comnet.2015.02.026 – ident: e_1_2_9_5_1 doi: 10.1145/1355734.1355746 – ident: e_1_2_9_33_1 doi: 10.1007/s13369-017-2414-5 – start-page: 528 volume-title: Encyclopedia of Software Engineering, Volume 2 year: 1994 ident: e_1_2_9_37_1 – ident: e_1_2_9_16_1 – ident: e_1_2_9_23_1 doi: 10.1109/MCOM.2015.7081075 – ident: e_1_2_9_11_1 doi: 10.1109/WINCOM.2016.7777224 – volume-title: Machine Learning: An Artificial Intelligence Approach year: 2013 ident: e_1_2_9_39_1 – ident: e_1_2_9_7_1 doi: 10.1002/0470099747 – ident: e_1_2_9_14_1 doi: 10.1109/ICoAC.2014.7229711 – ident: e_1_2_9_27_1 – ident: e_1_2_9_6_1 doi: 10.1109/SDN4FNS.2013.6702553 – volume: 4 start-page: 446 issue: 6 year: 2015 ident: e_1_2_9_12_1 article-title: A study on NSL‐KDD dataset for intrusion detection system based on classification algorithms publication-title: Int J Adv Res Comput Commun Eng – volume-title: Sinais e Sistemas year: 2010 ident: e_1_2_9_9_1 – ident: e_1_2_9_20_1 doi: 10.1145/2983637 – ident: e_1_2_9_25_1 doi: 10.1109/Trustcom.2015.389 – ident: e_1_2_9_10_1 doi: 10.1109/CIT.2017.61 – ident: e_1_2_9_29_1 doi: 10.1109/ICACT.2014.6778942 – ident: e_1_2_9_30_1 – ident: e_1_2_9_4_1 doi: 10.1109/MCOM.2013.6553676 – ident: e_1_2_9_34_1 doi: 10.1137/1.9781611972733.3 – ident: e_1_2_9_18_1 – ident: e_1_2_9_13_1 doi: 10.1109/SKIMA.2014.7083539 – ident: e_1_2_9_21_1 doi: 10.1109/TNSM.2017.2785660 – ident: e_1_2_9_17_1 doi: 10.1109/LCN.2010.5735752 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_9_38_1 article-title: Scikit‐learn: machine learning in python publication-title: J Mach Learn Res |
| SSID | ssj0011031 |
| Score | 2.5872443 |
| Snippet | Summary
Summary Software‐Defined Networking (SDN) is an emerging network paradigm that has gained significant traction from many researchers to address the... Summary Software‐Defined Networking (SDN) is an emerging network paradigm that has gained significant traction from many researchers to address the requirement... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Classification Computer simulation Cybersecurity Data centers DDoS classification decision tree Decision trees Denial of service attacks Machine learning Mininet MLP random forest SDN environment Security management Software-defined networking SVM |
| Title | Machine learning algorithms to detect DDoS attacks in SDN |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.5402 https://www.proquest.com/docview/2425643398 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-0634 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: ADMLS dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJy_WJ1arrCB6Spt9Jdmj9EERWsRaKHgIu5tNLda0tOnFX-9uHq2KgnjKZRYmszsz3ySz3wBwLZFkXGDuICK1Q1Fk4iB2uaMN1EWmkvN51u3eH3i9Eb0fs3HRVWnvwuT8EJsPbtYzsnhtHVzIVXNLGqoWumHghg2_iHhZNfW4YY5CdnpBTpWKHdeA9pJ31sXNcuHXTLSFl59BapZlulXwXOqXN5e8NtapbKj3b9SN_3uBfbBXgE94l5-WA7Cjk0NQLQc7wMLPjwDvZy2WGhYzJSZQzCbz5TR9eVvBdA4jbX89wHZ7PoQiTe01fThN4LA9OAajbuep1XOKGQuOMokeO0r4kgoamS0zqniM-TyWyJNKBtyNmYp9hDWnWMbIj2IlCfORiGiglfRozAJyAirJPNGnAJrijVqyd-n6lpRfyUjqKCYq8IRCRJEauC3tHaqCgNzOwZiFOXUyDo1FQqtGDVxtJBc56cYPMvVyy8LC7VahrZ8MxCI8qIGbzPa_rg9bDx37PPur4DnYxbbWdk1kYXVQSZdrfWEASSovs6P3AfGp2qc |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED3rxLa7PCKKnrk2atA2exFXWxy7iAzwIoUnTVVzbZbde_PUmfawPFMRTLxNIJpmZb9LJNwC7EkvGI8Id7EntUBwbP0hc7mgDdbHJ5AJeVLt3un77jp7fs_sJOKzfwpT8EOMLN2sZhb-2Bm4vpA8-WEPVQDcN3jD-d4r6Jk2xiOh6zB2Fbf-CkiyVOK6B7TXzrEsO6pFfY9EHwPwMU4s4czoHD_UMy_KS5-ZrLpvq7Rt54z-XMA-zFf5ER-WBWYAJnS7CXN3bAVWmvgS8U1RZalS1leihqN_Lhk_548sI5RmKtf37gFqt7AZFeW5f6qOnFN20ustwd3pye9x2qjYLjjKxnjgqCiSNaGx2zUzFZyzgicS-VDLkbsJUEmCiOSUywUGcKOmxAEcxDbWSPk1Y6K3AZJqlehWQyd-o5XuXbmB5-ZWMpY4TT4V-pLCnvAbs1woXquIgt60w-qJkTybCaETYaTRgZyw5KHk3fpDZqPdMVJY3EjaFMijL42ED9grl_zpeHF-d2O_aXwW3Ybp927kUl2fdi3WYITb1do2jYRswmQ9f9abBJ7ncKs7hO7Uy3sg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kgnjxLdbnCqKntNnNbpLFk5gWXy3FWuhBCNnNpoq1LTVe_PXu5lEfKIinXGZhMrsz800y-w3AkcCC8YhwCztCWRTHOg4Sm1tKQ12sKzmPZ93urbZ70aNXfdafg9PyLkzODzH74GY8I4vXxsHVJE7qH6yhcqJqGm_o-DtPGfdNP19wO-OOwmZ-QU6WSixbw_aSedYm9XLl11z0ATA_w9QszzSX4b7UMG8veaq9pqIm376RN_7zFVZgqcCf6Cw_MKswp0ZrsFzOdkCFq68Db2VdlgoVYyUGKBoOxtPH9OH5BaVjFCvz9wEFwbiLojQ1N_XR4wh1g_YG9JqNu_MLqxizYEmd64klI0_QiMZ617QqLmMeTwR2hRQ-txMmEw8TxSkRCfbiRAqHeTiKqa-kcGnCfGcTKqPxSG0B0vUbNXzvwvYML78UsVBx4kjfjSR2pFOFk9LgoSw4yM0ojGGYsyeTUFskNGpU4XAmOcl5N36Q2S33LCw87yU0JZRGWQ73q3CcGf_X9eF5p2Ge238VPICFTtAMby7b1zuwSEzlbes4w3ahkk5f1Z6GJ6nYz47hO4n43kw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+to+detect+DDoS+attacks+in+SDN&rft.jtitle=Concurrency+and+computation&rft.au=Santos%2C+Reneilson&rft.au=Souza%2C+Danilo&rft.au=Santo%2C+Walter&rft.au=Ribeiro%2C+Admilson&rft.date=2020-08-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=32&rft.issue=16&rft_id=info:doi/10.1002%2Fcpe.5402&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_5402 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |