A new algorithm on the automatic TFT‐LCD mura defects inspection based on an effective background reconstruction

In this study, an automatic detection method for mura defects is developed based on an accurate reconstruction of the background and precise evaluation of the mura index level. To achieve this, an effective background reconstruction method is first developed to represent the brightness intensity of...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Society for Information Display Vol. 25; no. 12; pp. 737 - 752
Main Authors Ngo, Chinh, Park, Yong Jin, Jung, Jeehyun, Hassan, Rizwan Ul, Seok, Jongwon
Format Journal Article
LanguageEnglish
Published Campbell Wiley Subscription Services, Inc 01.12.2017
Subjects
Online AccessGet full text
ISSN1071-0922
1938-3657
DOI10.1002/jsid.622

Cover

Abstract In this study, an automatic detection method for mura defects is developed based on an accurate reconstruction of the background and precise evaluation of the mura index level. To achieve this, an effective background reconstruction method is first developed to represent the brightness intensity of the display panel. As a result, any nonuniform brightness of the background can be removed effectively. Furthermore, the associated mura level is quantified based on the sensitivity of the human eye in order to alternatively grade the liquid‐crystal display panels. The main focus of this study is on the reconstruction of the background from the display under test image. The proposed method takes full advantage of the following three existing methods: low‐pass filtering, discrete cosine transform, and polynomial surface fitting. By applying the method to several case studies, we have shown that it is more effective compared with other existing methods in detecting various types of mura defects. We developed an algorithm to adaptively reconstruct the background image with high accuracy and a highly efficient computation process for the entire mura detection. We applied the reconstructed background to the image segmentation process based on the sensitivity of the human eye. We finally validated the proposed method by comparing the results obtained with those of previous studies.
AbstractList In this study, an automatic detection method for mura defects is developed based on an accurate reconstruction of the background and precise evaluation of the mura index level. To achieve this, an effective background reconstruction method is first developed to represent the brightness intensity of the display panel. As a result, any nonuniform brightness of the background can be removed effectively. Furthermore, the associated mura level is quantified based on the sensitivity of the human eye in order to alternatively grade the liquid‐crystal display panels. The main focus of this study is on the reconstruction of the background from the display under test image. The proposed method takes full advantage of the following three existing methods: low‐pass filtering, discrete cosine transform, and polynomial surface fitting. By applying the method to several case studies, we have shown that it is more effective compared with other existing methods in detecting various types of mura defects.
In this study, an automatic detection method for mura defects is developed based on an accurate reconstruction of the background and precise evaluation of the mura index level. To achieve this, an effective background reconstruction method is first developed to represent the brightness intensity of the display panel. As a result, any nonuniform brightness of the background can be removed effectively. Furthermore, the associated mura level is quantified based on the sensitivity of the human eye in order to alternatively grade the liquid‐crystal display panels. The main focus of this study is on the reconstruction of the background from the display under test image. The proposed method takes full advantage of the following three existing methods: low‐pass filtering, discrete cosine transform, and polynomial surface fitting. By applying the method to several case studies, we have shown that it is more effective compared with other existing methods in detecting various types of mura defects. We developed an algorithm to adaptively reconstruct the background image with high accuracy and a highly efficient computation process for the entire mura detection. We applied the reconstructed background to the image segmentation process based on the sensitivity of the human eye. We finally validated the proposed method by comparing the results obtained with those of previous studies.
Author Hassan, Rizwan Ul
Park, Yong Jin
Ngo, Chinh
Jung, Jeehyun
Seok, Jongwon
Author_xml – sequence: 1
  givenname: Chinh
  surname: Ngo
  fullname: Ngo, Chinh
  organization: SP Technology Co., Ltd
– sequence: 2
  givenname: Yong Jin
  surname: Park
  fullname: Park, Yong Jin
  organization: SP Technology Co., Ltd
– sequence: 3
  givenname: Jeehyun
  surname: Jung
  fullname: Jung, Jeehyun
  organization: Chung‐Ang University
– sequence: 4
  givenname: Rizwan Ul
  surname: Hassan
  fullname: Hassan, Rizwan Ul
  organization: Chung‐Ang University
– sequence: 5
  givenname: Jongwon
  orcidid: 0000-0003-3139-8915
  surname: Seok
  fullname: Seok, Jongwon
  email: seokj@cau.ac.kr
  organization: Chung‐Ang University
BookMark eNp1kM9OAjEQxhuDiYAmPkITL14W2-7_IwFRDIkH8bzpdmehuLTYdiXcfASf0SexK56MnubLzO-byXwD1FNaAUKXlIwoIexmY2U1Shg7QX2ah1kQJnHa85qkNCA5Y2doYO3Gk0kcJX1kxljBHvNmpY106y3WCrs1YN46veVOCrycLT_fPxaTKd62huMKahDOYqnszgvp-ZJbqDojVxjqbizfwHfFy8roVlXYgNDKOtN-8-fotOaNhYufOkTPs9vl5D5YPN7NJ-NFIFgesiDNM4hJmpcxgSRJiYjympUEylJkHAQroyqK6ozlFaW0AhZSKFMIszgvScgZhEN0ddy7M_q1BeuKjW6N8icLRkhGGU2zzFPXR0oYba2ButgZueXmUFBSdIkWXaKFT9Sjo1-okI53LznDZfOXITga9rKBw7-Li4en-bTjvwCqHot_
CitedBy_id crossref_primary_10_1155_2022_6505372
crossref_primary_10_1109_ACCESS_2021_3076792
crossref_primary_10_1002_sdtp_13126
crossref_primary_10_3390_electronics11172665
crossref_primary_10_1002_jsid_1185
crossref_primary_10_1109_TIM_2022_3188550
crossref_primary_10_3390_machines10090723
crossref_primary_10_1002_jsid_1171
crossref_primary_10_1002_jsid_997
crossref_primary_10_3390_s22145426
crossref_primary_10_1016_j_measurement_2021_109973
crossref_primary_10_1109_ACCESS_2020_3029127
crossref_primary_10_1109_TASE_2018_2823709
crossref_primary_10_1016_j_cie_2020_106530
crossref_primary_10_3390_app13074540
crossref_primary_10_3390_electronics12132965
Cites_doi 10.3182/20080706-5-KR-1001.01386
10.1299/jamdsm.2.441
10.1109/MVA.2015.7153163
10.1016/j.patcog.2009.09.006
10.4028/www.scientific.net/KEM.364-366.400
10.1007/s10043-011-0041-z
10.1007/s10043-011-0051-x
10.1109/LSP.2009.2014113
10.1117/12.301232
10.1889/1.2976659
10.1109/ICCAS.2007.4406684
10.1889/JSID17.8.671
10.1109/TENCON.2004.1414400
10.1243/09544054JEM1067
ContentType Journal Article
Copyright Copyright 2018 Society for Information Display
2017 The Society for Information Display
Copyright_xml – notice: Copyright 2018 Society for Information Display
– notice: 2017 The Society for Information Display
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/jsid.622
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1938-3657
EndPage 752
ExternalDocumentID 10_1002_jsid_622
JSID622
Genre article
GrantInformation_xml – fundername: Business for Cooperative R&D between Industry, Academy, and Research Institute
  funderid: C0414502
– fundername: Chung‐Ang University
GroupedDBID 05W
0R~
1OB
1OC
29L
31~
33P
3SF
50Y
52U
5GY
8-0
8-1
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CMOOK
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HSZ
HVGLF
HZ~
I-F
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
P2W
PALCI
PQQKQ
R.K
RIWAO
RJQFR
ROL
SAMSI
SJN
SUPJJ
VH1
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
ZE2
ZZTAW
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2932-798e5079b50e6670c49f2b0ebbc8aec2b4d44f829d111de231eb7e3859b03a2e3
ISSN 1071-0922
IngestDate Sun Jul 13 04:48:13 EDT 2025
Sat Oct 25 05:28:09 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Sun Sep 21 06:27:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2932-798e5079b50e6670c49f2b0ebbc8aec2b4d44f829d111de231eb7e3859b03a2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3139-8915
PQID 2008121788
PQPubID 2034128
PageCount 16
ParticipantIDs proquest_journals_2008121788
crossref_primary_10_1002_jsid_622
crossref_citationtrail_10_1002_jsid_622
wiley_primary_10_1002_jsid_622_JSID622
PublicationCentury 2000
PublicationDate December 2017
2017-12-00
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationPlace Campbell
PublicationPlace_xml – name: Campbell
PublicationTitle Journal of the Society for Information Display
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 87
2007; 19
2010; 43
2001
2008; 16
1998
2008
2006
2009; 8
2004
2015
2008; 41
1975; 11
2013
2008; 222
2008; 2
2011; 18
2009; 16
2005; 2005
2009; 17
e_1_2_6_21_1
Liang‐Chia C. (e_1_2_6_7_1) 2007; 19
e_1_2_6_10_1
e_1_2_6_20_1
Otsu N. (e_1_2_6_25_1) 1975; 11
Chuang Y.‐C. (e_1_2_6_15_1) 2009; 8
Lee J. Y. (e_1_2_6_6_1) 2004; 87
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_16_1
References_xml – volume: 87
  start-page: 2371
  issue: 10
  year: 2004
  end-page: 2378
  article-title: Automatic detection of region‐mura defect in TFT‐LCD
  publication-title: IEICE TRANSACTIONS on Information and Systems
– volume: 19
  issue: 1
  year: 2007
  article-title: Automatic TFT‐LCD mura defect inspection using discrete cosine transform‐based background filtering and 'just noticeable difference' quantification strategies
  publication-title: Measurement Science and Technology
– start-page: 2007
– volume: 2005
  year: 2005
– volume: 11
  start-page: 23
  issue: 285–296
  year: 1975
  end-page: 27
  article-title: A threshold selection method from gray‐level histograms
  publication-title: Automatica
– volume: 18
  start-page: 253
  issue: 2
  year: 2011
  end-page: 255
  article-title: Split bregman method‐based background extraction for blob‐mura defect detection in thin film transistor‐liquid crystal display image
  publication-title: Optical Review
– volume: 17
  start-page: 671
  issue: 8
  year: 2009
  end-page: 680
  article-title: Mura – type effect on human – vision inspection
  publication-title: Journal of Society for Information Display
– volume: 16
  start-page: 969
  issue: 9
  year: 2008
  end-page: 976
  article-title: Measurement of human visual perception for Mura with some featrues
  publication-title: Journal of Society for Information Display
– year: 2001
– start-page: 400
  year: 2008
  end-page: 403
– year: 2006
– year: 2004
– volume: 2
  start-page: 441
  issue: 3
  year: 2008
  end-page: 453
  article-title: TFT‐LCD Mura defect detection using wavelet and cosine transforms
  publication-title: Journal of advanced mechanical design, systems, and manufacturing
– volume: 16
  start-page: 311
  issue: 4
  year: 2009
  end-page: 314
  article-title: A New Mura Defect Inspection Way for TFT‐LCD Using Level Set Method
  publication-title: IEEE Signal Processing Letters
– start-page: 186
  year: 2015
  end-page: 189
– volume: 222
  start-page: 1489
  issue: 11
  year: 2008
  end-page: 1501
  article-title: TFT‐LCD Mura defects automatic inspection system using linear regression diagnostic model
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
– volume: 43
  start-page: 1129
  issue: 3
  year: 2010
  end-page: 1141
  article-title: Defect detection of uneven brightness in low‐contrast images using basis image representation
  publication-title: Pattern Recognition
– volume: 8
  start-page: 148
  issue: 3
  year: 2009
  end-page: 154
  article-title: Automatic TFT‐LCD mura inspection based on studentized residuals in regression analysis
  publication-title: Industrial Engineering and Management Systems
– volume: 18
  start-page: 191
  issue: 2
  year: 2011
  end-page: 196
  article-title: Effective defect detection in thin film transistor liquid crystal display images using adaptive multi‐level defect detection and probability density function
  publication-title: Optical review
– volume: 41
  start-page: 8190
  issue: 2
  year: 2008
  end-page: 8195
  article-title: Region Mura Detection Using Efficient High Pass Filtering Based on Fast Average Operation
  publication-title: IFAC Proceedings Volumes
– year: 1998
– year: 2013
– ident: e_1_2_6_14_1
  doi: 10.3182/20080706-5-KR-1001.01386
– ident: e_1_2_6_13_1
  doi: 10.1299/jamdsm.2.441
– volume: 8
  start-page: 148
  issue: 3
  year: 2009
  ident: e_1_2_6_15_1
  article-title: Automatic TFT‐LCD mura inspection based on studentized residuals in regression analysis
  publication-title: Industrial Engineering and Management Systems
– ident: e_1_2_6_23_1
– ident: e_1_2_6_20_1
  doi: 10.1109/MVA.2015.7153163
– ident: e_1_2_6_16_1
  doi: 10.1016/j.patcog.2009.09.006
– ident: e_1_2_6_11_1
  doi: 10.4028/www.scientific.net/KEM.364-366.400
– ident: e_1_2_6_24_1
– ident: e_1_2_6_21_1
– volume: 19
  start-page: 015507
  issue: 1
  year: 2007
  ident: e_1_2_6_7_1
  article-title: Automatic TFT‐LCD mura defect inspection using discrete cosine transform‐based background filtering and 'just noticeable difference' quantification strategies
  publication-title: Measurement Science and Technology
– ident: e_1_2_6_19_1
  doi: 10.1007/s10043-011-0041-z
– ident: e_1_2_6_17_1
  doi: 10.1007/s10043-011-0051-x
– ident: e_1_2_6_18_1
  doi: 10.1109/LSP.2009.2014113
– ident: e_1_2_6_5_1
  doi: 10.1117/12.301232
– ident: e_1_2_6_9_1
– volume: 11
  start-page: 23
  issue: 285
  year: 1975
  ident: e_1_2_6_25_1
  article-title: A threshold selection method from gray‐level histograms
  publication-title: Automatica
– ident: e_1_2_6_22_1
– volume: 87
  start-page: 2371
  issue: 10
  year: 2004
  ident: e_1_2_6_6_1
  article-title: Automatic detection of region‐mura defect in TFT‐LCD
  publication-title: IEICE TRANSACTIONS on Information and Systems
– ident: e_1_2_6_2_1
  doi: 10.1889/1.2976659
– ident: e_1_2_6_4_1
– ident: e_1_2_6_10_1
  doi: 10.1109/ICCAS.2007.4406684
– ident: e_1_2_6_3_1
  doi: 10.1889/JSID17.8.671
– ident: e_1_2_6_8_1
  doi: 10.1109/TENCON.2004.1414400
– ident: e_1_2_6_12_1
  doi: 10.1243/09544054JEM1067
SSID ssj0026546
Score 2.2661138
Snippet In this study, an automatic detection method for mura defects is developed based on an accurate reconstruction of the background and precise evaluation of the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 737
SubjectTerms background reconstruction
Brightness
Case studies
Crystal defects
Defects
Discrete cosine transform
Filtration
image processing
Inspection
mura defect
Reconstruction
Test procedures
TFT‐LCD
Title A new algorithm on the automatic TFT‐LCD mura defects inspection based on an effective background reconstruction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjsid.622
https://www.proquest.com/docview/2008121788
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1938-3657
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0026546
  issn: 1071-0922
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZKdwMXaONHDMZkJAQXUUqaHye-rNZNW7RNSGulcRXFjrMGumRaW6HtikfgSXgonoTj2HGysUmDm7Sy4p4058v5cc75jNB7ynNCUi-08zAntp_5qQ1uiNgZj4gfDCMR1Oz8R8dkf-rHp8Fpr_erU7W0WrIBv76zr-R_tApjoFfZJfsPmjU_CgPwHfQLR9AwHB-k45HcENxK52cVpPizc73wb6WrZaWYWCd7E1PNcLgzts5Xl6mVCVXCUZSqzRJmSV-WWXVhsq7wqIvaU_5Ndn3UHS68arlm74lopexuFahudaoljIvFxbwt2Dk-U0u0s6I069Gfddn2F7n9UVwY1MbaHsVCzK5WZWszFwv9Equ4_g4XPp13lzDALbblIMrqQpxjO1Q1KA-EGqNgiT2i2KsbU616pBtIuh3DGyrqGO3DQ8WK-5d7UHSzXwEPA9JI6zJw3_KMpl5RcTu7iZyZwMxHaM0FL-L00dpofHR4YlJ83Rpm_lBDd-y4nxqpNwOgNqvp5kZ1cDNZR0-1DvFIQWwD9UT5DD3pcFU-R5cjDGDDBmy4KjEoHBuwYQDb7x8_AWZYwgxrmOEWZriGmZyYltjADLcwwzdh9gJN93YnO_u23rDD5hA1QqZG4dl2QsoCRxASOtynucscwRiPUsFdBrbAzyOXZuBhMwGphWCh8KKAMsdLXeG9RP2yKsUrhEOaQ_RGIFvnAmZFLHI4hdSWErioYRZtoo_NXUy4ZrOXm6rMk9u62kTvzJkXisHljnO2GkUk-vle1Bu0DiFjj0DYh1o5985P4pODMXy-foCsN-hx-wxsoT7cU_EWAtsl29Zo-gOpxqmO
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+algorithm+on+the+automatic+TFT%E2%80%90LCD+mura+defects+inspection+based+on+an+effective+background+reconstruction&rft.jtitle=Journal+of+the+Society+for+Information+Display&rft.au=Ngo%2C+Chinh&rft.au=Park%2C+Yong+Jin&rft.au=Jung%2C+Jeehyun&rft.au=Hassan%2C+Rizwan+Ul&rft.date=2017-12-01&rft.issn=1071-0922&rft.eissn=1938-3657&rft.volume=25&rft.issue=12&rft.spage=737&rft.epage=752&rft_id=info:doi/10.1002%2Fjsid.622&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jsid_622
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-0922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-0922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-0922&client=summon